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1. Introduction

It is a classical question in algebraic geometry to understand what are
the constraints imposed on the singularities that can be afforded on a given
class of algebraic varieties. A general result in this direction appeared in
[CG]. There it was shown that for any algebraic family of algebraic varieties
there are isolated singular points which can not be afforded on a any variety
which is birationally equivalent to member of this family. Our aim is to
prove that any set of isolated algebraic n-dimensional singularities can be
afforded on a simply connected projective variety.

More precisely we are going to prove the following result:

Theorem A. Let (Y, y) be the germ of a given isolated singularity. There
exists a simply connected projective variety X containing Y and with X \{y}
smooth.

The variety X we are constructing is of general type and we think that
general type condition is necessary in order to afford arbitrary isolated sin-
gularity. We will give an interesting example of the result in [CG]. We will
describe which sets of rational double points can be afforded on rational
surfaces (with the surprising fact that two E6 can not be afforded).

This paper is also devoted to what we consider to be a useful description
of singularities. We describe the germ of a reduced and irreducible analytic
space as a finite cover of a polydisc ∆n branched along a finite collection
of smooth divisors of ∆n possibly intersecting each other. This picture of
singularities provides a good framework to describe the spaces of deforma-
tions of isolated singularities and gives a simple proof of the fact that an
irreducible and reduced germ of an analytic surface is algebraic.

Another motivation for theorem A was the work of C. Epstein and G.
Henkin on the stability of the embeddability property of a strictly pseudo-
convex 3-dimensional CR-structure [EH]. More precisely, C Epstein asked
the third author if one can always embed an embeddable strictly pseudocon-
vex 3-dimensional CR-structure inside a regular variety. The methods used
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in [EH] see the embeddable CR-manifold M as the boundary of a pseudo-
concave surface Y which can be attached to the Stein filling S of M to give
a projective variety X = Y qM S. The properties of X, and specially the
regularity, played an important role in their results.

2. Analytic Singularities

This section introduces a local description of analytic spaces that we think
is very useful to the analysis of a spectrum of problems about singularities.
We describe the germ of a reduced and irreducible analytic space as a finite
cover of a polydisc ∆n branched along smooth divisors of ∆n. We give
then a new description of the deformation space of an isolated singularity.
Another application is a simple proof of the algebraicity of isolated surface
singularities.

2.1. Local Parameterization.

The following result is a simple modification of the lemma from [BP] which
extends Belyi’s argument to the case of arbitrary field of characteristic zero.

Lemma 2.1. Let Y be an n-dimensional affine variety. Then there exists
a proper map f : Y → Cn and a linear projection p : Cn → Cn−1 such that
f is ramified over a finite set of sections Si of p.

Proof: Consider an arbitrary finite surjective map g : Y → Cn. Let D
be the ramification divisor of g in Cn and let p : Cn → Cn−1 be a linear
projection whose restriction to D is proper and surjective. The projection
p is defined by a point x ∈ Pn−1∞ . To guarantee properness take x outside
of the intersection of the closure D̄ ∈ Pn with Pn−1∞ . After a linear change
of coordinates, φ : Cn → Cn, the projection p can be seen as the standard
projection onto the last coordinate. Hence, we have a linear parameter zn on
all the fibers of p and p(z1, ..., zn) = (z1, ..., zn−1). By Noether normalization,
the ramification divisor D0 of g0 = φ ◦ g is given as the set of zeroes of a
monic polynomial f0(zn) = zd

n + ad−1z
d−1
n + ... + a0 = 0 with coefficients

ai ∈ C[z1, ..., zn−1], i < n.
Let F0 : Cn → Cn be the branch cover of degree d defined by F0(z1, ..., zn) =

(z1, ..., zn−1, f0(zn)) and denote by g1 the composition g1 = F0 ◦ φ ◦ g0.
The ramification divisor of g1 is the union of the divisor zn = 0 (F0(D0))
and the divisor D1 = F0(R0), R0 = {(f0)zn(zn) = 0} where (f0)zn(zn) =
dzd−1

n + (d − 1)an−1z
d−2
n + ... + a1. The projection p maps the divisor D1

properly onto Cn−1. The divisor R0 has degree d− 1 with respect to zn and
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hence it’s image F0(R0) = D1 is defined by a monic polynomial f1(zn) of
degree d1 ≤ (d− 1) in zn.

Let F1 : Cn → Cn be the branch cover of degree d1 defined by F1(z1, ..., zn) =
(z1, ..., zn−1, f1(zn)) and g2 = F1 ◦ g1. The ramification divisor is the union
of two sections of p, F1({zn = 0}) and F1(D1) = {zn = 0}, and the divi-
sor D2 = F1(R1) which is defined by a monic polynomial on zn of degree
≤ (d1−1). In conclusion, after i-step we have the map gi = Fi−1 ◦ gi−1 with
ramification divisor consisting of the union of i sections of p and a divisor
Di = Fi−1(Ri−1) which is defined by a monic polynomial on zn of degree
≤ (d− i). Therefore, we obtain the lemma after l ≤ d steps. ¤

Remark 2.2. The proof of lemma 2.1 also works for a pair (X,D), where
X is an arbitrary affine variety of dimension n and D is a divisor of X. In
this case, the result would be that there is a finite map f : X → Cn such
that the ramification divisor of f and f(D) are a set sections of a projection
p : Cn → Cn−1.

The previous result can be reformulated in the category of complex ana-
lytic spaces to give local results. One such reformulation is a refinement of
the Local Parameterization Theorem.

Proposition 2.1 (Local Parameterization). Let x be a point in a complex
analytic space X of dimension n and suppose that X is locally irreducible
and reduced at x. Then x has neighborhood U ⊂ X with a finite map f :
U → ∆n onto an n-polydisc ∆n = ∆n−1×∆ ramified over a finite collection
of sections Si over ∆n−1.

Proof: The standard Local Parameterization Theorem states that all
x ∈ X have a neighborhood U ⊂ X admitting a finite map g : U → ∆n onto
a n-polydisc with g(x) = (0, ..., 0). The refinement consists of showing that
one can make the ramification divisor of the finite map very well behaved,
which provides us with a tool to better understand singularities.

First, we remark that there is nothing to prove if x is not a singular point
of X. Let D ⊂ ∆n be the ramification divisor of the previously described
finite map g : U → ∆n. We can shrink U and choose a decomposition of
the n-polydisc ∆n = ∆n−1 ×∆ such that the projection of D onto ∆n−1 is
a finite mapping. The proof of the standard LP theorem also gives that D
is given by a Weierstrass polynomial f0(zn) = zd

n + ad−1z
d−1
n + ... + a0 with

ai ∈ O(∆n−1) with ai = O(|(z1, ..., zn−1)|d−i).
The previous paragraph provides the setup to apply the method used

in the previous lemma. We describe one of the steps to make clear the
slight modifications. Using the Weierstrass polynomial f0(zn) we construct
the map F0 : ∆n−1 × ∆ → ∆n−1 × ∆′, where ∆′ is some disc, given by
F0(z1, ..., zn) = (z1, ..., zn−1, f0(zn)). The map F0 ◦g : U → ∆n−1×∆′ might
not be surjective. But by picking a smaller disc ∆1 ⊂ ∆′ and shrinking
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U to U = (F0 ◦ g)−1(∆n−1 × ∆1) we get a finite mapping g1 = F0 ◦ g :
U → ∆n−1 × ∆1 ramified at F0(D) = {zn = 0} and D1 = F0(R) where
R = {(f0)zn = 0}. The divisor D1 is given by the zero set of a Weierstrass
polynomial f1(zn) = zd1

n + a′d1−1z
d1−1
n + ... + a′0 of degree d1 ≤ d − 1. Use

f1(zn) to construct F1 and do the necessary shrinking of U , as before, and
obtain a finite map g2 = F1 ◦ g1 : U → ∆n−1 ×∆2. The desired finite map
f will be the map gl : U → ∆n−1 ×∆l obtained after some l ≤ d steps. ¤

2.2. Applications.

In this section we show how to apply proposition 2.1 to obtain the al-
gebraicity of the germs of normal 2-dimensional complex spaces and give
a description of isolated singularities that might prove to be useful for the
description of their deformations.

The Local Parameterization theorem presented in section 2.1 provides a
simple proof of the algebraicity of any germ of an analytic surface. For iso-
lated singularities this is a well known result due to Artin [A2] and later ex-
tended to a global result by Lempert [Le]. More precisely, Lempert showed
that any reduced Stein space S with boundary ∂S = M a smooth CR-
manifold can be embedded in an algebraic variety. On the other hand, recall
that in [W] (examples 14.1 and 14.2) Whitney shows that analytic singu-
larities in dimensions n ≥ 3 are, in general, not locally algebraic. Whitney
constructs an example of a normal analytic variety V of dimension 3 and
with a singular point p ∈ V , such that there exists no algebraic variety that
is locally (in an analytic sense) biholomorphic to any open neighboorhood
of p in V .

We proceed to show that all the analytic singularities in dimension 2 are
locally algebraic. Let p be a point of a complex analytic surface S, and
suppose that S is normal at p. By Proposition 2.1, there exists an open
neighborhood U ⊆ S of p, admitting a finite map g : U → ∆2, where ∆2 is
a polydisc in C2 and such that g(p) = (0, 0).

If the ramification divisor of g, D ⊂ ∆2, was an algebraic curve on ∆2

(i.e. given by the zero locus of a polynomial), then U would be an open
subset of an algebraic surface. But D is possibly reducible an analytic curve
in ∆2. To deal with this case, we have:

Lemma 2.3. Let D ⊆ ∆2 be a reduced analytic divisor, such that (0, 0) ∈ D.
Then, up to shrinking ∆2, there exists a biholomorphic map from ∆2 onto
an open neighborhood V of (0, 0) in C2 such that the image D′ of D is an
algebraic divisor passing through (0, 0).
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Proof: Levinson proves a more general result in [L] (see also [W], remark
14.3). But, for the sake of completeness, we show an easy proof of the
lemma. Let D be a union of irreducible components Di, with i = 1, . . . , N ,
passing through (0, 0).

By choosing a suitable system of coordinates z1, z2 and after shrinking
the polydisc ∆2, we can suppose that if p1 : ∆2 → ∆ is the projection with
respect to the first coordinate, then each Di is a section of p1. In other words,
we can write each Di as the zero set of the function Fi(z1, z2) = z2− fi(z1),
with fi analytic.

We want to prove the lemma by induction on N (the number of irreduible
components of D). Suppose that f1, . . . , fk are polynomials, with k < N .
We want to construct a biholomorphism of the form

Φ(z1, z2) = (z1, z2 + g(z1, z2)
k∏

i=1

Fi(z1, z2))

where g is an analytic function such that Φ(Dk+1) is algebraic. In fact, by
construction it follows that Φ(Di) = Di for any i ≤ k.

In order to reach our aim, we have to choose g such that the analytic
function

(1) P (z1) = fk+1(z1) + g(z1, fk+1(z1))
k∏

i=1

(fk+1(z1)− fi(z1))

is indeed a polynomial.
By shrinking ∆2 again, if necessary, we can suppose that

k∏

i=1

(fk+1(z1)− fi(z1)) = zM
1 φ(z1)

for some M > 0 and φ analytic function such that φ(0) 6= 0.
Therefore we can find an holomorphic function g, satisfying (1), for any

polynomial P such that P (z1)− fk+1(z1) is divisible by zM
1 . ¤

Our claim follows from the lemma. Choose U ′ defined by h−1(∆2), where
h = Φ ◦ g : U → V and (0, 0) ∈ ∆2 ⊂ V , as the neighborhood of p. The
open set U ′ is a branched covering of ∆2 branched over an algebraic curve.

The Local Parameterization result described in proposition 2.1 gives di-
rectly the following description of isolated singularities.

Proposition 2.2. Let s be a normal isolated singularity in a n-dimensional
complex analytic space Y . Then:
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a) There is an open neighborhood of s, U ⊂ Y , admitting a finite map
f : U → ∆n, onto an n-polydisc, which is unramified outside of a finite set
of smooth subvarieties Si ⊂ ∆n.

b) The germ of the singularity s ∈ Y is determined by the pair (∆n −⋃k
i Si, Γ), where Γ is the subgroup of finite index of π1(∆n−⋃k

i Si) defining
the covering.

The above picture of a singularity can be quite useful to determine the
structure of the deformation space for many isolated singularities. Let (Y, s)
be the germ of a normal n-dimensional singularity corresponding to the pair
(∆n \ ⋃k

i Si, Γ). Denote by si ∈ π1(∆n \ ⋃k
i Si) the simple loops around

the irreducible components Si. The s1,...,sk generate π1(∆n \ ⋃k
i Si) ∼=

Zm, where m is the multiplicity of the irreducible holomorphic function
germ g with g−1(0) =

⋃k
i Si. Let Γ′ be the maximal normal subgroup of

π1(∆n \⋃k
i Si) contained in Γ. The next short exact sequence holds:

1 → Γ′ → π1(∆n \
k⋃

i

Si) → G → 1

where G is the Galois group of the cover induced by Γ′.
Consider a deformation

⋃k
i St

i of
⋃k

i Si. Let T be a tubular neighborhood
of

⋃k
i Si. The complement ∆n \T is homotopically equivalent to ∆n \⋃k

i Si

and it is immersed in ∆n \ ⋃k
i St

i for 1
|t| À 0. Hence there is a natural

homomorphism jt : π1(∆n \⋃k
i Si) → π1(∆n \⋃k

i St
i ) for 1

|t| À 0.

Assume that a surjection rt : π1(∆n \ ⋃k
i St

i ) ³ G holds and moreover
that rtojt : π1(∆n \⋃k

i Si) ³ G is constant for 1
|t| À 0. This implies that a

Galois cover, associated with G, of ∆n \⋃k
i St

i persists for small t and the
induced covering of ∆n \ T ⊂ ∆n \ ⋃k

i St
i is constant along the family. In

turn, this implies that an intermediate covering associated with Γ inducing
a constant covering of ∆n \ T ⊂ ∆n \⋃k

i St
i also persists for small t.

The end result is that from a family of divisors
⋃k

i St
i ⊂ ∆n for which

rtojt : π1(∆n \ ⋃k
i Si) ³ G is constant for 1

|t| À 0 one obtains a family of

singularities Yt associated with the pairs (∆n \⋃k
i St

i ,Γ). The singularities
Yt all have a finite map ft : Yt → ∆n of the same degree branched at⋃k

i St
i . Moreover, the Yt have an arbitrarily large open subset f−1

t (∆n\T ) ⊂
f−1

t (∆n \⋃k
i St

i ) which is biholomorphic to f−1
0 (∆n \ T ) for all sufficiently

small t. The conditions to impose on the St
i to guarantee the constancy of

rtojt : π1(∆n \⋃k
i Si) ³ G will be investigated in future work.
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3. Singularities inside Projective varieties

Any collection of isolated singularities can be afforded in some projective
variety (see paragraph below). On the other hand, a collection of singular-
ities, or even one single singularity, does impose global constraints on the
type of the variety that possesses it (see the next subsection). The main
goal of this section, theorem A, is to show that the property of being simply
connected is not one of the properties which is conditioned by the presence
of singularities. Along the same lines would like to conjecture a stronger
result:

Conjecture 3.1. Let (Y, y) be the germ of a given isolated singularity.
There exists a projective variety X containing Y and with X \ {y} smooth
whose resolution X̂ is simply connected.

The following lemma shows that every finite set of isolated singularities,
can be afforded in an unique projective variety.

Lemma 3.1. Let Γ = {(Yi, yi)}i=1,...,k be any collection of germs of algebraic
isolated singularities of dimension n. There exists a projective variety Y
having Γ as its singular locus.

Proof Let Xk be a variety with only one singular point and the germ
of the singularity is equivalent to (Yk, pk). The lemma follows from in-
duction. Assume we constructed a projective variety Y ′

k−1 with Γk−1 =
{(Yi, yi)}i=1...k−1 as its singular locus. Consider the product variety Y ′

k−1 ×
Xk and cut it by a general n-codimensional plane Hn and denote Y ′

k =
Y ′

k−1 ×Xk ∩Hn. The singularities of Y ′
k are isomorphic to the (Yi, yi)i=1...k

are by a dimensional and general position argument. Hn intersects trans-
versely the singular locus pi×Xk or Y ′

k−1×pk and avoids the points pi×pk.
If we are interested in having exactly one copy of each singularity then re-
solve the possible extra copies of the singularities (Yi, yi)i=1...k that might
occur. ¤

3.1. An example of constraints imposed by singularities.

In the introduction we recalled a recent result of Ciliberto and Greco
stating that for any algebraic family of algebraic varieties there are isolated
singular points which can not be afforded on a any variety birational to a
member of this family. We proceed to give a concrete example of this result.
More precisely, we describe all the sets of rational double points, RDP’s,
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that a rational surface can contain (the same result holds for all surfaces of
Kodaira dimension −∞).

Notation: Let X and Y be analytic normal complex surfaces and f :
Y → X be a birational morphism with exceptional set E =

∑
Ei. The

negative definiteness of the intersection matrix (Ei, Ej) allow the existence
of a unique solution to:

KY ≡ f∗KX +
∑

aiEi

The numbers ai are called the discrepancy of Ei with respect to X,
discrep(Ei, X) = ai. The birational morphism will be called totally dis-
crepant if E 6= ∅ and the ai > 0, for all i.

It was shown is Sakai [S1] that given a normal surface X, there is a
sequence X → X1 → X2 → ... → Xn of contractions of exceptional curves
of the first kind, i.e C2 < 0 and KXi .C < 0, such that Xn has no such curves.
Xn is then called a minimal model of X and the morphism f : X → Xn

is totally discrepant. Let X ′ be the minimal model of the normal surface
X and f : X → X ′ be the totally discreptant birational morphism. Let
π′ : Y ′ → X ′ and π : Y → X be respectively the minimal resolutions of X ′
and X, with KY ′ = π′∗KX′ + ∆′ and KY = π∗KX + ∆. Then f induces a
birational morphism g : Y ′ → Y such that g∗∆ ≥ ∆′ (this result supports
the statement that going to the minimal model does not make singularities
worse).

A normal surface singularity (X, x0) is an RDP (rational double point)
iff KY .Ei = 0 for every exceptional curve Ei of the minimal resolution
f : Y → X or equivalently f∗KX = KY + ∆ with ∆ = 0. From the
definition of an RDP singularity follows that the negative configuration of
curves that form the exceptional set of f is composed of smooth rational
curves with self intersection -2 in one of formations of the Dinkin diagrams
An(n = 1, ...), Dn(n = 4, ...), En(n = 6, 7, 8). The observation of the previ-
ous paragraph implies that if a normal surface X has only RDP singularities
then the same is true for its minimal model.

Theorem B. The collection of rational double points that can be in a ra-
tional surface X are the following:

1. Arbitrary collections of An and Dn singularities

2. An En singularity and an arbitrary collections of An singularities.

Proof First, we give the positive results. By blowing up over a point one
can get an An configuration of negative curves. Hence all birational classes
of surfaces can have as many An singularities as desired.
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A Dn configuration of negative curves can be obtained by blowing up over
a smooth rational curve C with C2 = 0. Hence one can get as many Dn

singularities as desired in all birational classes of ruled surfaces.
An En configuration can not be obtained by blowing up over a smooth

rational curve C with C2 = 0. This is the reason behind the asymmetry of
the theorem. On the other hand, one En configuration of negative curves
can be obtained by blowing up over two lines in P2. Hence one can get one
En singularity in the birational class of rational surfaces.

The minimal model program for normal singular surfaces developed by
Sakai will give the negative results. Let Y be a normal surface with two
En singularities or an En and one Dm singularity. Resolve all the other
singularities and still name that surface Y . The minimal model Ym of Y is a
surface with only rational double points, as explained above. Moreover, the
singularities En and Dm of Y will still exist in the minimal model Ym [Mo].
Let f : X → Ym be the minimal resolution of Ym (i.e. no (-1)-curves on the
exceptional locus). Assume, as in the hypothesis of the theorem, that X is
rational, then since the singularities of Ym are rational, KX = f∗KYm , one
has Kod(Ym) = −∞ and KYm is not nef.

Sakai [S2] proved that if Y ′ is a minimal normal surface whose canonical
bundle KY ′ is not nef then Y ′ is projective, Kod(Y ′) = −∞ and either:

i) ρ(W ) = 1 and −KW is numerically ample, i.e. K2
W > 0 and KW .C > 0

for all curves C ⊂ W , or
ii) W has a P1-fibration.

So according to Sakai’s result Ym must be one of the two cases described
above. We will show that both cases are not possible.

Suppose Ym is as in i). The minimal resolution X of Ym is rational and
has K2

X = (f∗KYm)2 > 0 Hence X is P2 blown up at most 8 times or one
of the Hirzebruch surfaces Fn blown up at most 7 points. In both cases
b−2 (X) ≤ 8. But on the other hand the minimal resolution of Ym must have
b−2 (X) ≥ n + m ≥ 10 and we obtain a contradiction. The inequality is just
a consequence of the linear independence of homology classes of the curves
in the exceptional locus.

Suppose Ym is as in 2). The P1-fibration of Ym induces a ruled-fibration,
π : X → C, of X. The configuration of (-2)-curves coming from the resolu-
tion of the En singularity lies in one of the fibers. The surface resulting from
contracting the (-1)-curves in the fibers of π is an Hirzebruch surface Fn.
But an En configuration of (-2)-curves can not be obtained by blowing up
over a smooth rational curve C with C2 = 0 and the desired contradiction
follows. ¤
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Corollary 3.1. A surface X which is a resolution of a surface Y containing
a En and a Dn singularity must have its Kodaira dimension Kod(X) ≥ 0.

Proof: The last theorem states that X is not a rational surface. On the
other hand, an En configuration of negative curves does not lie entirely in
the blow up pre-image of a fiber of a ruled surface. This would force one of
the (-2)-curves to surject to the base of the ruled surface imposing that X
is rational. ¤

Corollary 3.2. There is a singularity that can not be afforded in a projective
surface X with Kod(X) = −∞.

Proof: Let X ′ be a smooth projective surface with a En and a Dm

configurations of −2-curves which are disjoint. Let H be an ample divisor
on X ′, blow up X ′ at a sufficiently large number of points on H but not on
the configurations En or Dm. We obtain a new surface X ′′ with a negative
configuration of curves consisting of H ′ (the strict transform of H) plus the
curves coming from En and Dm (the negative definiteness is guaranteed by
making H ′2 << 0). Now contract this negative configuration of curves, the
singularity that is obtained by construction and using the previous corollary
does not lie is a surface X with Kod(X) = −∞. ¤

3.2. Symmetric powers.

In this subsection, we show that any germ of an algebraic singularity
(X, s) can be realized in a projective variety Y satisfying YSing = s and
such that its smooth locus has abelian fundamental group. In particular,
also Y will have abelian fundamental group.

The construction will be based on the topological properties of symmetric
powers of algebraic varieties. In fact Y will be a generic complete intersection
of S2X.

For any CW-complex X we can define a m-th symmetric power SmX
as the quotient of the CW-complex Xm = X × ... × X by the symmetric
group of m-letters Sm. Hence SmX is also a CW-complex with a natural
morphism sm : Xm → SmX. For the sake of the readability of this paper,
we recall some key topological properties of symmetric products with a short
proof.

Lemma 3.2. Let X be a CW-complex then the induced CW-complex SmX
has the following properties.

(1) π1(SnX) = H1(X,Z), n > 1
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(2) H i(SlX,R) = H i(SmX,R) for m, l > i

Proof: The cochains of SmX are symmetrizations of the cochains in the
product of m copies of X. Thus for i < n symmetric cochains are generated
by cochains in the product of ≤ i copies of X multiplied by 0-dimensional
cochains. It implies that the i-skeletons of SnX,SmX are isomorphic for
i < min(m,n). Similarly the fundamental group of SnX is generated by
the fundamental group of X.Any commutator relation corresponding to the
cycle bounded by torus transforms in S2X by symmetric power which gives
a disc. ¤

If X is an algebraic or projective variety then SmX is respectively an
algebraic or projective variety. The variety SmX is singular unless X is a
nonsingular curve. Let us consider the case where X is an algebraic variety
of dimension n with a finite collection of singular points Γ = {s1, ..., sk}.
Denote U = Xreg = X \XSing and any of the i-diagonals of Um (the entries
of a fixed set of i places of Um are identical) by ∆i. We have the following
Whitney stratification S of SmX:

(1) (SmX)reg.
(2) Pi[m] = sm(∆i+1) \ ∪m

j=i+2sm(∆j), 1 ≤ i ≤ m− 1.
(3) Σi = Si(Γ)× (Sm−iU)reg 1 ≤ i ≤ m.
(4) ΣPij = Si(Γ)× Pj [m− i], 1 ≤ i ≤ m and 1 ≤ j ≤ m− i.

We denote the complement of the union of of all strata of codimension
≥ (i + 1)n by (SmX)i. The (SmX)i are Zariski open subsets of SmX. For
example, (SmX)0 = (SmX)reg and (SmX)1 = SmX)reg ∪ P1[m] ∪ Σ1. The
following dimensional properties hold for the strata:

(1) codimPi[m] = in, the singularities along Pi[m] are simple quotient
singularities.

(2) codimΣi = in.
(3) codimΣPij = (i + j)n.

We are now ready to state the main result of this section:

Theorem C. Let Γ = {(Yi, yi)}i=1,...,k be any collection of germs of equidi-
mensional isolated singularities. There exists a projective variety X with
abelian fundamental group whose collection of singular points coincide with
Γ. Moreover if Y is a projective variety with YSing = Γ, then X can be made
such that π1(X \ Γ) = H1(Y \ Γ,Z).

Proof. Let Y be a projective variety whose collection of singular points
coincide with Γ (lemma 3.1).
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¿From lemma 3.2, it follows that the fundamental group of the symmetric
product of any algebraic variety is abelian, and therefore we would like to
take a generic complete intersection Z in S2Y of the same dimension of Y
and that contains the same singularities of Y in such a way that π1(Z) =
π1(S2Y ). That would imply that Z has an abelian fundamental group.

Lefschetz theorem on hyperplane sections states that if W is an algebraic
variety with dimW > 2 and H ⊂ W is an hyperplane section such that
W \ H is smooth then π1(W ) = π1(H). For the variety S2Y that we are
considering, Lefshetz theorem cannot be applied directly, because we want to
study complete intersection subvarieties that are transverse to the singular
locus of S2Y .

Hence, let us consider n generic hyperplane section H1, . . . , Hn of Y ,
passing through the singular points of Y .

On the product Y 2 = Y × Y , let pi : Y 2 → Y with i = 1, 2, be the
respective projections and let H be the intersection of the divisors p−1

1 (Hj)∪
p−1
2 (Hj) with j = 1, . . . n.
Then H is a complete intersection of very ample divisors on Y 2 that is

invariant with respect of the natural action of the group Z2 on Y 2. We
denote its quotient by

Z = H/Z2 ⊆ S2Y.

Let U be the smooth locus of Y , i.e. U = Y \Γ, and let HU = H∩(U×U).
By applying Lefshetz theorem on HU . it follows that π1(HU ) = π(U ×U)

and since the action induced by Z2 on those groups is the same, we have
that if ZU is the quotient of HU by Z2, then ZU has the same fundamental
group of S2U and in particular this is abelian.

On the other hand ZU is also an open set of Z such that its complementar
is a union of a finite number of point and therefore the fundamental group
π1(Z) is abelian since surjection π1(ZU ) → π1(Z) holds.

¿From the construction of H, it follows easily that the singularities of Z
are isolated and decompose into ZSing = (Z∩Σ1)∪(Z∩P1). The singularities
in Z∩Σ1 are equivalent to the isolated singularities of Y and the singularities
in Z ∩ P1 are double points.

Let X be the projective variety obtained from Z by resolving the dou-
ble points. Then X has abelian fundamental group and its singular locus
coincides with Γ, as desired. ¤

Corollary 3.3. Let Y be a projective variety with a given collection Γ of
isolated singular points such that H1(Y,Z) = 0. Then there exists a projec-
tive variety X with XSing = Γ which is simply connected. If additionally
Y is such that H1(Y \ Γ,Z) = 0 then X can be made so that X \ Γ is also
simply connected.
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4. Reducing abelian fundamental group

We are now ready to prove theorem A. Let S be a given isolated sin-
golarity. By the results in the previous section, we can suppose that there
exists a variety X such that XSing ' S, and, if U = X \XSing, then π1(U)
is abelian and the imbedding U ↪→ X defines a surjection π1(U) → π1(X).

Let us consider the infinite part of the fundamental group of X. If it
is trivial, then the group is finite and hence there is a finite nonramified
covering of X which is simply connected.

Thus, we can suppose that the Albanese map f : X → A := Alb(X) is not
trivial. The torsion subgroup π1(X)tors is a direct summand of π1(X), and
therefore if π1(X)F is the complementary subgroup, the induced morphism

f∗ : π1(X)F → π1(A)

is an isomorphism.
For every n > 0, we can consider the iteration map fn : SnX → A, given

by fn(x1 . . . xn) =
∑

f(xi). Since f(X) generates A, there exists n0 such
that if n ≥ n0, then fn is surjective.

Moreover, we have

Lemma 4.1. There exists a positive integer m > 0 such that the map fm :
SmX → A admits a topological section s : A → SmX.

Proof. Let g = dimA, and let [γ1], . . . , [γ2g] be generators of π1(A), given
by considering the i-th component of Π2g

i=1S
1, for some homeomorphism

Π2g
i=1S

1 ' A.
Since the induced map f∗ : π1(X) → π1(A) is surjective, for each i =

1, . . . , 2g, there exists an injective map ri : S1 ↪→ X, so that f∗(ri) = γi. In
particular, these maps induce an isomorphism π1(A) → π1(X)F .

The map f2g ◦ r : ΠS1
i → A, given by f2g ◦ r(z1, . . . , z2g) =

∑2g
i=1 γi(zi) is

an homeomorphism and therefore the continuous map

r = Πri : A ' ΠS1 → S2gX

defines a topological section for f2g : S2gX → A (and in fact, more generally
for X2g → A). ¤
Remark 4.2. The homotopy class of the section s above, is defined by
the homotopy class of the corresponding subgroup π1(X)F , generated by the
elements ri : S1 ↪→ X.

Lemma 4.3. If dimX = n, then for N ≥ i, the natural imbedding SiX ↪→
SNX is an homotopy equivalence up to dimension i− 1.

Proof. By lemma 3.2, the statement is true for the fundamental group of X.
Moreover, it also holds for the homotopy groups H i(SiX), since it is

generated by products of elements in H is(X) with i1, . . . , ik so that their
sum is equal to i and hence all such product are represented on SiX.
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In fact this is true on the level of complexes. Indeed the cells of dimension
i in SNX are obtained from the cells i1, ...., ik with sum equal to i in X.
Thus each cell is the image of a product of at most i simplices from X and
hence it comes from SiX.

In particular the imbedding SiX ↪→ SNX is an homotopy equivalence up
to dimension i− 1. ¤

By lemma 4.1, there exists m > 0 and a topological section s : A → SmX.
In particular, fn : SnX → A is surjective for any n ≥ m.

Let Rn
x ⊆ SnX be the fiber of fn : SnX → A over a point x ∈ A.

Moreover, let S̃nX → SnX be the abelian cover induced by the universal
cover Cg → A, and let f̃n : S̃nX → Cg.

In particular, f̃m admits a topogical section s̃ : Cg → S̃mX, obtained as
a cover of s(A). Moreover the natural map SnX × SkX → Sn+kX, can be
lifted to the map S̃nX × S̃kX → S̃n+kX.

Lemma 4.4. The natural imbedding in : Rn
x ↪→ S̃nX is an homotopy equiv-

alence up to dimension n−m− 1.

Proof. By lemma 4.3, the k-skeleton of S̃mX can be contracted to any sub-
variety

S̃k+1X × c ⊆ S̃mX

where c ∈ Sm−k−1X is any cycle.
Consider the map

φk : S̃k+1X → S̃k+1+mX

which maps p ∈ S̃k+1 to p · s̃(−f̃k+1(p)) ∈ S̃k+1+m.
Thus, we have

f̃k+m+1(φk(p)) = f̃k+1(p) + f̃m(s̃(−f̃k+1(p))) = 0.

Therefore φk maps Sk+1X inside R̃k+m+1
0 .

Moreover it is homotopy equivalent to the standard imbedding. In fact
the map

(t, p) 7→ p · s(−tf̃k+1(p)) for 0 ≤ t ≤ 1
defines the homotopy equivalence.

Thus S̃k+1X ⊆ S̃k+m+1X is homotopy equivalent to its image in Rk+m+1
0 ,

and therefore any nontrivial homotopy in S̃k+m+1 is the same as in Rk+m+1
0 ,

up to dimension k. This implies the lemma. ¤

Remark 4.5. The same result and proof applies for any continuous map
a : S → T from a topological space S to a torus T , provided that the induced
map a# : π(S) → π(T ) is surjective and the map π(S)ab → π(T )ab is an
isomorphism.
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Let U ⊆ X be an open smooth subvariety of X, so that the natural map
π1(U) → π1(X) is a surjection. Let RUn

x ⊆ Rn
x be the fiber for the induced

map SnU → A. In particular, RUn
x is quasi-smooth, i.e. it has only quotient

singularities and, by the same arguments used in lemma 4.4, the fibers RUn
x

are homotopically equivalent up to dimension n−m− 1.
Thus, if n > m + 1 then the fundamental group of RUn

x is abelian and
equal to the kernel of the map π1(U) → π1(A).

Fixed x ∈ A, let M be the union of RUn
x with the intersection of Rn

x and
the image of the map Sn−1U × XSing → SnX then the resulting variety
M ⊂ Rn(X) has the following properties:

(1) π1(M) = π1(Rn
x);

(2) codim(Rn
x \M) > dimX;

(3) M is quasi-smooth outside a singular subset which is locally isomor-
phic to SingX ×D, where D is a polydisk.

Thus if we take now a complete intersection of M of dimension equal to the
dimension of X then the resulting variety X ′ will have isolated singularities
which are the same as X and π1(X ′) = π1(M) and hence it is a finite abelian
group. This finishes the construction and the proof. ¤
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