Complex cobordism and embeddability of CR-manifolds
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This paper studies (directed) complex cobordisms between compact three dimensional
strictly pseudoconvex Cauchy-Riemann manifolds. Assume the complex cobordism between
the compact strictly pseudoconvex Cauchy-Riemann manifolds M; and M, is given by a
compact complex manifold X with boundary having M; as its pseudoconvex end and M,
as its pseudoconcave end. We answer the following questions: if one of the ends is an
embeddable CR-manifold is the other end also embeddable? Are all CR-functions on the
pseudoconvex end of X boundary values of holomorphic functions on the interior of X7 If
the complex cobordism manifold X is of dimension greater than 2, the affirmative answer
to these questions follows immediately from the embeddability of all strictly pseudoconvex
CR-manifolds of dimension greater than 3. For complex cobordisms of dimension 2 these
questions were still open. The ends of complex cobordism 2-manifolds are strictly pseudo-
convex CR-manifolds of dimension 3 whose embeddability is no longer guaranteed and is a
topic of active research.

To answer the questions raised above, we produce two new methods to construct pseudo-
concave surfaces, whose boundaries are non-embeddable strictly pseudoconvex CR-manifolds
of dimension 3. The constructions allow us to show that:

1) There are complex cobordant 3-dimensional strictly pseudoconvex CR-manifolds M; and
My, with one embeddable and the other not.

2) There are complex cobordism 2-manifolds X with CR-functions on the pseudoconvex end
M; that are not boundary values of holomorphic functions on the interior of X.

3) There are complex cobordism 2-manifolds X with embeddable pseudoconvex ends M,
where the extendabitity of all the CR-functions on M; to holomorphic functions on X does
not imply the embeddability of the pseudoconcave end M.

4) There are holomorphic families of complex cobordism 2-manifolds where all the members
have their pseudoconvex ends embeddable but only the central member has the pseudocon-
cave end embeddable.

The first result answers negatively the main question of this paper on the preservation
of embeddability under complex cobordisms. In the literature this question appeared in
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|[Eprel-Uu|. rrevious to our result, tne only answer was positive |[Lprieul), but the com-
plex cobordism manifold X had an extra condition. It was required that X had a strictly
plurisubharmonic function ¢ and that its ends M; and M, were level sets of (.

The second result gives the first case where CR-functions on the pseudoconvex end M; of
a complex manifold X, whose ends are strictly pseudoconvex CR-manifolds, do not extend
to holomorphic functions on X. The basic results on extendability are in the other direction:
the local extendability result of Lewy states that all CR-functions of the pseudoconvex
end M; extend to an holomorphic function on a small neighborhood of M; and the global
extendability result of Kohn and Rossi [KoRo65] implying that if all the other ends of X
are embeddable then all the CR-functions on M; extend. This last global result shows in
particular that result 2) is only possible in dimension 2.

The third result clarifies the strength of the connection between the embeddability of the
pseudoconcave end M, of a complex cobordism manifold X having an embeddable pseudo-
convex end M; and the extendability of all the CR-functions of M; to holomorphic functions
on X. The extendability of the CR-functions from the pseudoconvex end M, is necessary for
embeddability of My, as follows from [KoRo65], but the result states that it is not sufficient.
The fourth result states that the property that a complex cobordism manifold preserves
embeddability is not stable under small deformations. The last two results also say that
complex cobordism manifolds not preserving embeddability can be quite similar to complex
cobordism manifolds that do.

A compact (2n+1)-dimensional Cauchy — Riemann manifold (CR~(2n+1)-manifold) con-
sists of: a compact (2n+1)-dimensional manifold M, a rank n complex subbundle 7'M C
TM ® C satisfying T"°M N T™»M = {0} (T"°M = T%'M) and the integrability con-
dition [Z,Z"]|, € TY'M for local sections Z,Z" of T®'M. If the CR-(2n+1)-manifold
has the additional property that any nonvanishing local section Z of T%'M is such that
1Z,Z)|, ¢ T>'M & T,°°M for any p € M, it is called strictly pseudoconver (SPCR-(2n+1)-
manifold).

A differentiable function f : M — C is said to be a CR — function if it is in the kernel of
the 0, operator, 9 f = df|ro.1. That is, it verifies the tangential Cauchy-Riemann equations
Z f = 0 for all local sections of T%' M.

Definition A CR-(2n+1)-manifold M is embeddable if there is a collection of CR func-
tions {fi, ..., fn} giving an embedding f = (f1,..., fx) : M — CV.

The origin of CR-structures lies in the study of real hypersurfaces in C*. The CR-
structure being given by T%'M = T%'C* N TM ® C. A CR-function is a function that
satisfies the differential conditions of holomorphy that can be verified along M. An important
example of SPCR-manifolds are the boundaries of strictly pseudoconvex domains in C".

Definition A CR-(2n+1)-manifold M is fillable if it is the boundary of a normal complex
Stein space X with the CR-structure induced from the complex structure of X. A filling
of M is any normal complex space Y which is a modification of a Stein space and whose
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An example of Andreotti and Grauert, see [Ro65] showed that not all compact SPCR-
3-manifolds are embeddable. Later Boutet de Monvel [Bou74] showed that for n > 2 any
compact SPCR-(2n+1)-manifold M is embeddable, this follows from the result of Kohn
stating that the range of Jj is closed plus the result of [Bou74] stating that if the range of
0y is closed then M is embeddable. The following important result also holds: fillability
of any compact SPCR-(2n+1)-manifold M is equivalent to the embeddability of M. This
result follows from [Bou74], [Ko86] and also [HaLa75]. A significant amount of work has
been produced to understand the structure of the set of embeddable SPCR-structures for
3-manifolds by Bland, Burns, Catlin, Epstein, Henkin and Lempert.

Acknowledments I would like to thank Professor Charles Epstein for generously shar-
ing his knowledge with me and for his enthusiasm and Professor Yum-Tong Siu for always
inspiring and encouraging me and the hospitality of the staff at Harvard University.

SECTION 1

The CR-structure on a smooth real hypersurface M given as a level set of a strictly
plurisubharmonic function ¢ on a complex manifold V, M = {»!(c)} and dp(p) # 0 on
T,M for all p € M, is strictly pseudoconvex. In the opposite direction, let M be a compact
smooth boundary component of complex manifold with boundary X such that the induced
CR-structure on M is strictly pseudoconvex then M is a nondegenerate level set of a strictly
plurisubharmonic function ¢ defined in a neighborhood of M, V C X. M is said to be
a pseudoconver (pseudoconcave) end of X if M = {o7'(0)} and X NV = {¢(x) < 0}
(X NV = {p(z) > 0}).

Definition Let X be a connected compact complex manifold with a smooth boundary.
If 0X = M, IT My with M, a disjoint union of pseudoconcave ends and M; a disjoint union
of pseudoconvex ends, then M is said to be complex cobordant to M; and X is a (directed)
complex cobordism manifold.

A special case of (directed) complex cobordisms was considered in [EpHe01]. Two CR-
manifolds M; and M, are called strictly CR-cobordant, if there is complex cobordism mani-
fold X with 0X = M;I1 M, having a strictly plurisubharmonic function, ¢ : X — R, with M;
and M, as level sets ¢~(1) and ¢~1(0) respectively. X is called a strict complex cobordism
manifold. From now on, all complex cobordisms will be directed complex cobordisms.

A compact complex manifold with a smooth boundary is called a pseudoconvez (pseudo-
concave) manifold if all its boundary components are pseudoconvex (pseudoconcave) ends.
In [KoRo65] it is shown that a pseudoconvex manifold has only one end. This implies that
a complex cobordism manifold X of dimension greater than 2 can not have more than one
pseudoconvex end. The complex manifold X’ obtained from X by filling its pseudoconcave



€Nnds 1S pseuaoconvex. 1n vorollary 1, we snow tihat I0r dimension < 1t 1S possible 10 nhave
complex cobordisms manifolds with more than one pseudoconvex ends.

On the other end it is possible for a pseudoconcave manifold Y to have more than one
end. Note that if Y is a pseudoconcave manifold and M and M’ are SPCR-manifolds such
that Y = M I1 M', the above definition of directed cobordism does not apply and M is not
considered to be complex cobordant to M’ or vice-versa.

The main goal of this paper is to understand how the embeddability of one end of a
complex cobordism manifold X influences the embeddability of the other end. The first
observation is that if the pseudoconcave end M, of X is embeddable then the pseudoconvex
end M, is also embeddable. The embeddability of M; follows from its fillability, the manifold
S'= X1, S, S afilling of My, is a filling of M;. The other direction is the interesting case.

Prior to our work, the existing result on whether the embeddability of the pseudocon-
vex end implies the embeddability of the pseudoconvex end was in the positive direction.
The result was for the special case of strictry CR~cobordant SPCR-~manifolds [EpHe01]. In
[EpHe01] it was shown that if the SPCR-manifolds M; and M, are strictly CR-cobordant
then M, is embeddable iff M, is embeddable. One of the main ingredients of the proof is
that by using the Lewy extension result all the CR-~functions on M; are boundary values of
holomorphic functions on X. In the next two sections we show that for a general complex
cobordism M, being embeddable does not imply that M, is embeddable, and the same holds
even if all CR-functions on M; are boundary values of holomorphic functions on the complex
cobordism manifold.

It was mentioned in the introduction that the fillability is intimately related to the
embeddability for SPCR~-manifolds. It is therefore fruitful to relate a complex cobordism
manifold with the fillings of its pseudoconvex end.

Definition Let M; be an embeddable SPCR-manifold. If M; is the pseudoconvex end
of a complex cobordism manifold X whose other ends are pseudoconcave, then X is called
a partial filling of M;. We say that we have rigidity on the partial fillings of M; if they are
all modifications of open subsets of the unique Stein normal space filling M.

Let M; be an embeddable SPCR-manifold of dimension greater than 3 then all partial
fillings extend to an actual filling of M; and they are rigid. Let X be a complex cobordism
manifold with the pseudoconvex end M; and the pseudoconcave ends M; II ... IT M. The
embeddability of all SPCR-manifolds of dimension greater than 3 implies that the M;, ¢ =
1,..., k, are embeddable or equivalently fillable, then X is an open subset of a filling S’ of
My, 8" = X Uporr..uingy) (S1 ... 1T Sg) with S; a filling of M;. In [Gr62] it is shown that all
fillings of M, are proper modifications of its unique Stein normal filling.

The question of embeddability being preserved under complex cobordisms can be trans-
lated to: can we start filling an embeddable SPRC-3-manifold M; in the wrong way (not
extendable to a filling)? A distinct but also relevant question is: what is the freedom in the
partial fillings of M;?7 Theorem 1 of the next section answers the first question affirmatively
and from Theorem 3 of section 3 it follows that there can be plenty of freedom in the partial
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Remark: It is interesting to re-examine the result of Epstein and Henkin [EpHe01] de-
scribed above. The result implies that, regardless of the dimension, in any partial filling of
M, there is a sufficiently small collar of M; in X that is rigid.

SECTION 2

In this section we give a method to construct complex cobordisms where one end is
embeddable but the other is not. We also show that the complex cobordisms produced by
this method are very different, in terms of function theory, from complex cobordisms where
all ends are embeddable.

The next lemma will be used to construct pseudoconcave surfaces containing disjoint
positive curves.

Lemma 1 Let X be a nonsingular complex surface containing the normal crossing divisor
C = C,U...UC}, with C; nonsingular positive compact curves, i.e. C? > 0. Then there exist
a neighborhood W of C' where the line bundle O(C') associated to the divisor C is positive
and a smooth strictly plurisubharmonic function ¢ : W\ C — R such that:

i) For every sequence (Z)nen, Tn € W\ C converging to = € C, lim,, _,, p(z,) = +oc.

ii) For¢c> 0, X, ={z € W : ¢(z) > cor z € C} is a relatively compact pseudoconcave
neighborhood of C.

Proof: First we show that if the line bundle O(C) is positive in a neighborhhod W of
C then we can construct a strictly plurisubharmonic function ¢ : W\ C — R satisfying i)
and ii). A line bundle L over X is positive at € X if L has a hermitean metric h such
that the associated real (1,1)-form ), = /=10, = —/—=18dlogh is positive at = (O is
the curvature form for h).

The line bundle O(C) is defined by the transition functions g;; = %, where {f; € O(U;)}

are the defining equations of C for the covering {U;} of X. A hermitian metric A on O(C)

is given by a collection of positive functions, h; : U; — R satisfying h; = h; B:"; on U; NU;.
J
If the hermitian metric & on O(C) is such that the form €, positive at all x € W, then the

function ¢ : W\ C — R defined locally by:

eloaisimoy = i = —log(hi| i)

is strictly plurisubharmonic and satisfies the properties i) and ii). The positivity of the form
Q;, on W implies that ¢ is strictly plurisubharmonic on W\ C. Since 9¢; = 39(— log(h;)),
where f; # 0, the positive definiteness of the Levi form of ¢; follows from the positivity of
the (1, 1)-form €2}, associated with the metric h. The properties i) and ii) follow directly from
the definition of ¢ plus the compactness of the C;’s.



Vve€ proceed to show that U(C ) 1S positive 1 a neignpornood or CO. 1ne nrst step 1s 1o
construct a metric A on O(C) such that €, > 0 on each irreducible component C;. The
map ioymc) : C — PV defined by a basis of H*(C,Oc(mC)) is an embedding for each
irreducible component C; if m > 0, since C? > 0 (Oc(mC) is the restriction to C of the
line bundle associated to the divisor mC on X). If & is a metric on Opx(1) with positive
(1,1)-form € then the m-square root of the pullback A’ = i*OC(mC)iL is a metric for O¢(C)
satisfying (|, > 0 on each Cj. Let h be a metric of O(C) on X that is a C* extension
of h'. The following steps provide us with a method to modify the metric A and obtain a
metric A" with the desired curvature properties on a neighborhood of C.

Let F' = {z} }x=1,.; be the collection of the normal crossing points of C. Choose an open
covering {U;} of X consisting of relatively compact open subsets of X with local coordinates
2%, 24 such that the defining equations f; are of the form: 1) f; = 1,if CNU; = 0; 2) f; = 2%,
if CNU; # 0 and no x4, € Uy; 3) f; = 2428, if C N U; # 0 and some zy, € Uj.

We change h to a new metric A’ such that Qu |7, x is a positive (1,1)-form at the crossing
points z. If ), € U; and the ball By, (r) is such that B,, (r) NU; = 0 for j # i. We change
hz' to:

K = hi62Re(a2122).p
i

where a = —% and p is a smooth function on U; with value 1 on B,, (5) and value 0
2021

outside By, (r) . The functions hj and hj, j # 7 give a metric, &', on O(C), since hi|y,nv;, =
hilv;nu; for all j # i. The new metric b’ is equal to h on C, hi|cny, = hi|cnu;, and has the
associated (1, 1)-form:

th (.Tk) = —V —18151 logh,(mk) —V —18252 log hi(.’Ek),

since the modification eliminated the crossed terms. The positivity of € o, on each Cj

implies that — 2 g’ig"z,(f’“), _& g’ig’g’“) > 0 and therefore Qp |z, x is a positive (1,1)-form.

To finish, we change h' to a metric A” which has the curvature form €~ positive near
the curve C. The modification was already done for the smooth case in [Sc73] and consists
of changing the h; to:

!
= T
ilJi
This change is well defined since the collection functions 1 + chl| f;|* on the U; define a global
positive smooth function on X. The associated (1, 1)-form €2~ changes accordingly to:

Qpr = O — V=180 1og(1 + chil fil)

The contribution of 39 log(1+ch!|f;|?) on CNU; is: 1) chydzi AdZE if f; = 2¢; 2) chy|25|%d2E A
dzt + ch;| 2 [2dz A dZ if f; = 2120,

We claim that for ¢ > 0 this new metric has the desired properties. It is enough to check
02 log b,
BZ;GZ}'C

that for ¢ > 0 the form Qy |, x is positive, i.e. the matrix [wj;](z) = [— (x)] is positive

definite, for all z € C.



In case 1) (f; = <) 1or * © U [1U; the Ol dlagonal entries ol |W;,|{T) and the secona
diagonal entry do not depend on ¢. On the other hand, the first diagonal entry can be made
as big as desired by increasing ¢ making the matrix [w;x](x) positive definite, since the second
diagonal entry is positive (2, is positive). In case 2) (f; = 2i21) the same argument works
for the points that are not the crossing point . The positivity of the matrix [w;;] for all z € C
and ¢ > 0 follows from the compactness of C' and the previously established positivity of
Qp |kax at the crossing points zy.

The following lemma gives two related criteria for the nonembeddability of pseudoconcave
ends.

Lemma 2 i) Let X be a complex cobordism 2-manifold with 0X = M; I My, M; the
pseudoconvex end and M, the pseudoconcave end. If X contains a compact positive curve
C C X, then M, is not embeddable.

ii) Let W be a pseudoconcave surface containing two disjoint positive curves C' and C'.
Then the compact strictly pseudoconvex CR-3-manifold M = 0W is not embeddable.

Proof i) If My is embeddable, then M, is fillable, i.e. My = 0S where S is a normal
Stein surface [HaLa75]. Let X’ be the complex space obtained by gluing S to X along
My, X' = X Iy, S. The interior of X', Int(X’), is a strongly pseudoconvex domain and
therefore by [Gr62] Int(X') is holomorphic convex. That is, Int(X’) has a proper map to
a Stein space S', r : Int(X') — S’. Since S’ can not be a point by the properness of
the map r, it follows that Int(X’) has nonconstant holomorphic functions. On the other
hand, Int(X') contains a pseudoconcave neighborhood V' of the positive curve C (i.e V is a
compact neighborhood C' which is a pseudoconcave manifold) and therefore all holomorphic
functions on the Int(X) must be constant . This follows from the maximum principle and
the fact that the pseudoconcavity of V implies that the set V = {z € Int(X")||f(z)| <
sup,cy | f(y)| for all holomorphic functions on Int(X')} satisfies V' C Int(V) [AnGr62].

ii) Let V be a pseudoconcave neighborhood of C, then X = W \ Int(V) is a complex
cobordism manifold with M = OW as its pseudoconcancave end. Since X contains the
positive curve C', by i) M is not embeddable.

The previous lemmas plus the construction of pseudoconcave surfaces containing disjoint
positive curves will give the proof of the main theorem:

Theorem 1 There are complex cobordant 3-dimensional strictly pseudoconvex CR-
manifolds M; and M,, with one embeddable and the other not. Equivalently, the em-
beddability of CR-3-manifolds is not a complex cobordism invariant.

Proof: First, we describe a process to construct a pseudoconcave surface W containing
two positive curves C' and C' that do not intersect.

Let C;, Cy and C3 be 3 positive curves in the smooth projective surfaces X, X, and
X3 respectively. First, we glue a neighborhood of C; in X; with a neighborhood of Cy
in X, obtaining a surface Y containing C; and C5, with equivalent neighborhood germs,
intersecting transversely at one point.



10 dO tni1s pick a point p; € U and et Up be an open subset oI A; containing p; and witn
a biholomorphism ¢ : Uy — A x A, A the disc of radius 1, such that ¢(C; NU;) = 0 x A.
Also, let U be an open subset of X; such that C; C U;UU, and ¢(U;NUy) C A% X (A\A%),
A% the disc of radius 1/2. Do the same for C in X,. Pick a point p, € Cs, an open subset
Vi C X5 and a biholomorphism ¢ : V; — A X A such that ¢(CoNV;) = A x 0. Pick V, such
that Cy C ViUV, and p(ViNV,) C (A\ A1) X A1. The surface Y is the surface given by the
open sets A x A, Uy and V, with the gluians of (2]2 and V5 with A x A given by respectively
¢y, and @lviav, -

Repeat the same gluing argument for neighborhoods of the curve C; U Cy in Y and the
curve Cj in X3 (picking a different crossing point). The resulting surface Y’ contains the
normal crossing divisor C' = C; UC,UC5 and the neighborhood germs of Cy, Cy and Cy in Y’
are equivalent to the neighborhood germs of C, C5 and C5 in X7, Xy and X3 respectively.
The surface Y’ and the curves C;, Cy and Cj satisfy the conditions of Lemma 1, hence there
is a pseudoconcave neighborhood V' of C =C,UC,UC; on Y. The desired pseudoconcave
surface W and disjoint positive curves C' and C’ will be respectively V', C; and Cj.

Consider the cobordism manifold X = W \ Int(V}), where V; is a pseudoconcave neigh-
borhood of C' in W N (U; U Us). The pseudoconcave end My = OW is nonembeddable by
Lemma 2. The pseudoconvex end M; = 9V is embeddable since it is fillable, V; is also a
pseudoconcave neighborhood of ' in the compact surface X;.

A pseudoconcave manifold Y is embeddable if there is an embedding of Y in a compact
complex manifold without boundary X. The problem of preservation of embeddability by
complex cobordisms is equivalent to the question of whether a pseudoconcave extension Y of
an embeddable pseudoconcave manifold Y is also embeddable. X is embeddable if and only
if QY is fillable, or equivalentely the complex cobordism Y \ Int(Y”) preserves embeddalility
of its ends. Hence it follows from Theorem 1:

Corollary 1 There is a nonembeddable pseudoconcave surface Y containing inside an
embeddable pseudoconcave surface Y.

In the proof of the theorem, we constructed a pseudoconcave surface W with two disjoint
positive curves (repeating the construction ad libitum we could have produced as many
disjoint positive curves as desired). If we take out from W a sufficiently small pseudoconcave
neighborhood of each of the disjoint positive curves, we obtain:

Corollary 2 There are complex cobordism manifolds X of dimension 2 with more than
one pseudoconvex end (impossible in higher dimensions).

Next we consider the problem of whether a CR-function on the pseudoconvex end of a
complex manifold with boundary X is the boundary value of a holomorphic function on X.
We are interested in the case where all the boundary components of X are strictly pseudocon-
vex CR-manifolds. The relevance of this boundary value problem comes from the fact that if
X has dimension greater than 2 then all CR~-functions on the pseudoconvex end are boundary
values of a holomorphic function on X. The embeddability of all (2n-1)-dimensional strictly



pseudoconvex Uh-manliolds 10r . > 4 11mpli€es that all pseudaoconcave ends ol A are Iillable.
Hence X is an open subset of a filling (pseudoconvex) of its pseudoconvex end. In [KoRo65]
it is shown that all CR-functions on the smooth boundary of a strictly pseudoconvex domain
are extendable to holomorphic functions on the domain.

Proposition 1 The extendability of CR-functions on the pseudoconvex end of a complex
cobordism manifold X, whose ends are all strictly pseudoconvex CR-manifolds, to holomor-
phic functions on X does not need to hold if dimension of X is 2.

Proof: The cobordism manifold X described in the proof of the theorem implies the
Proposition. Its pseudoconvex end M; is embeddable and therefore it has many nonconstant
CR-functions and since X contains a positive curve inside (Cj in the example) all global
holomorphic functions on X must be constant as in Lemma 2 i).

SECTION 3

The examples of complex cobordism manifolds described in the proof of Theorem 1 are
very different from the complex cobordism manifolds that preserve embeddability. The
results in this section go in the opposite direction. A complex cobordism manifold X pre-
serving embeddability must satisfy the condition that all CR-functions on the pseudoconvex
end M; extend to holomorphic functions on X. As mentioned earlier, this condition also
played an essential role in the proof of the preservation of embeddability for strictly CR-
cobordisms [EpHe01]. Our examples of complex cobordisms above, where embeddability is
not preserved, strongly violated the extendability of CR-functions. Theorem 2 shows that
the extendability of CR-functions on the pseudoconvex end is necessary but not sufficient
for a complex cobordism to preserve embeddability. Later in this section, in Theorem 3, it
is shown that there are small deformations of a complex cobordism 2-manifold preserving
embeddability that no longer preserve embeddability.

Theorem 2 There are complex cobordism 2-manifolds X whose pseudoconvex end M,
is embeddable and all CR-functions on M; extend to holomorphic functions on Int(X), yet
the pseudoconcave end M, is not embeddable.

Proof Consider three linear P! ¢ P? C,, Cy and Cj such that C = C; U Cy, U Cy is a
normal crossing divisor. Let U;, U; and Uz be tubular neighborhoods for respectively Cf,
Cy and Cj such that Uy N U, NUs = (. Let W’ be the complex surface that results from
U, UU, UU; C P? by separating Uy from Us. W' has a natural holomorphic map to P2,
p: W' — P? which identifies the points that were separated.

The surface W' and curves in C}, C} and C4 in W' coming from the three linear P!, Ci,
Cs and Cj, in P? satisfy the conditions stated in Lemma 1 and C5NC% = (. Lemma 1 implies
that there is a pseudoconcave surface W C W' containing the curve C] U C} U C§. Since W
contains 2 disjoint positive curves Cy and C3, OW can not be embeddable by Lemma 2 ii).
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Alter making the idaentiication or I~ \ C; with L%, consider a sullicliently large bDall
B € C? such that P? \ B is contained in U;. It follows that P? \ B can also be considered as
a subset of WW’. If one considers an even larger ball B, one can have (P?\ B') C W. The
pseudoconcave surface V = P? \ B’ is naturally embedded as neighborhood of C; in P? or
as a neighborhood of C] in W. The open subset X = W \ Int(V') is a complex cobordism
with an embeddable pseudoconvex end M; = @V, isomorphic to the boundary of the ball
B' c C?, and a nonembeddable pseudoconcave end M, = OW.

We conclude by showing that all CR-functions on M; extend to holomorphic functions of
Int(X). The map p: W' — P? gives a CR-isomorphism of M, with B’ and a holomorphic
map p|x : X — B’. Any CR-function, ¢, on M is the pullback by p of a CR-function, ¢,
on 0B’. The holomophic function on X extending the CR-function, ¢, on M; will be the
pullback by p of the holomorphic function on the ball B’ extending ¢'.

In order to express a consequence of Theorem 2, we introduce two weakened versions of
embeddability of a pseudoconcave surface X_ described in [EpHe2-00].

Let X_ be a pseudoconcave surface with a positive curve Z. The pair (X_, Z) is called
weakly embeddable if the holomorphic map defined by the sections of H°(X_,O(dZ7)),
wq : X_ — P is injective in some neighborhood of Z for sufficiently large d. The pair
(X_,Z) is called almost embeddable if in addition the map ¢4 : X_ — P" is an embedding
outside a proper analytic subset of X_\ Z. In [EpHe2-00] the authors ask about the relation-
ship between these two notions of weakened embeddability. The interest sprouted from the
fact that one has an operative numerical criterion involving the dimensions h°(X_, O(dZ))
characterizing weak embeddability and that almost embeddability of X_ implies embed-
dability of 0X_. In the proof of Theorem 2 we constructed the weakly embeddable pair
(W, Cy) such that for any d the maps ¢, : W — P" can not distinguish any pair points in
W that came from the same point in U N U3 and we have:

Corollary 3 The weak embeddability of a pseudoconcave surface (X _, Z) does not imply
that (X _, Z) is almost embeddable.

The following result states that for a complex cobordism manifold the property of pre-
serving embeddability is not stable under small deformations. We need to recall some facts
about the moduli spaces holomorphic neighborhood retracts (HNR) of a curve on a surface
for our proof of Theorem 3.

An embedding of a curve C in a manifold X is a HNR if there is a neighborhood W of
C with a holomorphic map r : W — C such that r|¢c = Id¢. The space of nonequivalent
HNR embeddings of a curve C' with normal bundle a prescribed line bundle L is described
in [MoRo81]. Let {U,V'} be a covering of C such that U is a disc and V N U is an annulus.
A HNR embedding of C' with normal bundle L can be constructed by glueing U x C with
V x Cviathemap ¢ =(Id, f): UNV xC—-UNV xC,
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f(zu) = g(2)(u+ ) filz)u'™)
i>1

where z is the coordinate of UNV C U and g, f; € OUUNV), g is the transition func-
tion for the normal bundle L. To the HNR described above we can associate a point in
E(@®,-, H'(C,L™)), the weighted projective space with the C* action s.(z1, 22, , ..., Zn, ...) =
(sz1, 8%x9, ..., 8"y, ...). This is done by considering the f; as cocycles representing classes of
HY(C,L™) ~ 00U NV)/§(O(V)® OU)). [MoRo81] shows that the neighborhood germs
of two HNRs of C' with normal bundle L are equivalent only if the corresponding points in
E(@®,-,H'(C,L™)) coincide.

Theorem 3 There are holomorphic families of complex cobordism 2-manifolds where all
the members have their pseudoconvex ends embeddable, but only the central member has
the pseudoconcave end embeddable.

Proof We will construct a family of open surfaces such that: 1) each member contains
two P'’s , C} and Cs, with normal bundle O(1) intersecting at one point; 2) only one member
has the neighborhood germ of C'; union with Cs equivalent to the neighborhood germ of the
union of two linear P!’s in P2.

Let C; and Cy be two distinct linear P*’s in P? and {zy} = C;NCy. Let Uy, U; and U, be
a covering of a neighborhood U of C' = C;UC5 such that xy € Uy, C; C UyUU;, Cy C UyUUs,
and U; N U, = . Since the neighborhood germs of a linear P* in P? and of the zero section
of the line bundle O(1) over P! are equivalent, we can choose Uy and U, to be biholomorphic
to the bidiSC, U()ﬂCQ =AX 0, U,NCy = A x0 and UsNUy C (A\A%) XA C U(). MOI"GOVGI",
we can describe Uy UU, as the complex surface resulting from glueing Uy and U, via the map
o= (Id, f)(z,u) : (UyNnUsNCy) x A = (UyNUsNCy) x A, where f(z,u) = g(z)u and g is
the transition function for the line bundle O(1).

Change the glueing map of Uy and U, by varying f(z,u) holomorphically with respect to
a parameter t, fi(2,u), by introducing nontrivial higher order terms f;;, ¢ > 1. From the de-
scription in the paragraph before the theorem, it follows that by making f;, € H*(P*, O(1)) #
0 for ¢t # 0 the resulting holomorphic family of HNR of P! is such that only for ¢ = 0 the
HNR is equivalent to the linear P' in P2.

Let w : ¥V — A be the family of surfaces , with V, = V; and V, = U, obtained by keeping
the gluing of Uy with U; but changing the gluing of Uy with U, as in the previous paragraph.
Each member V; of the family has the curve C = C; U (5 embedded with the same normal
bundle. Hence the germ of the tubular neighborhood of C' in all the V; is diffeomorphic to
the germ of the tubular neighborhood 7" of C in V. It follows that there is a smooth map
¢:TxA— YV, witheach ¢ : T — T, = ¢(T xt) C V; a diffecomorphism from 7T to a tubular
neighborhood of C in V; sending C in T to C in V. The union of all T}, 7 = .o T} C V,
gives a family of surfaces w|r : 7 — A (the family 7 can also be perceived as the variation
of the complex structure induced by the diffeomorphisms ¢, on differential manifold 7" ).

By Lemma 1 there is a strictly plurisubharmonic function g : V5 \ C — R such that
{r eVo:g(x) >c} CTfore>0and S. = {x € T: g(x) = ¢} is a compact SPCR-3-
manifold. After possibly shrinking A, ¢ > 0 can be such that g, = go¢;': T,\C — Risa
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StriCtly plurisubhnarmonic on a neignbornooa of g o,) I0r allt © A. Let ¥y = (X © L|Ge\T) >
corz € C} C Ty, the union of all Yy, YV = [J,cA Yz C V, gives a family, w|y : Y — A, of
pseudoconcave neighborhoods of C' = C; U (.

We claim that the boundaries, 9Y;, of the pseudoconcave surfaces Y; are not embeddable
for ¢t # 0. By construction, Y; contains the rational curve Cy with normal bundle of degree
one but whose embedding is not equivalent to the embedding of the linear P* C P? for ¢ # 0.
If a 0Y; were embeddable for ¢t # 0 then Y; would be contained in a smooth algebraic surface
S; coming from filling 0Y; and resolving the singularities. The claim follows from the result
6.13 of [MoRo81], which proves that the only neighborhood germ of P! with normal bundle
O(1) that can be embedded in an algebraic surface is the neighborhood germ of the linear
P' C P? .

To construct the family of complex cobordisms, we notice that all Y; contain a pseudo-
concave neighborhood of C; whose boundary is embeddable. By Lemma 1, we can choose a
sufficiently small pseudoconcave neighborhood W C V; of C such that W; = ¢,(W) gives a
family of pseudoconcave surfaces, w|y : W — A. All members of the family W are biholo-
morphic to the pseudoconcave neighborhood W C P? of C}, therefore their pseudoconcave
ends OW; ~ OW are embeddable.

The family of complex cobordism manifolds w|y : X = Y\ Int(W) — A gives the desired
example. The pseudoconvex end M,, = 0W; of X, is CR-isomorphic to the embeddable
SPCR-3-manifold OW but the pseudoconcave end M;, = dY; is not embebeddable for ¢ # 0,
as was explained above.

Remark: the example in the proof also shows that: the extendability of the CR-functions
of the pseudoconvex end to holomorphic functions on the complex-cobordism manifold is
a property that is not locally stable in families of complex-cobordisms. Suppose all CR-
functions on OW, extend to holomorphic functions on Xy, then the natural fixed inclusion
W, C P? would extend to holomorphic maps i, : Y; — P2. For t # 0 sufficiently small, i, is a
small perturbation of 75. Therefore CR-map of dY; to C? induced by i, is an embedding since
it is a small peturbation of CR-embedding of Y} in C?, which gives the desired contradiction.

It is well known that the embeddability of strictly pseudoconvex CR-structures on a 3-
manifold is not stable under small deformations of the CR-structure. It follows from the
proof of the theorem that the instability of the embeddability property still holds under the
condition that all deformed CR-structures are complex cobordant to a fixed embeddable
SPCR-3-manifold.

Corollary 4 Let M; be an embeddable SPCR-3-manifold. The embeddability of SPCR-
3-manifolds complex-cobordant to M; is not stable, for small deformations of the CR-

structure preserving the property of being complex-cobordant to Mj.

Proof In the proof of theorem 3 all the SPCR-3-manifolds M;; are complex cobordant
to S3 with the canonical embeddable CR-structure.
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