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Introduction

Geometry is the most human of mathematical pursuits; so much so that it was regarded as
insufficiently rigorous for twentieth century tastes and was largely banished from the under-
graduate curriculum. This is a shame because drawing and looking at pictures are excellent
ways to engage students. Visual intuition is also the primary way that we can hack our pri-
mate architecture, to allow us to make progress in more abstract kinds of mathematics that
would otherwise be impossible to comprehend.

In this class we will embrace the human side of mathematics by following the story of
geometry—pure and applied—through the ages. On the applied side we will follow geom-
etry from its earliest use in land measurement, through the discovery of perspective drawing
in the Renaissance, to its use today in computer graphics. On the pure side we will discuss
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how geometry has always been close to the heart of Western science and philosophy, from
Pythagoras/Plato/Euclid, through Kepler/Newton, to Kant and beyond.

At the same time, we will mix the discussion of ancient mathematics with the modern language
of coordinates and transformations. Hopefully this course will provide a useful supplement
and motivational examples for your other courses in math and science.

Apology

The subject of this course is historical mathematics, not mathematical history. Thus I will
occasionally mix up the history with the story that we mathematicians tell ourselves about our
subject. When we discuss figures like Pythagoras/Plato/Euclid I will be at least as concerned
with what their legends mean for our current understanding of mathematics as I
am for the standards of historical scholarship.

Unfortunately, the story that we mathematicians tell ourselves is currently biased towards
Western sources (or, rather, Near Eastern sources that were appropriated by the West). Much
work has been done recently to augment this study with sources from other cultures. In
particular, China and India both had rich mathematical traditions that remained isolated
from the West until modern times.1 I will do the best I can.

1 The Pythagorean Tradition

As an entry point we begin with the birth of “capital M” Mathematics in ancient Greece.
After the so-called Ionian Enlightenment in the 6th century BC,2 a thriving school was born
in which the topics of arithmetic, geometry, music and astronomy were indistinguishable.
This tradition strongly influenced the history of science in the West until it was challenged by
the Newtonian paradigm in the 17th century. Nevertheless, many theoretical physicists and
mathematicians today still see themselves as part of the Pythagorean tradition.

1.1 Pythagoras and
?
2

In the earliest years of the Greek tradition the arithmetic of whole number ratios was
regarded as the foundation of mathematics. In fact, the school of Pythagoreans regarded
whole number ratios as a sort of “theory of everything”. This is recorded in their famous
dictum:

All is number.
1See The Crest of the Peacock by George Gheverghese Joseph.
2The 6th century BC saw the birth of important ideas all over the world, including Buddhism in India and

Confucianisn and Taoism in China.
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However, by the end of the classical period this dictum had been abandoned. When Euclid
of Alexandria (fl. 300 BC) wrote his famous work The Elements, which became the standard
mathematical text in the West, he conciously decided to found all of mathematics on the
geometry of lines and circles. What happened that caused the Greeks to switch their
focus from arithmetic to geometry?

The Pythagorean tradition was founded by the mysterious figure Pythagoras of Samos (c. 570–
495 BC). His fundamental insight had to do with the nature of consonance and dissonance in
music. Legend says that he made his discovery by listening to the sound of two blacksmith’s
hammers being struck simultaneously. He noticed that whether they sounded good or bad
together was related to the relatize sizes of the hammers. In modern terms we would phrase
the discovery as follows: two guitar strings, of the same density and under the same tension,
will sound good together when their lengths are in the ratio of small whole numbers. The
three most pleasing ratios are called3 the octave, perfect fifth, and perfect fourth:

This discovery was so meaningful to the Pythagoreans that they founded an entire school on
the idea that “all is number”, where by “number” they meant ratios of whole numbers. (In
modern terms a ratio of whole numbers is called a rational number). The Pythagoreans had
other precepts as well, such as:

• Don’t eat beans because they look like gonads.

• Be nice to dogs because they are reincarnated humans.

But we won’t discuss those things.

3They are called this because they occur between the 1st, 4th, 5th and 8th notes of the modern 8 note scale.
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Modern scholarship shows that sophisticated mathematics was happening in many cultures
during the same period, but there is one achievement that seems unique to the Pythagorean
(Ionian) tradition:

The idea of mathematical proof.

The very earliest mathematical theorem is attributed to Thales of Miletus (c. 625–545 BC).
It says that if AB is a diameter of a circle and if C is any other point on the circle, then the
line segments AC and BC make a right angle:

This fact would have been known to other cultures at the time. The peculiarity of the Ionians
is that they asked the question: why is this true? And they came up with a satisfying
answer, called a mathematical proof. We don’t know Thales’ proof4 so instead I’ll move on to
a much more significant and famous result attributed to the Pythagoreans.

The Pythagoream Theorem. Consider a right triangle with side lengths a, b, c (shown on
the left) and construct the squares on the three sides (shown on the right).

4In fact we know almost nothing about Thales. This theorem is probably not even his.
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Then we must have c2 “ a2 ` b2. In other words: the area of the square on the hypotenuse is
equal to the sum of the areas of the squares on the other two sides. //

There are hundreds of ways to prove the Pythagorean Theorem. We don’t know which was
the original proof so I’ll just show you my favorite one. The goal of the proof is to convince
you5 that the result really is true. You are encouraged to complain about the proof if you
don’t find it convincing.

Proof. Using the three squares and multiple copies of the original triangle we can assemble
two larger squares, as in the following diagram:

Note that each of these squares has side length a`b and so they must have the same area. Note
also that each square contains four identical copies of the original triangle. If we remove these
four triangles from each side then whatever remains must still be equal (equals subtracted from
equals are still equal). Thus we conclude that a2` b2 (which is the remaining area on the left)
equals c2 (which is the remaining area on the right).

Remarks:

• Note that this is a completely geometric argument. At no point did we need to compute
anything algebraic like pa` bq2 “ a2 ` 2ab` b2.

• Did you find the proof convincing? If you are perceptive, you might think to ask why
the figure on the right side is really a square. It looks like a square but how do we know
that the four sides are straight lines? [There is a secret assumption hiding here that the
three interior angles of a triangle add to 180˝, i.e., a straight line. Why is that true?
We will return to this issue later.]

As a simple corollary of the Pythagoream Theorem we have the following fact.

Corollary. The ratio between the side and diagonal of a square is
?

2. //

5yes, you
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Proof. Consider a square with side length 1 and let x denote the length of a diagonal, as in
the following diagram:

Note that the diagonal divides the square into two right triangles. Applying the Pythagorean
Theorem to one of these triangles gives

x2 “ 12 ` 12

x2 “ 1` 1

x2 “ 2

x “
?

2.

This is a very modern kind of proof. [The use of the symbol x for an “unknown quantity”
didn’t become common until after the work of Descartes in 1630. More on this later.] The
Greeks would have tried to express the answer in purely geometric terms. In fact, they did
try to do this but they ran into an embarassing problem. The following result was reputedly
discovered by a Pythagorean named Hippasus (fl. 5th century BC). Legend says that the result
was so damaging to the Pythagorean world view that Hippasus was punished by drowning at
sea. In any case, this result led to a crisis in the foundations of mathematics.

First I’ll present the theorem and its proof in completely modern terms, then we’ll discuss
why it was so controversial.

Theorem. The square root of 2 is not a ratio of whole numbers. //

Proof. We will use a method called proof by contradiction. To do this we will make a
hypothetical assumption and just see where it leads. Here is our hypothetical assumption:

Assume that the square root of 2 can be expressed as a ratio of two whole numbers.
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We don’t know what these whole numbers are so we can just call them a and b. Thus we have
assumed that

?
2 “ a{b. Now we can square both sides of this equation to obtain

?
2 “ a{b

p
?

2q2 “ pa{bq2

2 “ a2{b2

and then we can multiply both sides of this equation by the whole number b2 to obtain

2 “ a2{b2

2b2 “ a2.

In particular, this equation tells us that a2 is an even number because it is 2 times the
whole number b2. In this case I claim that a must also be even. Indeed, you might recall the
following multiplication table for even and odd numbers:

ˆ even odd

even even even
odd even odd

If a were odd then a2 “ aˆ a would also be odd. Thus the only possibility is that a is even,
which means that we can write a “ 2a1 for some whole number a1. Now we can substitute this
into the previous equation to obtain

2b2 “ a2

2b2 “ p2a1q2

2b2 “ 4pa1q2

2b2{2 “ 4pa1q2{2

b2 “ 2pa1q2.

But now this equation tells us that b2 is an even number, and by the same reasoning as
before we must have b “ 2b1 for some whole number b1. Substituting once more gives

b2 “ 2pa1q2

p2b1q2 “ 2pa1q2

4pb1q2 “ 2pa1q2

4pb1q2{2 “ 2pa1q2{2

2pb1q2 “ pa1q2.

What have we done here? We began with a solution to the equation 2b2 “ a2 in positive
whole numbers a, b and now we have produced another solution 2pb1q2 “ pa1q2 in positive
whole numbers a1, b1. Furthermore, these new numbers satisfy

a ą a1 ą 0
b ą b1 ą 0.
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So far this is not very interesting. The key observation is that we can repeat the process
indefinitely. By running the argument again and again we will obtain two infinite decreasing
sequences of positive whole numbers:

a ą a1 ą a2 ą ¨ ¨ ¨ ą 0
b ą b1 ą b2 ą ¨ ¨ ¨ ą 0

Can you imagine such a thing as an “infinite decreasing sequence of positive whole numbers”?
Neither can I. Since our original assumption leads to an absurdity we conclude that it must
have been wrong. That is, we conclude that it is not possible to express

?
2 as a ratio of

whole numbers.

Remarks:

• The method of proof by contradiction is also called reductio ad absurdum: if an as-
sumption can be carried to an absurd extreme then the assumption must be false. The
particular flavor of this argument used above is called the method of infinite descent: if
an assumption leads to the construction of an infinite descending sequence of positive
whole numbers then the assumption must be false.

• But why is it absurd to have an infinite descending sequence of positive whole numbers?
This seems intuitively clear based on our experience of “whole numbers”. That is, whole
numbers are separated from each other so you can’t squeeze an infinite amount of them
into a finite space. In modern mathematics we have decided that this principle can’t be
proved from anything more basic, so we take it as a fundamental assumption (called an
axiom). This axiom goes by many names, two of the most common being the principle
of induction and the well-ordering principle.

Today we would say that
?

2 “ 1.4142 ¨ ¨ ¨ is an irrational number, but the Pythagoreans
didn’t think like this. To them the square root of 2 was not a “number” at all, and this was
a disturbing challenge to their dictum that “all is number”. Indeed, the diagonal of a square
is a basic geometric contruction, so any “theory of everything” that can’t handle it must not
be very good theory.

The Pythagoreans would think of it this way: Let s be the side length of a square and let d
be the length of the diagonal of the same square. We want to find a common unit of measure
(let’s call it u) to compare them. So let’s assume that d is a units long and s is b units long
for some whole numbers a and b (we do not assume that s and d are whole numbers). Thus
we have s “ au and d “ bu. Now the Pythagorean Theorem says that d2 “ s2 ` s2 and so we
must have

d2 “ s2 ` s2

pauq2 “ pbuq2 ` pbuq2

a2u2 “ b2u2 ` b2u2

a2��u
2 “ pb2 ` b2q��u

2
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a2 “ b2 ` b2.

But we just finished proving that this equation of whole numbers is impossible. Therefore, we
can say that

the side and diagonal of a square are incommensurable.

This came to be known as the “crisis of incommensurables”, and it led the Greeks to become
distrustful of the concept of “number”.

Musical Remark. There is also a fun musical connection here. If we make two guitar strings
on the side and the diagonal of a square (with the same density and under the same tension)
then their lengths are in the ratio 1 :

?
2. Since this is not a ratio of small whole numbers

(indeed, it’s not a ratio of any whole numbers) the Pythagorean theory of harmony tells us
that the strings will sound bad when played together.

You can try this yourself. It turns out that this interval is exactly half of an octave. On
the piano it is any interval of six semitones (for example from C to F#). This interval does
indeed “sound bad” and it is almost never used in a melody. Today this interval is know as
the “tritone” but during the Middle Ages it was called the Diabolus in Musica (the Devil in
Music). Legend says that it was against the law to play this interval in church.

1.2 Plato and Regular Polyhedra

It is doubtful that Pythagoras himself is responsible for any of the mathematics just discussed,
but it is certainly true that there was an active group of Pythagorean mathematicians in the
fifth century BC. The Pythagoreans also became significantly associated with cosmology and
with a theory called

the harmony of the spheres.

This idea says that the Earth is at the center of a nested family of transparent crystal spheres.
Each planet (asteres planetei literally means “wandering star”) is attached to its own sphere
and these spheres rotate with respect to each other. The fixed stars of the constellations
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are contained on the outermost sphere.6 We know that crystal spheres rubbing together will
create a sound and so there was some speculation as to what sound the universe makes.

Of course the sound of the universe should be harmonious so it was assumed that the motion
and sizes of the celestial spheres should be governed by small whole number ratios. Some of
the earliest musical scales are based on the hypothetical “cosmic scale”. In fact, our modern
major scale is attributed to Claudius Ptolemy (c. 100–170 AD).7 This is the same Ptolemy
whose theory of planetary motion became standard dogma in the Middle Ages and persisted
until the time of Johannes Kepler (1571–1630 AD).

Theories of celestial harmony became highly developed in the Pythagorean tradition but our
knowledge of this comes from very few sources. The earliest complete work on the subject is
Plato’s dialogue Timaeus, which we will discuss in this section.

Plato (c. 427–347 BC) dominated Greek philosophy during his time. He is famous as the
founder of the Academy in Athens, which became the archetype for institutes of higher edu-
cation in the West. Plato was also very much a Pythagorean in his views (as opposed to his
student Aristotle whose inclinations were less mathematical). Legend says that the entrance
to the Academy bore the inscription:

Let no one ignorant of geometry enter here.

We know a lot about Plato because almost all of his work survived into modern times, even
though it was temporarily lost in the West. It was preserved in the Middle East and then
recovered in the West during the Renaissance. Plato’s dialogue Timaeus (c. 360 BC) is his only
work that was never lost in the West and as such it has exerted a disproportionate influence
on European thought. The dialogue is mostly a monologue given by the character Timaeus of
Locri who is a philosopher of the Pythagorean school. Timaeus describes elaborate theories
of all aspects of the physical world. For current purposes I will only mention his theories of

• planetary motion,

• atomic physics.

In Timaeus’ theory of planetary motion the 7 known planets are attached to 7 rotating crystal
spheres, all centered on the Earth (which was known to be a sphere). Timaeus lists the order
of the planets and their relative radii as follows:

6Possibly they are holes punched in an opaque sphere with their light coming from outside.
7It is known as Ptolemy’s intense diatonic scale. https://en.wikipedia.org/wiki/Ptolemy’s_intense_

diatonic_scale
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The association between planetary radii and musical harmony is left vague in the Timaeus.
It seems that all of the constructions are based on the sequence of powers of 2 and 3:

1, 2, 3, 4p“ 22q, 8p“ 23q, 9p“ 32q, 16p“ 24q, 27p“ 33q, etc.

This sequence of numbers was the foundation of Pythagorean musical theory. We can use this
to give a modern explanation8 for the fact that musical scales have 7 different notes. The
explanation goes as follows: The two most important musical intervals are 1:2 (the octave)
and 2:3 (the perfect fifth). To compare them we need to find whole numbers m and n so that

m octaves “ n perfect fifths.

This problem is analogous to the problem of the commensurability of the side and diagonal of
a square, and in this case we will also find that the problem is impossible. However, the proof
is much easier in this case.

Theorem. The octave and the perfect fifth are incommensurable. //

Proof. Since musical intervals are ratios, they are combined by multiplication. In mathe-
matical terms we want to find whole numbers m and n satisfying the following equation:

m octaves “ n perfect fifths

8i.e., not related to the fact that there are 7 planets
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˙m

“

ˆ

2

3

˙n

1

2m
“

2n

3n

3n “ 2n ˆ 2m

3n “ 2m`n.

But observe that this equation is impossible because 3n is always an odd number (odd times
odd is odd) and 2m`n is always an even number (even times even is even).

But music must proceed anyway, so instead of an exact solution we are willing to accept a
good approximate solution. It turns out that the approximation

312 « 27`12

is good enough. In other words, we have

7 octaves « 12 perfect fifths.

This is the reason that our musical scales have 7 notes and the reason that we divide the
octave into 12 equal semitones. What I mean by “good enough” is that this approximation
is close enough to perfect Pythagorean harmony that the human ear usually can’t tell the
difference.

So much for Timaeus’ theory of the very large. Next we turn to his theory of the very small.
To describe this theory we first need to discuss the concept of regular polyhedra.

Definition of Regular Polyhedra. A polyhedron is a convex three-dimensional shape built
from a finite number of vertices, edges and faces (polyhedron literally means “many-sided”).
We say that such a polyhedron is regular if each vertex/edge/face looks the same as every
other vertex/edge/face. In other words,

• each vertex meets the same number of faces,

• each edge has the same length,

• each face has the same number of vertices.

The following classification theorem is attributed to the Pythagorean mathematician Theaete-
tus of Athens (c. 417–368). The earliest surviving reference to the result is Plato’s Timaeus;
for this reason the regular polyhedra are also known as Platonic solids. Examples of Platonic
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solids were known in other cultures.9 Again, the Greek contribution was to recognize that
these shapes can be logically classified; it turns out that there are exactly five of them.

Theorem. There are five regular polyhedra:

tetrahedron, cube, octahedron, dodecahedron, icosahedron.

//

The proof will require the following preliminary result (called a lemma).

Lemma. Each interior angle of a regular n-gon is equal to n´2
n times 180˝. //

Proof of the Lemma. Consider a regular n-gon and divide it into triangles. Note that there
will be a total of pn ´ 2q triangles in the decomposition. For example, the following figure
shows that an octagon (n “ 8) decomposes into 6 triangles:

Since the interior angles of each triangle sum to 180˝, we see that the sum of all interior angles
in the n-gon is pn´ 2q ˆ 180˝. Now erase the triangles. Since each of the n interior angles of
the n-gon is the same, we conclude that each of them must be equal to

pn´ 2q ˆ 180˝

n
“

ˆ

n´ 2

n

˙

ˆ 180˝.

Proof of the Theorem. We will prove that there are only five regular polyhedra. So let P
be a regular polyhedron. Suppose that each of its faces has n vertices. Since all edges have
the same length, each face is a regular n-gon. We also know that exactly d of these faces meet
at each vertex. Our goal is to find restrictions on the numbers n and d.

Case n “ 3. Assume that each face is an equilateral triangle (i.e., with interior angles 60˝).
Now what are the possibilities for d? That is, how many equaliteral triangles can meet at
a vertex? For d “ 3, 4, 5 we obtain the regular tetrahedron, octahedron, and icosahedron, as
shown here:

9For example, carved stone versions dating from 2000 BC have been found in Scotland.
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If we try to place d “ 6 equilateral triangles around a vertex then since 6 ˆ 60˝ “ 360˝ the
vertex flattens out and stops being a vertex at all:

For d ě 7 we have dˆ 60˝ ą 360˝ and so it is impossible to fit d equilateral triangles around
a vertex without bending them.

Case n “ 4. Assume that each face is a square (i.e., with interior angles 90˝). Now what are
the possibilities for d? That is, how many squares can meet at a vertex? For d “ 3 we obtain
the cube (or regular hexahedron):

If we try to place d “ 4 squares around a vertex then since 4ˆ 90˝ “ 360˝ the vertex flattens
out and stops being a vertex at all:
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For d ě 5 we have d ˆ 90˝ ą 360˝ and so it is impossible to fit d squares around a vertex
without bending them.

Case n “ 5. Assume that each face is a regular pentagon. From the above lemma we know
that each interior angle of a regular pentagon is equal to

ˆ

n´ 2

n

˙

ˆ 180˝ “
3

5
ˆ 180˝ “ 108˝.

Now what are the possibilities for d? That is, how many pentagons can meet at a vertex? For
d “ 3 we obtain the regular dodecahedron:

For d ě 4 we have dˆ 108˝ ą 360˝ and so it is impossible to fit d regular pentagons around a
vertex without bending them.

Case n “ 6. Assume that each face is a regular hexagon and note that each interior angle of
a regular hexagon is equal to

ˆ

n´ 2

n

˙

ˆ 180˝ “
4

6
ˆ 180˝ “ 120˝.

If we try to place d “ 3 hexagons around a vertex then since 3 ˆ 120˝ “ 360˝ the vertex
flattens out and stops being a vertex at all:

For d ě 4 we have dˆ 120˝ ą 360˝ and so it is impossible to fit d regular hexagons around a
vertex without bending them.
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Case n ě 7. Each face is a regular n-gon with interior angles pn´ 2q{nˆ 180˝. If n ě 7 then
we have pn´ 2q{n ě 5{7 and hence

ˆ

n´ 2

n

˙

ˆ 180˝ ě
5

7
ˆ 180˝ « 128.57˝.

Then for any d ě 3 we have

dˆ

ˆ

n´ 2

n

˙

ˆ 180˝ ě 3ˆ 128.57˝ ą 360˝

and hence it is impossible to place any number of n-gons around a vertex without bending
them. This completes the proof.

The fact that there are only five regular polyhedra seems to give them special significance. In
the Timaeus, Plato uses them in a surprising way for his theory of atomic physics.

The first atomic theory is attributed to the Ionian philosopher Democritus (c. 460–370 BC).
It states that all physical things is composed of atoms. These are tiny and indivisible particles
(atomos literally means “un-cuttable”) and between them is empty space. On the other hand,
the Ionian philosopher Empedocles (c. 490–430 BC) is known for the theory that all physical
things are composed from four original substances: Earth, Air, Fire, and Water. In the
Timaeus, Plato combined these two theories in a creative and beautiful way. The character
Timaeus states that all physical things are composed of atoms and that these atoms come in
exactly five kinds: Earth, Air, Fire, Water, and Aether. Timaeus uses the word “elements”
(stoicheia) for the different kinds.

And why are there five elements? Because there are five regular polyedra. Timaeus claims
that the atoms of the various elements come in the shape of tiny regular polyedra as follows:
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Here is a beautiful engraving of the five Platonic elements taken from Johannes Kepler’s10

Harmonices Mundi (1619):

It seems that the inclusion of a fifth element was necessary for mathematical reasons. Plato
gets around this by saying that everything on earth is composed of Earth, Air, Fire, and Water,
while Aether is used for the sphere of constellations. Thus the dodecahedron is somehow
associated with the outermost celestial sphere, uniting the theories of the very small and the
very large.

But that’s not all. In Plato’s Timaeus the atoms are not literally indivisible. Each atom
can be further broken down into two-dimensional triangles by subdividing its faces. Each
triangular face is subdivided into six 30˝{60˝{90˝ triangles and each square face is subdivided
into four 45˝{45˝{90˝ triangles. (He does not say how the dodecahedron decomposes.) We
will call these triangles Type I and Type II:

10We’ll discuss his role in the next section.
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The following table counts the number of triangles of Types I and II in a single atom of each
element:

From this we see that the element Earth can not be transmuted into any other element, but
the elements Fire/Air/Water can be rearranged in various ways. For example, since there are
120 Type I triangles in a single atom of Water and since 120 “ 2 ¨ 48 ` 1 ¨ 24, this atom can
be broken down and then reassembled into two atoms of Air and one atom of Fire. We obtain
the following chemical formula:

1W “ 2A` 1F.

There is a surprising resonance here with the modern formula 1W “ H2O “ 2H ` 1O.

1.3 Kepler and Conic Sections

Plato’s Timaeus is a remarkable example of human ingenuity applied to the problems of
physical science in the absence of sufficient experimental data. Most of Plato’s theories were
very far from being testable in his time, thus they had to stand or fall on aesthetic grounds.
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Plato also differed with his student Aristotle on whether reason or experience should take
priorty: if a theory was beautiful, Plato took this as evidence that it must also be true.11

The key feature of the Pythagorean tradition is that it finds this beauty in the realm of
mathematics and geometry.

It was not until the twentieth century that technology was able probe the atomic nature of
matter. However, there were plenty of observations of the heavens and plenty of competing
theories to explain them. One of the main problems that any theory had to deal with was
the retrograde motions of the planets. If we consider the furthest sphere of constellations
as fixed, then each planet moves across this background. Occasionally as the planet travels
it will pause, back up, and then continue on its way. (This is why the planets are literally
“wandering stars”.) This phenomenon is particularly apparent with Mars and it was observed
by Egyptian astronomers in the 2nd millennium BC. Here is a series of photographs taken by
amateur astronomer Tunc Tezel in 2009–2010 showing the retrograde motion of Mars:

Plato’s Timaeus was vague on this issue and there was a vigorous development of alternative
theories. The key problem was to explain the retrograde motion of planets while preserving
the perfection of uniform circular motion. The Neo-Platonic philosopher Simplicius of
Cilicia (c. 490–560 AD) attributed the problem to Plato as follows:

Plato lays down the principle that the heavenly bodies’ motion is circular, uni-
form, and constantly regular. Thereupon he sets the mathematicians the following
problem: what circular motions, uniform and perfectly regular, are to be admitted

11We have a similar situation today with “string theory” in physics. This is a beautiful mathemati-
cal/geometric theory of reality that is unfortunately not testable with today’s technology.
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as hypotheses so that it might be possible to save the appearances presented by
the planets?

That is, it was necessary to

save the appearances

of planetary motion—which were apprently imperfect—with some underlying mathematical
perfection.

The most refined astronomical theory of the Classical world was presented by Claudius
Ptolemy (c. 100–170 AD) in his work the Almagest.12 In Ptolemy’s theory the spherical
Earth is at the center of a spherical universe. The Earth is stationary while the heavens and
planets rotate. As with Plato’s theory, each planet is associated with a transparent crystal
sphere. Here is a visualization of Ptolemy’s universe taken from Peter Apian’s Cosmographia
(1524):

To explain the retrograde motion of the planets, Ptolemy adopted the idea of deferents and
epicycles from Apollonius of Perga (c 262–190 BC). The “deferent” is the primary sphere of
the planet; to account for astronomical observations Ptolemy sometimes allowed a deferent to
be centered on an imaginary point outside the Earth, called the eccentric. The “epicycle” is
a much smaller crystal sphere which has its center fixed at some point on the deferent. The
deferent and epicycle both undero uniform cirular motion but they are allowed to rotate at
different speeds. The rotation of the deferent explains the broad motion of the planet across

12This work was originally called Mathematike Syntaxis (Mathematical Treatise) in Greek, which later became
the Magna Syntaxis (The Great Treatise) and was translated into Arabic as al-majisti. The title Almagest was
adopted when the work was translated from Arabic back into Latin in the 12th century.
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the constellations and the rotation of the epicycle accounts for retrograde motion.

Ptolemy’s model of deferents and epicycles turned out to be extremely accurate and it was
eventually adopted as dogma by the Catholic church. As astronomical observations improved,
later astronomers found they could “save the appearances” by adding extra epicycles (epi-
epicycles) into the theory. From a modern mathematical point of view we now realize that
Ptolemy’s model can be made arbitrarily accurate by adding epicycles upon epicycles upon
epicycles.13

To keep up with new observations the Ptolemaic theory became more and more complicated.
The original goal of the theory was to explain astronomical observations while at the same
time preserving the Platonic ideals of:

• beauty

• necessity

• simplicity

By the time of Nicolaus Copernicus (1473–1543) the Ptolemaic model had become bloated with
epicycles and arbitrarily chosen parameters. This was also a time when ancient Greek writings
were becoming available in Europe. Following the ancient heliocentric theory of Aristarchus

13This is the modern theory of “Fourier series”. As a desmonstration see the YouTube video called “Ptolemy
and Homer”.
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(c. 310–230 BC), Copernicus found that he could reduce the complexity of the Ptolemaic
system by placing the Sun at the center of the universe and allowing the Earth to move. The
most dramatic improvement of the heliocentric theory is that it automatically explains
retrograde motion: it is caused when the Earth laps another planet on their mutual trip
around the sun. But Copernicus’ goal was not necessarily to improve the accuracy of the
model; in fact his model was less accurate than the best Ptolemaic models at the time.
Instead he was motivated by the Platonic ideals outlined above, which he also expressed in
the language of Christian theology. In any case, Copernicus’ contribution was to weaken the
Ptolemaic dogma, which allowed other astronomers to experiment with new ideas.

One of those who experimented with new models of planetary motion was Johannes Kepler
(1571–1630). Kepler is a fascinating figure in the history of science because his work is the
bridge between two different eras: the classical Pythagorean and the modern Newtonian.

On one hand, Kepler was very much a Pythagorean, as demonstrated by his early work the
Mysterium Cosmographicum14 (1596). Ostensibly this is a work about planetary motion, but
it could easily be mistaken for a work of pure geometry or even music theory. The work boldly
defends Copernicus’ heliocentric idea and it goes even further by abandoning the deferents
and epicycles of Ptolemy. In their place Kepler describes a solar system built around the five
Platonic solids. He imagines the solar system as a series of 6 concentric planetary spheres
with the 5 Platonic solids wedged tightly between them. To Kepler this is a very neat
and compelling explanation for the fact that there are exactly 6 planets. Here is a picture of
Kepler’s solar system together with a close-up of the sphere of Mars:

The following table lists the planetary spheres in order, together with the Platonic solids
between them and the ratios of their radii, which are computed geometrically. The final
column shows the modern approximate values for the ratios. Note that the agreement is

14Here is the full title: Forerunner of the Cosmological Essays, Which Contains the Secret of the Universe;
on the Marvelous Proportion of the Celestial Spheres, and on the True and Particular Causes of the Number,
Magnitude, and Periodic Motions of the Heavens; Established by Means of the Five Regular Geometric Solids
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pretty good:

On the other hand, Kepler had access to more and better astronomical data than any of his
predecessors. Tycho Brahe (1546–1601) was a Danish nobleman and astronomer who spent
30 years on the island of Hven making meticulous astronomical observations. Tycho devised
his own instruments (this was before the invention of the telescope in 1608) and it is said that
his observervations were five times more accurate than the best available at the time. Kepler
and Tycho began a correspondence in which Tycho criticized the accuracy Kepler’s system
from the Mysterium Cosmographicum. Kepler wanted to see Tycho’s data, and so in 1600 he
accepted an invitation to Prague to assist Tycho while a new observatory was built. When
Tycho died unexpected in 1601, Kepler somehow gained access to Tycho’s data and replaced
him as imperial mathematician to Rudolf II of Austria.15

Once Kepler possessed the data he realized that his polyhedral model of the solar system was
wrong and he quickly abandoned it. Then he set about trying to find a new model that would
agree with the new data while still preserving the ideals of Platonic beauty. Eventually the
data forced Kepler to abandon the concept of uniform circular motion but he found
that the universe is still geometric.

15This is the short version of the story. I encourage you to look up the details; it’s pretty interesting.
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Kepler’s Laws of Planetary Motion (1609–1619).

(1) The orbit of a planet is an ellipse with the Sun at one of the two foci.

(2) The line segment joining a planet to the Sun sweeps out equal areas in equal times.

(3) The square of the orbital period of a planet is proportional to the cube of the semi-major
axis of its orbit.

//

These laws led within a short time to the modern Newtonian view of mechanics and it turned
out that they were correct enough to send 12 humans to the moon. Thus Kepler’s laws are
part of our modern world view; and yet Kepler still thought of his work in Pythagorean terms.
He announced the Third Law in his book the Harmonices Mundi (Harmony of the World)
which was a response to Ptolemy’s work the Harmonics. Here Kepler argued that his model
of elliptical planetary orbits is still just as perfect as Ptolemy’s model in its relation to musical
harmony.16 But this was the end of an era; Kepler was the last astronomer to express his
work in musical terms.

Let’s examine the mathematics behind Kepler’s laws. The first question is:

What is an ellipse?

To answer this we should compare the definition of an ellipse with the definition of a circle.
Consider the following figure:

Recall that a circle is defined as the collection of all points P that are equidistant from a given
point P , called the center of the circle. In the figure this means that the distances CP1 and
CP2 are the same for any points P1 and P2. This common distance is called the radius of the
circle. Now consider the figure on the right. The two points F1 and F2 are called the foci of
the ellipse (plural of focus). The defining property is that for any two points P1 and P2 on
the ellipse we must have

F1P1 ` F2P1 “ F1P2 ` F2P2.

16Listen here: https://youtu.be/WihmsRinpQU
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That is, an ellipse is the collection of all points P such that the sum of the distances F1P`F2P
is a constant (there is no standard name for this constant). If the two foci F1 and F2 approach
each other then this definition degenerates into the definition of a circle. [Why?] Thus an
ellilpse is a generalization of a circle.

Kepler’s 1st Law says that each planet follows a path in the shape of an ellipse with the Sun
at one of the foci:

The other focus is just an imaginary point with no physical significance. This explains the
behavior of the planet in space. To explain the behavior of the planet in time, Kepler needed
to come up with a substitute for uniform circular motion. From the data he knew that a
planet does not travel with constant speed; in fact it travels faster when it is close to the sun
and slower when it is farther away. But he was still able to find a geometric uniformity in
the motion. His 2nd Law says that planet sweeps out equal areas in equal times:

In the figure we assume that the two shaded regions have equal area. In this case, Kepler says
that the planet takes the same time to travel from P1 to P2 as it does to travel from Q1 to
Q2. This is a beautiful geometric explanation for the planet’s changing speed.

The straight line connecting the two foci is called the major axis of the ellipse. I will use R
to denote half of the length, since this is a generalization of the “radius” of a circle:
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If we let T denote the orbital period (the amount of time it takes for one trip around the sun)
then Kepler’s 3rd Law says that T 2 and R3 are proportional:

T 2 „ R3.

The word “proportional” means the following: If you multiply the length R by a factor of n3

for some n then the time T will increase by a factor of n2. Kepler called this the Harmonic
Law because of the precise ratio between the numbers 2 and 3, and he thought of the law in
explicitly musical terms.

Thus we see that Kepler’s universe has just as much geometric and arithmetic beauty as the
Platonic universe of circles. It is worth remarking that the geometric study of ellipses also
goes back to ancient Greece: they were studied systematically in the Conics of Apollonius of
Perga (c. 262–190 BC). The title of this work leads to the question:

What do ellipses have to do with cones?

Apollonius gave us the names for ellipses, parabolas, and hyperbolas. Together he referred to
these three kinds of shapes as conic sections because they can all be realized as the intersection
of a flat plane with a circular cone, as in the following figure:

Finally, I will try to convince you that the definition of an ellipse in terms of its foci is
equivalent to its definition as a conic section. The following beautiful proof was discovered by
the Belgian mathematician Germinal Pierre Dandelin in 1822.

26



Theorem. If a circular cone and a flat plane have a bounded (finite) intersection, then this
intersection is an ellipse. //

Proof. Consider a circular cone sliced by a flat plane. The intersection divides the interior
of the cone into two open spaces. Now we consider the largest spheres that can fit inside each
of the two spaces while touching the plane. These are called the Dandelin spheres:

Suppose the first sphere touches the plane at point F1 and the second sphere touches the plane
at point F2. I claim that the intersection of the plane and cone is an ellipse with F1 and F2

as its foci. To prove this, consider any point P on the boundary of the supposed ellipse. We
will show that the sum of the distances

F1P ` F2P

is independent of the choice of P . Now observe that each Dandelin sphere intersects the
boundary of the cone in a circle (because it is a circular cone). Now consider the unique line
that connects P to the apex of the cone and let P1 and P2 be its points of intersection with
the two circles just described. In this case I claim that P1P “ F1P and P2P “ F2P . Indeed,
note that the line segments P1P and F1P are both tangent to the first Dandelin sphere, so
they must have the same length:
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The same argument applied to the second sphere shows that P2P “ F2P . Thus we have

F1P ` F2P “ P1P ` P2P “ P1P2.

The equality on the right follows from the fact that the points P , P1 and P2 all lie on the
same line. We conclude that the sum of the lengths F1P ` F2P is equal to the length of
the line segment P1P2. But observe that the length P1P2 is independent of the choice
of P because the two circles are parallel. We conclude that the quantity F1P ` F2P is also
independent of P .

This proof is clearly the best way to think about the problem; it is interesting that it was
only discovered in 1822. Since the bounded (elliptic) conic sections are related to planetary
orbits, one might wonder if parabolas and hyperbolas also play a role in astronomy. When
Isaac Newton developed the Calculus in the 1660s he proved that Kepler’s Three Laws can all
be derived from the following more basic law.

Newton’s Law of Universal Gravitation (1686). Every point mass attracts every other
point mass with a force that is inversely proportionatl to the square of the distance between
them. //

The concept of “force” is not obviously geometric17 so I will end the story here. In closing, I
will just note the following fact. By using Calculus, Newton was able to show that the “inverse
square law” leads inevitably to elliptic planetary orbits. The same analysis also shows that a
massive body traveling near the Sun will follow a hyperbolic path if it has too much energy
to get trapped in a closed orbit. If its energy level is right on the cusp between between being
trapped and being free then it will follow a parabolic path. What can’t geometry do?

17but c.f. Einstein’s General Relativity
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2 Euclidean and Non-Euclidean Geometry

2.1 The Deductive Method

In the last chapter I mentioned the birth of “capital M” Mathematics on the eastern shore of
the Aegean sea in the 6th century BC. The founder of this school was apparently Thales of
Miletus (c. 624–546 BC). For whatever reason, the Milesians began to question their world in a
new way. Instead of just accepting traditional/mythological explanations, they developed the
idea that the kosmos (the “ordered universe”) can be explained through careful thinking
and reasoning.

They adopted mathematical reasoning as the prototype for this new discipline. If a mathe-
matical statement is true then they believed that its truth should be explained by systematic
logical proof. We saw several proofs in the previous chapter. What did they have in common?

For example, let’s consider the proof of the Pythagorean Theorem. Consider any right-angled
triangle with side lengths a, b and c, as in the following figure:
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In this case the Pythagorean Theorem says that a2 ` b2 “ c2. I gave a logical argument for
this fact and I succeeded in convincing most of you that it is true. More precisely, I succeeded
in convincing you that the following implication is true:

if the angles in any triangle sum to 180˝, then the Pythagorean Theorem is true.

Since most of you believe that the angles in any triangle sum to 180˝ you were satisfied with
this and so I ended the proof there. But the Milesian spirit says that we should also question
why the angles in any triangle sum to 180˝.

In modern mathematics we often express logical implication with a bold arrow as follows:

“P ñ Q” means “ if P is true then Q is true ”.

Thus I can express my proof in the following symbolic form:

If you do not already believe that the angles in any triangle sum to 180˝ then I will have to
prove this to you by showing that it follows logically from some more obvious fact.
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When does a proof end? In practice, the proof will continue until my intended audience is
convinced. In principle, the proof will continue until the desired result is shown to follow
from some basic facts that are “self-evidently true”, i.e., facts that do not need to be proved.
Thus the possibility of mathematical proof depends on the existence of some collection of
“self-evident truths” that can be used as a foundation.

Terminology. In modern mathematics we use the word axiom for a true statement that does
not need to be proved. A deductive system consists of:

• a collection of axioms,

• some rules of logic telling us how we are allowed to combine them.

In principle the axioms can be chosen arbitrarily but in practice we want our deductive system
to have the following properties:

• the axioms are intuitively true,

• the axioms are simple and easy to use,

• there enough axioms to prove all of the results we want (the axioms are complete),

• but there are not too many axioms (the axioms are independent, i.e., no one axiom
can be proved from the others).

If a mathematical statement follows logically from the axioms, then we say that it is true and
we call it a theorem. //

I visualize a deductive system with the following schematic diagram:
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Here the arrows “ñ” represent “logical implication”. To prove a given mathematical state-
ment, the goal is to “drill downwards” by constructing a chain of logical implications from
progessively more basic statements. If we can reach the axioms, then “truth” will flow up-
ward along the chain of implications, showing that the original statement is true.

The Greek word mathema means “that which is learnt” and the Pythagoreans used the word
mathematikoi to refer to “teachers”. The community of mathematikoi grew dramatically in
the years 600–300 BC. At first their choice of axioms would have been ad hoc, and they would
have used differing standards of mathematical rigor. Eventually, however, as the community
spread across the Greek world they would have felt a need to standardize their methods. After
all, the main achievement of a mathematical proof is to compel different individuals (perhaps
even enemies) to accept the truth of a given statement; if they can’t agree on the underlying
standards then the proof is less compelling.

Finally, around 300 BC, a systematic treatise was written bringing all of Greek mathematics
under a single deductive system. This treatise was so well written that it became the standard
mathematical textbook in the Western world, and its logical methods were so compelling that
mathematicians accepted them unquestioningly until well into the 19th century.

2.2 Euclid’s Elements

In the late Classical world, the center of intellectual activity moved from Athens, Greece, to
Alexandria, Egypt. Alexander the Great (c. 356–323 BC) founded the city in c. 331 BC and
then after his death it was ruled as a kingdom by his general Ptolemy I (c. 367–283 BC). This
Ptolemy18 was a patron of letters who ordered the construction of the Museum of Alexandria,
which contained the great Library of Alexandria.

The Museum functioned as a research institute and it attracted scholars from all over the
Hellenistic world. One of these scholars was the mathematician Euclid of Alexandria (fl. 300
BC) who wrote the definitive treatise on Greek mathematics, called the Elements. We know
almost nothing about Euclid the man19 but his monumental work became the most important
mathematical treatise in history.

Euclid’s Elements consists of 13 books and contains a total of 468 theorems (called propo-
sitions). Each book covers a slightly different topic, spanning the whole range of Greek
mathematics. Here are a summaries of the first and the final book:

Book I (with 48 propositions) is an exhaustive proof of the Pythagorean Theorem.
The theorem itself is the subject of propositions I.47 and I.48; the first 46 propositions
slowly build up to the Pythagorean Theorem starting from first principles. For example,
Prop I.32 says that the interior angles of any triangle sum to 180˝.

18not to be confused with the astronomical Ptolemy who lived 400 years later
19The 20th century collective of French mathematicians who wrote under the name “Bourbaki” suggested

that “Euclid” might have been a pseudonym for a similar collective of mathematicians.
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Book XIII (with 18 propositions) is devoted to the construction and classification of the
five Platonic solids. The hardest of these to construct is the regular dodedecahedron;
this is done in Proposition XIII.17. Then Proposition XIII.18 compares the five Platonic
solids proves that no other regular polyhedra are possible.

Each book also contains definitions for the concepts it will use. Here is a selection of definitions
from Book I:

Definition I.1. A point is that which has no part.

Definition I.2. A line is breadthless length.

Definition I.4. A straight line is a line which lies evenly with the points on itself.

Definition I.15. A circle is a plane figure contained by one line such that all the
straight lines falling upon it from one point among those lying within the figure equal
one another.

Definition I.16. And the point is called the center of the circle.

Some of the definitions are clearly important (such as the definition of a circle) but some of
them seem unnecessary (such as the definition of a line).

All 13 volumes form a single deductive system based on a collection of 10 axioms, which are
listed at the beginning of Book I. The axioms are divided into two kinds: 5 “postulates” and
5 “common notions”. In the previous section we discussed how important it is to select good
axioms; so you might be curious which axioms Euclid chose as a foundation for all of Greek
mathematics.

Here we should recall the “crisis of incommensurables” that occurred when Pythagorean math-
ematicians discovered the existence of “irrational numbers”. This may be the reason that
Euclid chose to found his system on straight lines and circles instead of on numbers.20

Euclid’s Postulates. All of the propositions in Euclid are stated in terms of geometric
constructions. The postulates tell us exactly what kind of geometric constructions are allowed;
they are based on an idealized “straightedge and compass”.

Let the following be postulated:

Postulate 1. To draw a straight line from any point to any point. This is the function
of the straightedge:

20It is also possible that the “Alexandrian numeral system” (a precursor of Roman numerals) was too awkward
to allow for a systematic development of algebra. Our modern decimal place system comes from India. It
migrated through the Arabic world and eventually came to Europe around 1200 AD.
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Postulate 2. To produce a finite straight line continuously in a straight line. Greek
mathematicians avoided the concept of “completed infinity” in their mathematics and
dealt only with “potential infinity”. Thus every line in Euclid is only a finite line segment,
but it can be extended when desired:

Postulate 3. To describe a circle with any center and radius. This is the function of
the compass:

Postulate 4. That all right angles equal one another. Euclid had defined a right angle
(in Definition 10) as half of a straight line angle. His goal is to use right angles as as the
unit of angle measurement; this axiom allows him to compare angles at different points
in the plane:
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Postulate 5. That, if a straight line falling on two straight lines makes the interior
angles on the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right angles.
The 5th postulate became known as the “Parallel Postulate”. We can visualize it as
follows:

Euclid’s Common Notions. These are the principles of comparison for geometric figures.

Common Notion 1. Things which equal the same thing also equal one another. In
modern symbolic terms we would phrase this as follows:

if a “ c and b “ c, then a “ b.

Common Notion 2. If equals are added to equals, then the wholes are equal. In modern
terms:

if a “ b and c “ d then a` c “ b` d.
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Common Notion 3. If equals are subtracted from equals, then the remainders are
equal. In modern terms:

if a “ b and c “ d then a´ c “ b´ d.

Common Notion 4. Things which coincide with one another equal one another. This
seems a bit mysterious to modern readers. I guess it means that if you move one
geometric figure over another and they fit perfectly, then they must have equal lengths,
angles, areas, volumes, etc.

Common Notion 5. The whole is greater than the part. In modern terms we would
say that

0 ă 1.

This is the foundation for comparison of magnitudes.

With just these 10 axioms, Euclid was able to rigorously re-derive most of the results of Greek
mathematics, starting with the construction of an equilateral triangle in Prop I.1 and ending
with the classification of the five Platonic solids in Prop XIII.18. The only major omission was
the theory of conic sections. Apparently Euclid wrote a separate work on Conics. This work
is lost but it served as the foundation for the Conics of Apollonius of Perga, which survives.

Before diving into the contents of Book I, let me briefly discuss what came after the Elements
when it was eventually abandoned in the 19th century.

The 5th postulate (The Parallel Postulate) was always controversial. Some felt that it was
not obvious enough to be an axiom.21 For this reason many people tried to prove the Parallel
Postulate from the other 9 axioms, i.e., to show that it is a theorem and not an axiom. This
would fix the problem because theorems don’t need to be obvious. But all attempts to prove
the 5th postulate failed. All people were able to do was to replace it with logically-equivalent
alternatives. The most famous reformulation is based on Euclid’s Prop I.31:

Proposition I.31 [It is possible] to draw a straight line through a given point parallel
to a given straight line. That is, given a line ` and a point p not on `, it is possible to
construct a line that contains p and never intersects `.

In his commentary to the Elements, the Neo-Platonist philosopher Proclus Lycaeus (412–485
AD) proposed the following replacement. It was made famous by inclusion in John Playfair’s
textbook Elements of Geometry (1795):

Postulate 5’ (Playfair’s Postulate). In a plane, given a line and a point not on it,
at most one line parallel to the given line can be drawn through the point. The existence
of the line follows from the other 9 axioms; the key statement here is that there exists
at most one such line:

21What do you think?
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By logically-equivalent I mean that Postulate 5’ plus the other 9 axioms implies Postulate 5;
and, similarly, Postulate 5 plus the other 9 axioms implies Postulate 5’. Thus we can choose the
version that we like without affecting the truth of any other statement of Euclidean geometry.

It turns out that Postulates 5 and 5’ are also equivalent to the following statement, which
appears in Euclid as Proposition I.32:

Postulate 5” (The Triangle Postulate). The sum of the angles of a triangle is two right
angles. Picture:

You might feel that this Postulate 5” is obviously true but I would disagree. The common
problem with Postulates 5, 5’ and 5” is that they all make a connection between things that
could be very far apart in the plane. (For example, the triangle could be astronomically huge.
In this case how could we ever measure and compare its angles?) The notion of “parallelism”
itself is non-local because it states that two lines will never intersect no matter how far you
extend them. This seems to go against the spirit of Greek mathematics, which tried to avoid
the notion of “completed infinity”.
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The mathematician Carl Friedrich Gauss (1777–1855) was the first person to take seriously the
idea that the 5th postulate might actually be false. For some time he was employed as a land
surveryor and legend says that he measured the angles of a triangle between three mountain
peaks to compute the sum of its angles.22 However, he feared the “howls of the Boeotians” for
questioning the dogma23 of Euclidean geometry and so he kept these investigations to himself.

The 5th postulate was officially questioned by Nikolai Lobachevky (1830) and Janos Bolyai
(1832), two relatively unknown mathematicians who had less to lose than Gauss in terms
of professional reputation. Each of them claimed that Euclid’s 9 axioms together with the
opposite of the Playfair Postulate forms a consistent “non-Euclidean geometry”. That
is, they assumed that given a line ` and a point p not on `, there exists at least two lines
through p that are parallel to `. The status of this non-Euclidean geometry was dubious until
Eugenio Beltrami (1868) and Felix Klein (1873) proved the following result:

If Euclidean geometry is consistent (i.e., free from logical contradiction)
then the Bolyai-Lobachevky geometry is also consistent.

The Beltrami-Klein Disk Model. To prove that non-Euclidean geometry is consistent,
they found a way to model non-Euclidean geometry inside of Euclidean geometry. They did
this by slightly redefining the notions of “point”, “line” and “circle”. Consider a fixed circle
in the Euclidean plane:

22He must have found that the sum was within the margin of error of 180˝ otherwise we would have heard
more about it.

23The philosopher Immanuel Kant (1724–1804) had claimed that Euclidean geometry is a synthetic a priori,
i.e., an absolute truth that is independent of human experience.
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They redefined “point” to mean “a point in the interior of the disk” and they redefined “line”
to mean “a line segment in the interior of the disk”. In this way we can see that the Playfair
Postulate is false because there exist infinitely many lines through a given point p that do
not intersect a given line `. In essence, the boundary of the disk (which is not included in the
geometry) represents “infinity”.

Their redefinition of “circle” is too difficult to state here (to make everything consistent they
had to squash circles near the boundary), but suffice it to say that their new definitions of
“point”, “line” and “circle” satisfied all 9 of the other Euclidean axioms. It follows from this
that the 5th postulate can not be proved and it can not be disproved from the other 9
axioms. Thus we are free to modify it as we please. //

One aspect of the Beltrami-Klein model that seems unnatural is the artificial boundary of
the disk, which is treated as “infinity”. Klein showed that the disk model is just the shadow
of a more natural model with no boundary. Because of this model Klein invented the term
hyperbolic geometry to refer to all of the various non-Euclidean models.

The Hyperboloid Model. If we rotate a hyperbola around its axis of symmetry then we
obtain a bowl-shaped surface called a hyperboloid sitting on a circular disk inside of a circular
cone:

The “points” of the geometry are the “points on the hyperboloid” and the “straight lines” are
“intersections of the hyperboloid with a plane through the apex”. The disk sitting under the
hyperboloid is the Klein disk, whose straight lines are the intersections with the same planes.

The nice thing about this model is that it preserves the geometric properties of the Klein disk
but it gets rid of the artificial boundary circle. The hyperboloid is a truly infinite surface with
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a non-Euclidean geometry.24 By putting three “straight lines” together we can also see25 that
hyperbolic triangles have angles that sum to less than 180˝:

And this is certainly expected because we know that the Triangle Postulate is logically-
equivalent to Playfair’s Postulate, which is false in this model. //

The hyperbolic model provides the following insight:

Non-Euclidean geometry is caused by “curvature”.

Euclidean geometry implicitly assumes that the universe is “flat”; and this does seem to be true
on small scales. But hyperbolic geometry shows us that a locally-flat space might have large-
scale curvature. For example, a small two-dimensional person living on a hyperboloid would
not be able to distinguish their universe from a flat plane. Similarly, our three-dimensional
universe seems to be locally-Euclidean. However, it is at least logically possible that the
universe is curved at large scales.

Einstein’s General Relativity is based on a very similar idea: that gravity in our three-
dimensional space is caused by curvature in four-dimensional space-time. The large-scale
geometry of the purely spatial universe, i.e., whether it has global curvature or not, is still
an open question. In any case, the universe is close enough to Euclidean on small scales that
Gauss couldn’t tell the difference.

2.3 Selections from Book I

Now let’s take a look at some specific theorems from Book I of Euclid’s Elements.

Proposition I.1. To construct an equilateral triangle on a given finite straight line.

24Unfortunately we still have to modify the notions of “distance” and “circle”. It follows from theorems of
Gauss and Hilbert that there is no distance-preserving Euclidean model of the non-Euclidean plane.

25I’m lying a bit here because the “angles” also get distorted.
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Proof. Let AB be the given straight line.

It is required to construct an equilateral triangle on the straight line AB. To do this we first
construct the circle with center A and radius AB [Postulate 3] and the circle with center B
and radius AB [Postulate 3]. Let C be one point of intersection of the two circles. [Euclid
doesn’t say why the intersection exists; he just assumes that the picture isn’t lying.] Now
construct the triangle ABC [Postulate 1].

Now I claim that ABC is an equilateral triangle. From the definition of “circle” [Definition
15] we must have AB “ AC since these are two radii of the same circle. Similarly, we must
have AB “ BC. Therefore each of the lengths AC and BC equals the length AC. Finally,
Common Notion 1 implies that AC “ BC. Q.E.D.

On HW1 I have asked you to come up with similar constructions for regular squares, hexagons
and octagons. The following proposition will be helpful for these constructions.

Proposition I.9. To bisect a given rectilinear angle.

Proof. Let =BAC be the given rectilinear angle.
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It is required to bisect it.

Take an arbitrary point D on AB. Cut off AE from AC equal to AD. [Euclid quotes
Proposition I.3 to do this, but you can just as easily draw the circle with center A and radius
AD and let E be its point of intersection with AC.] Now construct the equilateral triangle
4DEF using Proposition I.1. I say that the angle =BAC is bisected by the straight line AF .

To show this I will first show that the triangles 4ADF and 4AEF are congruent. Indeed, we
know that AD “ AD by contruction, AF “ AF by coincidence and DF “ EF by Proposition
I.1. Since the two triangles have equal side lengths they are congruent by Proposition I.8.
[This is the side-side-side criterion for congruence. We omit the proof.] Finally, since the two
triangles are congruent we conclude that

=EAF “ =DAF

as claimed. Q.E.D.

For the rest of the section we will follow Euclid’s proof that the interior angles of any triangle
sum to 180˝.26 Of course we know that this argument must involve the Parallel Postulate in
some way; it will make its first appearance in the proof of Proposition I.29 below.

Euclid’s proof is long-winded so I will just show the key steps and I will paraphrase some of
the proofs in modern language. We begin with Proposition I.13.

Proposition I.13. If a straight line stands on a straight line, then it makes either two right
angles or angles whose sum equals two right angles.

Euclid’s Proof. Let AB be a straight line standing on the straight line CD and consider
the two angles =ABC and =ABD.

26Instead of 180˝, Euclid would say “two right angles”. The convention of dividing the circle into 360˝ comes
from the ancient Babylonians, who used a base 60 numeral system.
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I claim that =CBA`=ABD equals two right angles.

If =CBA “ =ABD then each of them is a right angle [Definition 10] so we are done. Otherwise
we can assume without loss of generality that =ABD is greater than a right angle. Draw
the line BE at right angles to CD [which is possible by Proposition I.11, omitted]. Since
=CBE “ =CBA`=ABE and =CBE “ =EBD, Common Notion 2 tells us that

=CBE `=EBD “ =CBA`=ABE `=EBD.

And then since =DBA “ =DBE `=EBA, Common Notion 2 tells us that

=DBA`=ABC “ =DBE `=EBA`=ABC.

Finally, since =DBA`=ABC and =CBE`=EBD are both equal to the same thing (shown
in the previous two equations), Common Notion 1 tells us that

=DBA`=ABC “ =CBE `=EBD,

which is just what we wanted to show. Q.E.D.

That was Euclid’s proof.27 Here’s my cleaned up version.

My Proof. Label the angles in Euclid’s diagram as follows:

We want to show that α` β “ 180˝.

By assumption we know that γ “ δ “ 90˝ and hence γ ` δ “ 180˝. But then we have

α` β “ pγ ` εq ` β

“ γ ` pε` βq

“ γ ` δ

27Except that I used the modern symbols “`” and ““” where Euclid said “the sum of” and “is equal to”.
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“ 180˝

as desired.

I think my version is easier to read. Euclid didn’t have a symbolic notation for algebra so he
had to express the sequence of equations verbally.

Proposition I.16. In any triangle, if one of the sides is produced, then the exterior angle is
greater than either of the interior and opposite angles.

Proof. Consider a triangle 4ABC with interior angles α, β, γ and extend the lines AC and
BC to produce the exterior angle δ, as in the following figure:

I claim that α ă δ and β ă δ. Since the proofs are similar I will just show that α ă δ. To
do this, let D be the midpoint of AC [Prop I.10] and extend the line AD to the point E such
that BD “ DE [Prop I.3], as in the following figure:

Since AD “ CD, BD “ DE and =ADE “ =CDE [from Prop I.15] we conclude that
the triangles 4ADB and 4CDE are congruent. [This is the side-angle-side criterion for
congruence from Prop I.4.] In particular we conclude that =DCE “ =DAB “ α. Finally,
since the angle α “ =DCE is contained inside the exterior angle δ we conclude from Common
Notion 5 [the whole is greater than the part] that α ă δ.
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Proposition I.27. If a straight line falling on two straight lines makes the alternate angles
equal to one another, then the straight lines are parallel to one another.

Proof. Suppose that the line EF crosses the two lines AB and CD, and assume that the
alternate angles are equal, as in the following figure:

I claim that the lines AB and CD are parallel. To prove this, assume for contradiction that
the lines are not parallel so they meet on one side. If the lines at G as in the figure then the
interior angle β “ =EFG of the triangle 4EFG is equal to the exterior angle β “ =AEF ,
which contradicts Proposition I.16 from above. If the lines meet on the other side we get a
similar contradiction where α is both an interior and an exterior angle for some triangle.

So far all of these results are also true in hyperbolic geometry. The next result (Prop I.29)
will be our first result that uses the Parallel Postulate.

Proposition I.29. A straight line falling on parallel straight lines makes the alternate angles
equal to one another, the exterior angle equal to the interior and opposite angle, and the sum
of the interior angles on the same side equal to two right angles.

Proof. Let AB and CD be parallel lines and let them be cut by a straight line making
alternate angles α1, α2, β1, β2 as in the following figure:
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In this case I claim that α1 “ α2 and β1 “ β2.

To prove this, assume for contradiction that α1 ‰ α2. Without loss of generality we will
suppose that α1 ă α2. Then since α1 ` β1 “ 180˝ and α2 ` β2 “ 180˝ [by Prop I.13 above]
we conclude that

α1 ă α2

α1 ` β2 ă α2 ` β2

α1 ` β2 ă 180˝.

But then the Parallel Postulate [Postulate 5] says that that AB and CD are not parallel, which
is the desired contradiction. We conclude that α1 “ α2 and then it follows from Proposition
I.13 that

β1 “ 180˝ ´ α1 “ 180˝ ´ α2 “ β2.

Proposition I.31. To draw a straight line through a given point parallel to a given straight
line.

Proof. Let A be the given point and let BC be the given line:
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Now choose a random pointD on BC and draw the segment AD. By Proposition I.23 [omitted]
it is possible to construct a segment AE so that angle α “ =EAD equals angle α “ =CDA.
Now extend the segment EA to F and define the angle β2 “ =DAF . Then Proposition I.13
implies that β1 “ β2 as in our proof of Proposition I.29 above. Finally, since the alternate
angles are equal we conclude from Proposition I.27 above that the line EF is parallel to BC
as desired. .

We have arrived at the big theorem of this section.

Proposition I.32 (The Angles in a Euclidean Triangle Sum to 180˝). In any triangle,
if one of the sides is produced, then the exterior angle equals the sum of the two interior and
opposite angles, and the sum of the three interior angles of the triangle equals two right angles.

Proof. Consider a triangle 4ABC with internal angles α, β, γ as in the following figure:

I claim that α` β ` γ “ 180˝.

To prove this we extend the line BC to an arbitrary point D and we use Proposition I.31
(which does not need the Parallel Postulate) to draw a line segment CE parallel to AB. Now
we apply Proposition I.29 (which does need the Parallel Postulate) two times:

(1) When the line AC crosses the parallel lines AB and CE it makes the alternate angles
α “ =BAC and =ECA equal.

(2) When the line BD crosses the parallel lines AB and CE it makes the alternate angles
β “ =ABC and =ECD equal.

Finally, since the angles γ “ =BCA, α “ =ACE and β “ =ECD add up to the straight line
BD we conclude that

α` β ` γ “ 180˝

as desired.
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This finally completes the proof of the Pythagorean Theorem that I presented in in Chapter
1.1. The rest of Euclid’s Book I is devoted to his own proof of the Pythagorean Theorem,
which I find less convincing than our proof so I won’t discuss it here.

2.4 Triangles and Curvature

In the previous section we saw Euclid’s proof that the angles in a triangle sum to 180˝. This
was his Proposition I.32. We also saw that Euclid’s proof depends on the Parallel Postulate.
In particular, he needed the Parallel Postulate to prove Prop I.29 which says that a straight
line falling on two parallel lines makes alternate angles equal, as in the following figure:

I also mentioned above that there exist consistent geometries in which the Parallel Postulate
is false but the other 9 Euclidean axioms are true. This was first suggested by Bolyai and
Lobachevsky in the early 1800s and then it was proved rigorously by Beltrami and Klein in
the late 1800s. Klein called the new geometry hyperbolic because of a certain model based on
the hyperboloid surface.

It is difficult to visualize hyperbolic geometry because of a famous theorem of Carl Friedrich
Gauss (1828) which he called the Theorema Egregium (Latin for “remarkable theorem”). To
discuss this theorem I have to show you Gauss’ notion of curvature for paths and surfaces.

Definition of “Gaussian” Curvature. Consider a smooth path in space. For each point
p on the path there is a unique circle (called the osculating circle) that fits the path near p
better28 than any other circle:

28We would need Calculus to make this precise.
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If rp is the radius of the osculating circle at p then Gauss defined the curvature of the path at
p as the reciprocal of the radius:

κp :“ 1{rp

pcurvature of the path at pq “
1

pradius of the osculating circle at pq

If the path near p is a straight line segment then we say that the osculating circle at p has
infinite radius (rp “ “8”) and we define the curvature as κp :“ 0 “ “1{8”. Thus at every
point p on a smooth curve there is a non-negative curvature κp ě 0. A straight line is a path
of “constant curvature 0” and a circle of radius r is a path of “constant curvature 1{r ”. Every
other path has curvature that changes from point to point. For example, in the above figure
we have rp ą rq ą 0 and hence 0 ă κp ă κq. A point of “infinite curvature” would be very
sharp; but this will never happen because we assume that the path is “smooth”.

Now consider a point p on a smooth two-dimensional surface. There are infinitely many
smooth paths in the surface that go through p and each of them has an osculating circle at p.
Somehow we want to pull all of this information together to obtain a single number κp that
represents the “curvature of the surface at the point p”. Here is Gauss’ idea:

Call one side of the surface “above” and the other “below” (at the end we will see that the
choice is arbitrary). Now for each flat plane containing p, consider the sectional path γ where
this plane intersects the surface, as in the following figure:
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This path has an osculating circle of radius rγ at p (possibly with rγ “ “8”). If the osculating
circle is “above” the surface when we define the sectional curvature by κγ “ 1{rγ and if the
osculating circle is “below” the surface we define κγ “ ´1{rγ . Thus we have a whole set of
“sectional curvatures” at p:

tκγ : where γ is a sectional path in the surface going through pu

This set might contain infinitely many different numbers or it might contain just one number
(when the surface has “constant sectional curvature”). In any case, since the surface is smooth,
Gauss observed that there is a minimum and a maximum sectional curvature satisfying
κ1 ď κ2. Then he defined the (Gaussian) curvature of the surface at p to be the product of
these extreme values:

κp :“ κ1 ¨ κ2

pcurvature of the surface at pq “ pmin sectional curvatureq ¨ pmax sectional curvatureq

If the surface is a flat plane near p then we have κ1 “ κ2 “ 0 and hence the Gaussian curvature
at p is κp “ 0 ¨ 0 “ 0. Thus a flat plane is a surface of “constant sectional curvature 0”. Now
consider an infinite circular cylinder of radius r:
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The two extreme sectional curvatures come from (1) sectional paths along the cylinder (which
are straight lines) and (2) sectional paths perpendicular to the cylinder (which are circles of
radius r). If the inside of the cylinder is “above” then the extreme curvatures are κ1 “ 0 ă
1{r “ κ2 and the Gaussian curvature at any point p is κp “ 0 ¨ p1{rq “ 0. If the outside of the
cylinder is “above” then the extreme curvatures are κ1 “ ´1{r ă 0 “ κ2 and the Gaussian
curvature at any point is still κp “ p´1{rq ¨ 0 “ 0. In any case, we find that a cylinder is a
surface of “constant Gaussian curvature 0” (even though the sectional curvatures are not all
zero).

Next consider a point p on the surface of a sphere of radius r. In this case, every sectional
path at p is a circle of radius r as in the following picture:

If we regard the inside of the sphere as “above” then all sectional curvatures are 1{r; if the
outside of the sphere is “above” then all sectional curvatures are ´1{r. In either case, the
Gaussian curvature at p is

κp “
1

r
¨

1

r
“

ˆ

´
1

r

˙

¨

ˆ

´
1

r

˙

“
1

r2
ą 0.

Thus a sphere of radius r is a surface of “constant positive Gaussian curvature 1{r2 ”.

For the case of paths we observe that the curvature is always non-negative. However, for sur-
faces there is a notion of “negative curvature”, which occurs when the two extreme osculating
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circles are on opposite sides of the surface. For example, consider a point p on a saddle-shaped
surface:

Regardless of which side of the saddle is “above”, since the two extreme osculating circles
are pointing in opposite directions we will find that the extreme sectional curvatures satisfy
κ1 ă 0 ă κ2. Then it follows that the Gaussian curvature at p is a negative number: κp “
κ1 ¨κ2 ă 0. Based on this example, any point of negative Gaussian curvature is called a saddle
point. It is not clear whether there exists a surface of “constant negative Gaussian curvature”.
[We will return to this issue below.] //

Thus the Gaussian curvature of a surface is defined in terms of the osculating circles that
stick out of the surface at right angles. If you were an ant living on the surface then it
would be impossible to compute the curvature using this method. However, Gauss also proved
a remarkable theorem showing that the curvature can still be computed by ants on
the surface. To be specific, consider any two points p and q on a surface. A path of shortest
length between p and q (that says within the surface) is called a geodesic path.29 Then we
define the geodesic distance by

dpp, qq :“ length of a geodesic path between p and q

Gauss’ Theorema Egregium30 (1827). Let p be a point on a smooth two-dimensional
surface. Then the Gaussian curvature κp can be computed if we know the gesodesic distances
dpp, qq for all of the points q near p. //

This is a subtle idea so we should think about it slowly. Let p be a point on a surface and
consider any number r ě 0. We define the “internal disk with center p and radius r” to be

29For example, the path that a plane must fly over the surface of the Earth. The Latin geodaesia literally
means “Earth division”.

30Latin for “remarkable theorem”. What language do you think Gauss wrote in?
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the collection of points q in the surface such that the geodesic distance satisfies dpp, qq ď r.
This is the region of the surface that can be reached by an ant if it starts at p and then walks
for a distance r. Now let Apprq be the area of this “internal disk”.

If the surface is “flat” near p and if the radius r is small then we have the famous31 formula

Apprq “ πr2.

More generally, Apprq is some function of the radius r that depends on the shape of the
surface near p. This function can be computed from the geodesic distances dpp, qq and a bit
of Calculus. In the year 1848, three French mathematicians gave an elegant proof of Gauss’
Theorema Egregium by establishing the following general formula for Apprq. For a point p on
a smooth surface they showed that

Apprq “ πr2 ´ κp ¨
πr4

12
` higher order terms , (BDP)

where κp is the Gaussian curvature at p. The higher order terms are negligible when the radius
r is small. This formula tells us that the curvature κp is determined by the area function Apprq.
But the area function is determined by the geodesic distances dpp, qq; thus the curvature at p
is also determined by the distances dpp, qq. Q.E.D.

There is a professor at Cornell named John Hubbard who likes to think of the Bertrand-Diquet-
Puiseux formula (BDP) in terms of goats. Suppose we tie up our goat in a grassy meadow
using a rope of length r. Thus the goat has an area Apprq of grass to eat. In particular:

• If the meadow is flat (κp “ 0) then the goat has πr2 of grass to eat,

• If the meadow is in a valley or on a hilltop (κp ą 0) then there is less than πr2 to eat.

• If the meadow is in a mountain pass (κp ă 0) then there is more than πr2 to eat.

The Theorema Egregium also has an important consequence for map-making. The Earth
is approximately a sphere. In any case, the surface of the Earth has positive Gaussian
curvature. But a map, even if it is bent or folded as in the case of a cylinder, has zero
Gaussian curvature. Since the curvature is a function of geodesic distances, Gauss’ theorem

31I’m sure you already believe this formula. If not, I’ll prove it to you in the next chapter.
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tells us that is it impossible to make a make a map of the Earth without distorting distances.
In other words:

It is impossible to make a distance-preserving map of the Earth.

The problem is worse for larger regions of the globe, but even a relatively small region such
as the state of Florida has enough curvature so that flat maps will be noticeably distorted.
The history of map-making was a series of compromises based on the purpose that each map
would be used for. Today the main problem is to stitch together flat satellite photographs
into an accurate curved picture. //

But there is yet one more way to think about curvature which is intimately related to non-
Euclidean geometry. This has to do with the sum of the angles in a geodesic triangle.

To begin we will consider a geodesic triangle on the surface of a sphere. Suppose that the
vertices are A,B,C and the angles are α, β, γ as in the following picture:

If the sphere has radius r then each geodesic is a great circle of radius r. Observe that if we
extend the sides of the triangle then they wrap around the back of the sphere to decompose the
surface into 8 triangular regions. It we are clever than we can use this decomposition to com-
pute the area of the triangle. The following theorem is attributed to the French mathematician
Albert Girard (1629) and the English polymath32 Thomas Harriot (1603).

Theorem (Area of a Spherical Triangle). Consider a geodesic triangle on the surface of

32Among other things, he traveled with Sir Walter Raleigh to the new world where they founded the colony
of Virginia in honor of “the Virgin Queen” Elizabeth I.
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a sphere of radius r. If the internal angles are α, β, γ then the angle sum α` β ` γ is strictly
greater than 180˝. Furthermore, the area of the triangle is given by the following formula:

parea of a triangleq “ pangle excessq ¨ r2 “ pα` β ` γ ´ πq ¨ r2

Here we use the “radian measure”33 π instead of 180˝ because we need to compare the angles
to the radius of the sphere. //

Proof. Let 4α,β,γ denote the area of the spherical triangle with internal angles α, β, γ, as
shown in the figure above. Note from the figure that by extending the sides of the triangle we
decompose the surface of the sphere into 8 triangles, and that these triangles come in opposite
pairs of equal area. We will let 4α,4β,4γ denote the areas of the triangles that occur across
the sides of the original triangle and opposite the angles α, β, γ, respectively. Thus we must
have

S “ 2p4α,β,γ `4α `4β `4γq,

where S is the surface area of the whole sphere.

On the other hand, observe that the two triangles 4α,β,γ and 4α fit together to form a “lune”
with angle α. By looking at the axis through the two endpoints of the lune we see that the
lune covers a proportion α{2π of the full surface of the sphere. Thus we have

4α,β,γ `4α “
α

2π
¨ S.

Similarly, we have lunes with angles β and γ:

4α,β,γ `4β “
β

2π
¨ S and 4α,β,γ `4γ “

γ

2π
¨ S.

Adding these three equations together gives

34α,β,γ `4α `4β `4γ “
pα` β ` γq

2π
¨ S

64α,β,γ ` 24α ` 24β ` 24γ “
pα` β ` γq

π
¨ S

44α,β,γ ` 24α,β,γ ` 24α ` 24β ` 24γ “
pα` β ` γq

π
¨ S

44α,β,γ ` 2p4α,β,γ `4α `4β `4γq “
pα` β ` γq

π
¨ S,

and then substituting S “ 2p4α,β,γ `4α `4β `4γq from the original equation gives

44α,β,γ ` 2p4α,β,γ `4α `4β `4γq “
pα` β ` γq

π
¨ S

44α,β,γ ` S “
pα` β ` γq

π
¨ S

33If this is not familiar to you, just wait; we’ll discuss it soon.
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44α,β,γ “
pα` β ` γq

π
¨ S ´ S

44α,β,γ “
pα` β ` γq

π
¨ S ´

π

π
¨ S

44α,β,γ “
pα` β ` γ ´ πq

π
¨ S

4α,β,γ “
pα` β ` γ ´ πq

4π
¨ S.

This is already enough to show us that the “angle excess” pα ` β ` γ ´ πq is positive. [In
other words, the sum of the angles α` β ` γ is greater than π.] If we substitute the formula
S “ 4πr2 for the surface area of a sphere34 of radius r then we obtain the exact formula

4α,β,γ “
pα` β ` γ ´ πq

4π
¨ 4πr2 “ pα` β ` γ ´ πq ¨ r2

as desired.

Let’s kick the tires to see if this formula makes sense.

Check 1. Suppose you are standing at the North Pole with two friends. Your friends set off
at right angles and each of them walks in a straight line until they hit the equator. Since they
are both walking straight towards the equator, they will each hit it at a right angle. When
this happens you and your friends will be at the three vertices of a geodesic triangle with
three right angles:

34We’ll prove this formula later.
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Recall that a right angle equals π{2 in radian measure. If S is the surface area of the Earth
then Harriot’s formula tells us that the area of the big triangle is

α` β ` γ ´ π

4π
¨ S “

π{2` π{2` π{2´ π

4π
¨ S

“
π{2

4π
¨ S

“
1

8
¨ S.

And this makes sense because if your friends kept walking and returned to you at the North
Pole, then their paths together with the equator would divide the surface of the Earth into 8
equal pieces. //

Check 2. How does the formula compare to our knowledge about the flat plane? Let’s
perform a thought experiment. Suppose that we have a triangle with interior angles α, β, γ
on a sphere of radius r. Now imagine that we hold the area of the triangle constant while
we slowly let the radius grow to infinity. (The angles will have to change as we do this.) In
this case Harriot’s formula says that

pα` β ` γ ´ πq ¨ r2 “ constant.

As the factor r2 grows, the factor pα` β ` γ ´ πq must shrink in order to keep the product
constant. As the radius approaches infinity (r Ñ8) then we must have

pα` β ` γ ´ πq Ñ 0 or pα` β ` γq Ñ π.

In other words, we conclude that a triangle on a sphere of “infinite radius” (i.e., on a flat
plane) must have interior angles that sum to π (i.e., 180˝). This agrees with our knowledge
of Euclidean geometry. //

So the formula checks out. Now let’s think about the consequences. Harriot’s formula says
that the area of a spherical triangle is determined by its angles. This is very different from
the situation in Euclidean geometry, where we can “dilate” a triangle without changing its
angles:
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In Euclidean geometry we say that two triangles are similar when they have the same angles,
and congruent when they have the same same side lengths. Euclid proved in Proposition I.8
that congruent triangles are necessarily similar [this is the side-side-side criterion for similarity]
but similar triangles need not be congruent.

In contrast, the previous theorem can be extended to show that if two geodesic triangles on a
sphere have the same angles then, in addition to having the same area, they must also have
the same side lengths. In other words:

Similar triangles on a sphere are necessarily congruent.

This strange situation has everything to do with curvature. Indeed, recall that the surface of
a sphere of radius r has constant Gaussian curvature κ “ 1{r2 ą 0. This allows us to rewrite
Thomas Harriot’s formula as follows:

(area of a triangle) “ pangle excessq ¨ r2 “ pangle excessq ¨
1

κ
“
pangle excessq

pcurvatureq
.

And it turns out that this formula relating curvature to angles in a triangle can be generalized
to arbitrary surfaces. This theorem was known to Gauss and it was first published by the
French mathematician Pierre Ossian Bonnet in 1848.

The Gauss-Bonnet Theorem (1848). Let 4α,β,γ be a geodesic triangle on a smooth
surface, with interior angles α, β, γ, and let κ be the average value of the Gaussian curvature
inside the triangle. Then we have

(area of 4α,β,γ) “
α` β ` γ ´ π

κ

(area of a geodesic triangle) “
(angle excess)

(average curvature inside the triangle)

//

We can’t apply this formula in the case of zero curvature because we can’t divide by zero.
However we can use a limiting argument as above to show that the angle excess approaches zero
as κ goes to zero. The following picture summarizes our knowledge about geodesic triangles
on a surface of constant curvature κ:
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And what does this have to do with hyperbolic geometry? Recall that Beltrami and Klein
proved that hyperbolic geometry is logically consistent35 by finding a model of the hyperbolic
plane that lives inside the Euclidean plane. The “lines” and “points” of this model are closely
related to Euclidean “lines” and “points”, however the “circles” in their model are squashed
and in general the distance between points is distorted.

To end the chapter, I will outline a proof showing that it is impossible to find a distance-
preserving Euclidean model of the hyperbolic plane:

• Giovanni Girolamo Saccheri (1733) showed that if Euclid’s Parallel Postulate is false then
the angles in any triangle sum to less than 180˝. He regarded this result as absurd and
so he considered it as a proof that the Parallel Postulate is true.

• Lobachevky (1830) and Bolyai (1832) both knew that if the Parallel Postulate is false
then there exists some negative constant κ ă 0 such that a triangle with interior
angles α, β, γ has area

π ´ pα` β ` γq

κ
.

Since area is positive this means that the angle sum α` β ` γ is less than π.

• Beltrami (1868) saw an analogy with Thomas Harriot’s formula for the area of a spherical
triangle. He suggested that the negative constant has the form κ “ ´1{r2 and he said
that the Bolyai-Lobchevsky geometry is a “pseudosphere” with imaginary radius r ¨

?
´1.

• From the Gauss-Bonnet Theorem and the Theorema Egregium, we see that any Eu-
clidean model of the hyperbolic plane must be a surface of constant negative Gaus-
sian curvature. There does exist such a surface, called the tractricoid, but it has a
sharp edge in the middle so it is not very satisfactory:

35At least, it is logically consistent as long is Euclidean geometry is logically consistent, which no one doubts.
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• Finally, David Hilbert (1901) proved that every surface of constant negative Gaussian
curvature must have a boundary or sharp edges. Thus there is no faithful Euclidean
model of the hyperbolic plane.

Nevertheless, hyperbolic geometry exists.36 Over time this example opened the floodgates to
all kinds of “geometry” that can not be directly visualized. Some of it would shock you.

3 The Problem of Measurement

3.1 Pure and Applied Mathematics

The Greek word geometria literally means “land measurement”. Indeed, the Greek historian
Herodotus37 (c. 484–425 BC) tells us that the Greeks learned geometry from the Egyptian art
of measuring land. The following quote is taken from The Histories (c. 440 BC):

This king also (they said) divided the country among all the Egyptians by giving
each an equal parcel of land, and made this his source of revenue, assessing the
payment of a yearly tax. And any man who was robbed by the river of part of his
land could come to Sesostris and declare what had happened; then the king would
send men to look into it and calculate the part by which the land was diminished,
so that thereafter it should pay in proportion to the tax originally imposed. From
this, in my opinion, the Greeks learned the art of measuring land [my
emphasis]; the sunclock and the sundial, and the twelve divisions of the day, came
to Hellas from Babylonia and not from Egypt.

Herodotus refers here to the ancient Babylonian and Egyptian civilizations, which left behind
the earliest written evidence of matheamtics. These traditions were roughly contemporary
(starting around 2000 BC) but we know more about Babylonian mathematics because their
clay tablets were more durable than the Egyptian papyrus scrolls.

Most Babylonian and Egyptian sources are workbooks for solving practical computation prob-
lems. For example, one of the earliest Egyptian sources is the Rhind Papyrus (from before
1800 BC) which contains many geometric problems related to agriculture. The first geometric
problem in the Rhind Papyrus reads as follows:

36To the detriment of Immanuel Kant’s reputation.
37Not always a reliable source.

60



Problem 41. Find the volume of a cylindrical grain silo with a diameter of 9
cubits and height of 10 cubits.

The author then proceeds to give an algorithmic solution to the problem. In modern algebraic
notation we can express their procedure with the formula

V “

ˆ

d´
d

9

˙2

¨ h,

where h is the height and d is the diameter of the cylinder. By applying this procedure to the
values d “ 9 cubits and h “ 10 cubits they obtain the result

V “ 64 cubed cubits

“ 900 khar

“ 4800 hekat.

How accurate is this answer? If r “ d{2 is the radius of the silo then the circular base of the
silo has area πr2 and the volume is given by the area of the base times the height:

V “ πr2h.

By substituting d “ 2r into the Egyptian formula we obtain

V “

ˆ

2r ´
2r

9

˙2

¨ h “

ˆ

16r

9

˙2

¨ h “

ˆ

16

9

˙2

r2h.

We see that this expression has the correct form pconstantqr2h and that the Egyptians are
using the value p16{9q2 “ 266{81 “ 3.160493827 for the numerical constant π « 3.14159. It
is not clear if the Egyptians knew or cared that this answer is not exact. From the form of
the question we see that they are measuring volumes of wheat, presumably for the purposes
of feeding people, and their solution is good enough that no one would have starved because
of a mathematical error.

Now let’s compare this to the Euclidean geometry of the Greeks. Euclid used the word
geometria for the topic of the The Elements, but it’s clear that Euclid’s axiomatic geometry
has nothing to do with land measurement. As I described in Chapter 1, the mathematicians of
the Pythagorean tradition found a completely new purpose for mathematics that was spiritual
and moral, rather than technological. I will refer to this new Pythagorean mathematics as
“pure”, as opposed to the earlier “applied” mathematics of the Babylonians and Egyptians.

Of course, applied mathematics continued to be practiced in Greece, but it was demoted to a
secondary status below the pure mathematics of the philosophers. This distinction between
pure and applied mathematics was stated most forcefully by Plato. In his dialogue The
Republic (c. 380) the character Socrates and his companions discuss the characteristics of
an ideal city (eutopia). A large part of the discussion centers on the education that the
Guardians of the city should receive, which includes 10 years of mathematical training.
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The character Glaucon suggests that geometry will be useful for setting up military camps
and troop formations, but Socrates responds that only a tiny amount of geometry is necessary
for military purposes; instead, the Guardians should study advanced geometry because it is
important for their moral development:

What we have to consider is whether the greater and more advanced part of it
tends to facilitate the apprehension of the idea of the Good. That tendency, we
affirm, is to be found in all studies that force the soul to turn its vision round to
the region where dwells the most blessed part of reality, which it is imperative that
it should behold.

Thus, according to Plato, the true value of mathematics is that it teaches us what is good
and true in the world (i.e., it “builds character”) and thus it is ideal training for the leaders of
society. This idea was taken up by the Romans with their concept of the “liberal arts” (artes
liberales), which are the essential things that a free person needs to know. The Latin prose
writer Martianus Capella (fl. 410–420 AD) divided the liberal arts into seven categories:

Despite its pagan origins, this system was taken up by the Catholic church and became the
framework for the education system in Medieval Europe. The Trivium38 of “verbal arts” was
similar to our grade school and the more advanced Quadrivium of “numerical arts” was similar
to our college curriculum.

Ever since the time of Plato, there has been some tension between the practice of mathematics

38origin of the word “trivial”
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for technological reasons and the practice of mathematics for moral reasons. Indeed, after
the word geometria was taken over by Euclidean abstract geometry, the word metrika (for
“measurement”) began to be used for the older, more computational, style of geometry.39

Because Euclidean geometry was disdainful of measurement and calculation it ignored some of
the legitimate mathematical achievements of the Babylonians and Egyptians. In this chapter
we will investigate the work that came after Euclid to reunite the pure and applied branches of
geometry. The key figure in our story will be the Hellenistic (not Greek) scientist Archimedes
of Syracuse (c. 287–212 BC).

In general I will refer to the project of reuniting pure and applied geometry as

the problem of measurement.

The goal here is to assign numbers to geometric magnitudes (such as lengths, angles,
area and volume) so that one can solve geometric problems via arithmetic computations. This
problem is quite difficult because it necessarily involves the concept of infinity; it was not really
solved until Newton and Leibniz’ invention of the definite integral in the 1660s. And even then
the logical difficulties were formidable. The subject of measure theory was finally given an
axiomatic foundation in the early 20th century by the French mathematicians René-Louis
Baire, Émile Borel and Henri Lebesgue. It is still an active area of research.

3.2 Eudoxus’ Theory of Proportion

To appreciate the difficulty of the problem of measurement we must recall from Chapter 1 the
Pythagorean discovery that

the side and diagonal of a square are incommensurable.

The word incommensurable literally means “cannot be simultaneously measured”. That is,
if we assume that m and n are “numbers” (for the Greeks this means whole numbers) then
there does not exist a common unit of measurement such that the diagonal of a square is m
units long and the side is n units long. In modern notation we have no trouble saying that

pdiagonal of a squareq “
?

2 ¨ pside length of a squareq

but what does this really mean? In what sense are
?

2 and the side length “numbers” that
can be multiplied together?

Here is a picture of a Babylonian clay tablet40 dated from around 1700 BC. Its name is
YBC7289 and it comes from the Yale Babylonian Collection:

39See for example the work Metrika (c. 60 AD) by Hero of Alexandria.
40borrowed from John Baez’s Azimuth blog: https://johncarlosbaez.wordpress.com/2011/12/02/

babylon-and-the-square-root-of-2/
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We see here a picture of a square with a diagonal drawn. According to experts, the cuneiform
writing on the diagonal stands for the number

1`
24

60
`

51

602
`

10

603
“

30547

21600
« 1.41421,

which is an impressively good approximation for the square root of 2. If this kind of technology
was available in 1700 BC then the Pythagorean mathematicians over 1000 years later should
have had no practical problem with the diagonal of a square. Their problem was theoretical.
When they discovered that the square root of 2 is not a “number”, this suggested that there
is some mystery in the relationship between “numbers” and “geometric magnitudes”.

Eudoxus of Cnidus (c. 309–337) was a student of Plato and he is regarded as the greatest of
the classical Greek mathematicians.41 Eudoxus knew that the ratio between some geometric
magnitudes (such as the side and diagonal of a square) cannot be computed as a ratio of
whole numbers. To get around this issue he developed an elaborate theory of proportions,
which many people believe is faithfully preserved in Book V of Euclid’s Elements. Before
discussing Eudoxus’ theory, let me show you the kind of problem that it is designed to solve.

Book VI of the Elements is all about “similar” geometric figures. The most famous proposition
is the one about “similar triangles”:

Proposition VI.4 (Similar Triangles are Proportional). Consider two triangles in the
plane with the same interior angles α, β, γ and suppose that they have side lengths a, b, c and
a1, b1, c1 respectively:

41We will see that his geometric discoveries were later surpassed by Archimedes.
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In this case I claim that the corresponding sides are “proportional”, which in modern notation
we can express as follows:

a

a1
“
b

b1
“
c

c1
.

//

But let’s think about this statement a bit. If the lengths a and b are commensurable then we
can write a{b “ n{m where m and n are whole numbers. Similarly, if the lengths a1 and b1

are commensurable then we can write a1{b1 “ n1{m1 for some whole numbers m1 “ n1. Then
the equation

n

m
“

n1

m1

can be expressed as the equality of whole numbers mn1 “ m1n. This is the idea of
“cross-multiplication”. But we know that many triangles have incommensurable lengths. For
example, suppose that α is a right angle. Then results from Book I tell us that b “ c and the
Pythagorean Theorem says that

a2 “ b2 ` b2

a2 “ 2b2

a2{b2 “ 2

pa{bq2 “ 2.

In this case the ratios a{b and a1{b1 can not be expressed in terms of whole numbers, so it
is not clear what the equality a{b “ a1{b1 should even mean. Nevertheless, we expect that
Proposition VI.4 should still be true in the incommensurable case.

Eudoxus’ theory of proportions is precisely what is needed to make this rigorous. Here are
the relevant definitions recorded in Euclid’s Book V:

Definition V.1. A magnitude is a part of a magnitude, the less of the greater, when it
measures the greater.
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Definition V.2. The greater is a multiple of the less when it is measured by the less.

Definition V.3. A ratio is a sort of relation in respect of size between two magnitudes
of the same kind.

Definition V.4. Magnitudes are said to have a ratio to one another which can, when
multiplied, exceed one another.

Definition V.5. Magnitudes are said to be in the same ratio, the first to the second and
the third to the fourth, when, if any equimultiples whatever are taken of the first and
third, and any equimultiples whatever of the second and fourth, the former equimultiples
alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively
taken in corresponding order.

Definition V.6. Let magnitudes which have the same ratio be called proportional.

//

These definitions are quite obscure so let me try to express them in modern language.

Modern Explanation of Definitions V.1–V.6.

Definition V.1 refers to magnitudes. Euclid leaves this term undefined, but the idea is that a
magnitude is anything that has “size” such as length, angle, area or volume. Magnitudes are
very explicitly not numbers but they can potentially be measured by numbers. Magnitudes
of the same kind can be “added” by sticking them together. For example, we can add line
segments and angles as follows:
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In general, however, it makes no sense to add magnitudes of different kinds. Given a
magnitude X and a whole number n then we can add n identity copies of X together. In this
case we use the notation

n ¨X “ X `X ` ¨ ¨ ¨ `X
loooooooooomoooooooooon

n times

.

Thus, in some sense, is is possible to “multiply” a magnitude (which is not a number) by
a whole number. However, two magnitudes can not be multiplied together, even if
they have the same kind.42

Now consider two magnitudes X and Y of the same kind and a whole number n. If Y can be
decomposed into n identical copies of X then we will write

n ¨X “ Y.

In this case Euclid says that X is a part of Y and Y is a multiple of Y . We could also think
of X as some unit of measurement, in which case Euclid says that Y is measured by X. This
explains Definitions V.1 and V.2.

Next Euclid wants to compare magnitudes. If X and Y are magnitudes of the same kind
then I will write X Ă Y to indicase that X is fully contained inside Y . Euclid says that the
magnitudes X and Y have a ratio if there exist whole numbers m and n such that

m ¨X Ą Y and X Ă n ¨ Y,

that is, if X fits inside some number of copies of Y and Y fits inside some number of copies
of X.43 If X and Y “have a ratio” then I will denote this ratio by

X : Y

and I will call it the ratio of X to Y . This ratio X : Y is very explicitly not a number.
However, in the special case of commensurable line segments with m ¨ X “ n ¨ Y then it is

42In Euclid the product of two line segments (which have length) is a rectangle (which has area), but the
product of two general magnitudes (for example, the product of two angles) has no meaning.

43Euclid doesn’t say whether every pair of magnitudes (of the same kind) “has a ratio”. This assumption
was explicitly made by Archimedes so it is often called the axiom of Archimedes.
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correct to think of X : Y as the same as the ratio n : m of whole numbers. In modern language
we might justify this idea by thinking of the ratio X : Y as a “fraction X{Y ” and then we
might perform “cross-multplication”:

m ¨X “ n ¨ Y ðñ “
X

Y
“

n

m
”.

However, we have to be careful with this because Euclid had no such concept of “fractions”.
For incommensurable line segments X and Y (such as the side and diagonal of a square)
their ratio X : Y is an abstract entity with no obvious relationship to whole numbers. This
completes the explanation of Definitions V.3 and V.4.

Ratios of magnitudes (of the same kind) are not numbers; they can not be added or mul-
tiplied together. However, Euclid does need to say when two ratios are equal. This is the
subject of Definitions V.5 and V.6. If X1 : Y1 and X2 : Y2 are commensurable ratios, i.e.,
if there exist whole numbers m1,m2, n1, n2 such that m1 ¨X1 “ n1 ¨ Y and m2 ¨X2 “ n2 ¨ Y2,
then Euclid defines equality of ratios as follows:

X1 : Y1 “ X2 : Y2 ðñ n1 : m1 “ n2 : m2 ðñ m1n2 “ m2n1.

That is, the equality of commensurable ratios is defined by a certain equality of whole numbers.
However, if X1 : Y1 and X2 : Y2 are incommensurable ratios then it is harder to say when
they are equal. In this case Definition V.5 says that ratios X1 : Y1 and X2 : Y2 are equal if
for all whole numbers m and n the following logical equivalences hold:

m ¨X1 Ă n ¨ Y1 ðñ m ¨X2 Ă n ¨ Y2
m ¨X1 Ą n ¨ Y1 ðñ m ¨X2 Ą n ¨ Y2

That’s pretty confusing so let me translate it into today’s language. I will temporatily think
of a ratio X : Y as a “fraction X{Y ” and I will temporarily think of the relation m ¨X Ă n ¨Y
as an “inequality of fractions X{Y ă n{m” by using “cross-multiplication”. In this language,
we can say that the two ratios X1 : Y1 and X2 : Y2 are equal precisely if there do not exist
whole numbers m and n such that

X1

Y1
ă

n

m
ă
X2

Y2
or

X1

Y1
ą

n

m
ą
X2

Y2
.

This definition is subtle because it involves the idea of “infinity”: in order to check the equality
of two ratios we need to show that infinitely many whole numbers satisfy a certain
property. But this difficulty is unavoidable when dealing with incommensurables; in fact,
Euclid’s Definition V.5 has never really been improved on. The modern version was stated by
Richard Dedekind (1813–1916) in his pamphlet on Continuity and Irrational Numbers (1872).
Dedekind adapted Definition V.5 when he defined a “real number” (you can think of this as
any point on the number line) as “cut” (German: Schnitt) that divides all of the rational
numbers into “those on the left” and “those on the right” of the cut:
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A consequence of this definition is that two real numbers are equal precisely when there
is no rational number between them, because then they define the same cut. Thus we
have the following dictionary between ancient Greek and modern mathematics:

Euclid (Eudoxus) Dedekind

ratio real number
commensurable ratio rational number

incommensurable ratio irrational number

The big difference between Euclid and Dedekind is that Dedekind viewed Euclid’s “ratios” as
“numbers” that can be added/subtracted and multiplied/divided, whereas Euclid viewed the
“ratios” only as comparisons between magnitudes; not as magnitudes in themselves.

Finally, Definition V.6 uses the word proportional (Greek: anologon) to refer to ratios that
are equal in the sense of Definition V.5. This is why the subject of Book V is often referred
to as Eudoxus’ theory of proportions. //

These six definitions are the heart of Book V. The rest of the definitions and propositions are
mostly boring; they just show that obvious properties of commensurable ratios, such as

X1 : Y1 “ X2 : Y2 ðñ X1 : X2 “ Y1 : Y2,

are still true for incommensurable ratios. Given the fact that the Babylonians could approxi-
mate

?
2 to five decimal places in 1700 BC, it might seem that Eudoxus’ theory of proportion

is unnecessarily abstract. However, we have to recall that the goal of Euclid’s Elements is
to rigorously prove the elementary facts of geometry, and from this point of view Eudoxus’
theory is completely necessary.

Indeed, without the theory of proportion in Book V, Euclid couldn’t even state the basic
fact about proportionality of similar triangles. This is why he had to postpone the theory of
similarity until Book VI. For example, here is the official statement of Proposition VI.4:
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Consider two triangles with side lengths a, b, c and a1, b1, c1. If the corresponding
angles are equal then the corresponding side lengths are proportional as follows:

a : a1 “ b : b1 “ c : c1.

Since most interesting triangles have incommensurable side lengths, we cannot even state this
theorem without invoking the subtle Definition V.5. Most high schools teach the subject of
similar triangles but they just skip over Book V and rely on the students’ intuition about
continuity and “real numbers”.

The early users of the infinitesimal calculus (invented in the 1660s by Leibniz and Newton)
also relied on their intuition. It wasn’t until the 1800s that a rigorous theory of “real analysis”
was developed that could finally bring the “applied mathematics” of Babylonian and Egyptian
measurement together with the “pure mathematics” of Greek geometry. In this chapter we
won’t make it all the way to modern analysis but we will discuss some of the key developments
along the way.

3.3 Archimedes and the Existence of π

We have seen that the Greeks before Euclid (primarily Eudoxus) developed an elaborate and
abstract theory of proportion in order to deal with incommensurable ratios between geometric
magnitudes. The theory worked well for measuring the lengths of straight line segments, and
it was also successful for measuring the areas of some curved regions. However, Eudoxus’
method completely failed to solve the following two problems:

1. Measure the length of the arc of a circle.

2. Measure the length of a general curved path.

The first of these is the problem of trigonometry. The Greeks before Euclid made very little
progress on this problem. In fact, Aristotle (c. 384–322 BC) in his Physics explicitly stated
that it is impossible to compare straight line motion with motion in a circle:

The fact remains that if the motions are comparable, there will be a straight line
equal to a circle. But the lines are not comparable; so neither are the motions.

Some progress on the problem was made by the post-Euclidean Hellnistic mathematicians
Archimedes and Ptolemy. Further development occurred in India and the Islamic world and
then the subject returned to Europe during the Renaissance, but the modern form of the
subject didn’t emerge until the development of Calculus in the 17th century. The word
trigonometria (literally “triangle measurement”) was coined by Bartholomeo Pitiscus in 1595.
The modern notation for the subject (in terms of sine, cosine, tangent, etc.) was finally
standardized by Leonhard Euler in his textbook Introductio in analysin infinitorum (1748)
(Introduction to Analysis of the Infinite).
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From the above discussion you might get the sense that trigonometry is part of Calculus, but
this is not so. The subject can be developed in an elementary geometric way; it just happens
that ideas from Calculus make the subject easier and more coherent. The second problem
stated above, however, is completely impossible without the language of Calculus.

In this section I will show how the subject of trigonometry emerged from the following hard
problem:

measure the circumference of a circle in terms of its diameter.

Let C and d denote the circumference and diameter of a given circle. In modern terms we
denote the ratio C{d by the symbol π. We know that this is an “irrational number” which can
be approximated by a decimal expansion π “ 3.14159 ¨ ¨ ¨ .44 But how do we know that the
“number” π even exists? When we use the symbol π we are implicitly assuming the following
theorem.

Theorem (Existence of π). Consider two circles with circumferences C and C 1 and with
diameters d and d1. Then the ratio of circumference to diameter is the same for both circles:

C

d
“
C 1

d1
.

In modern terms we think of this common ratio as a number and we call it π. //

It is surprisingly difficult to track down the history of this theorem.45 The empirical truth of
the statement must have been known to all ancient cilivizations. Indeed, the ancient Egyptian
and Babylonian mathematicians were using reasonable approximations to π before 1800 BC.
Therefore it is certain that the ancient Greeks knew of the fact C{d “ C 1{d1, and yet no
mention of this result appears in Euclid’s Elements. The absence of π in Euclid’s Elements
is puzzling to modern readers; I surmize that it was left out because Euclid was unable to
prove the statement C{d “ C 1{d1. After all, it would have been out of character for Euclid
to provide partial information on a ratio whose existence he could not prove.

My belief that Euclid knew but could not prove that C{d “ C 1{d1 is supported by the following
theorem that he did prove.

Proposition XII.2. Circles are to one another as the squares on their diameters. //

In modern terms: Consider two circles with areas A and A1 and with diameters d and d1. Then
the ratio of area to diameter squared is the same for both circles:

A

d2
“

A1

pd1q2
.

44The use of the symbol π for this purpose was popularized by Leonhard Euler.
45This section borrows ideas from David Richeson’s article Circular Reasoning: Who First Proved That C{d

is a Constant?
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Proof. The magnitudes A and d2 both represent areas so they can be compared via Eudoxus’
theory in Book V. The goal is to show that

A : d2 “ A1 : pd1q2,

where the equality of ratios is understood in the sense of Definition V.5. I will present a sketch
of the proof in modern language.

First of all, Euclid had shown the following result in Proposition VI.19. Consider two similar
triangles with side lengths a, b, c and a1, b1, c1, respectively, and construct the squares on their
sides:

If the areas of the triangles are T and T 1, then we have

T : T 1 “ a2 : pa1q2 “ b2 : pb1q2 “ c2 : pc1q2.

Now consider a regular 2n-gon inscribed in each circle. Here is the picture for n “ 3:
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Let Pn and P 1n be the areas of the two 2n-gons and decompose each into 2n triangles as in the
picture. Let T and T 1 denote the areas of these triangles, as in the figure. Since the triangles
have the same angles we can use Proposition VI.19 from above and an obvious property of
ratios [Euclid’s Proposition V.15 says that X : Y “ m ¨X : m ¨ Y for any m] to show that

Pn : P 1n “ 2n ¨ T : 2n ¨ T 1

“ T : T 1 Prop V.15

“ pd{2q2 : pd1{2q2 Prop VI.19

“ d2 : pd1q2. Prop V.15

For the rest of the proof, the idea is to let “n approach 8” and observe that “the ratio of
polygon areas Pn : P 1n approaches the ratio of circle areas A : A1 ”. Since we know that
Pn : P 1n “ d2 : pd1q2 for any n, it should follow from this that A : A1 “ d2 : pd1q2 and hence
we obtain A : d2 “ A1 : pd1q2 as desired. [The obvious fact that X1 : Y1 “ X2 : Y2 implies
X1 : X2 “ Y1 : Y2 is Euclid’s Corollary V.7.]

If you have taken Calculus then you have probably seen this kind of “continuity argument”
used in a non-rigorous way. To make the argument rigorous Euclid needed to refer back to
Eudoxus’ Definition V.5 on the proportionality of ratios. Here’s how he did it.

First he observed that the difference pA ´ Pnq of the circle area A minus the 2n-gon area
Pn can be made as small as we want by taking n large enough. For example, consider the
following picture of the polygons P2 and P3 inscribed in the circle with area A:
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The differences pA´ P2q and pA´ P3q are contained inside the four shaded rectangles shown
and in fact it suffices to look at just half of one of these rectangles. Here is a zoomed-in version
of the relevant rectangle with the areas S and T of a sector and a triangle shaded:

In the general case there will be 2n`1 such rectangles, thus we can express the area differences
pA´ Pn`1q and pA´ Pnq by the following formulas:

pA´ Pn`1q “ 2n`1 ¨ S and pA´ Pnq “ 2n`1 ¨ pS ` T q.

Now observe from the picture that we have S ă T because the sector S is completely contained
in the upper triangle which is congruent to T (and hence has the same area as T ). It follows
from this that

pA´ Pnq “ 2n`1 ¨ pS ` T q

ą 2n`1 ¨ pS ` Sq because T ą S
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“ 2 ¨ 2n`1 ¨ S

“ 2 ¨ pA´ Pn`1q

and hence

2 ¨ pA´ Pn`1q ă pA´ Pnq

pA´ Pn`1q ă pA´ Pnq{2.

In other words, if we increase n by 1 then the new difference pA ´ Pn`1q is less than half of
the previous difference pA ´ Pnq. It now follows from Euclid’s Proposition X.1 that we can
make the difference pA´ Pnq smaller than any fixed area by taking n sufficiently large.

To complete the proof, Euclid assumes that there exists some area X with the property

X : A1 “ d2 : pd1q2

and then he uses the method of double contradiction to show that this area must satisfy
X “ A. For the first contradiction, assume that X ă A. Then in modern notation we can
write pA´Xq ą 0 and from the previous result we can choose some n large enough so that

pA´Xq ą pA´ Pnq ą 0.

From this it follows that Pn ą X. But we also know that A1 ą P 1n because the polygon is
contained completely inside the circle. Then from an obvious property of ratios [Proposition
V.8 says that if X ă Y then we have X : Z ă Y : Z and Z : X ą Z : Y for all Z] and from
our previous result Pn : P 1n “ d2 : pd1q2 we see that

d2 : pd1q2 “ Pn : P 1n

ą X : P 1n because Pn ą X

ą X : A1 because A1 ą P 1n

“ d2 : pd1q2.

This is a contradiction because it says that the ratio d2 : pd1q2 is strictly greater than itself.
Since the assumption X ă A leads to a contradiction, it must be that X is not smaller
than A. Euclid then gives a similar proof by contradiction to show that X is not greater
than A. [That’s why it’s called the method of “double contradiction”.] Finally, since X
is not less than A and not greater than A, it follows that X “ A and we conclude that
A : A1 “ X : A1 “ d2 : pd1q2 as desired.

Let’s think about this result in modern terms. If we write d “ 2r and d1 “ 2r1 where r and r1

are the radii of the two circles, then the theorem says that

A{d2 “ A1{pd1q2

A{p4r2q “ A1{p4pr1q2q

A{r2 “ A1{pr1q2.

75



Then since the ratio A{r2 is the same for any two circles we can give it a special name. Let’s
call it

π1 “
A

r2
.

In other words, we have the formula A “ π1r2 for the area of a circle. These days we all know
that A “ πr2 so it must be the case that the constant ratio π1 “ A{r2 defined in terms of
areas is equal to the constant ratio π “ C{d defined in terms of lengths, but Euclid makes no
mention of this. It is possible that Euclid knew the formula π “ π1 as an empirical fact but
that he left it out of the Elements because he couldn’t prove it rigorously. It is also possible46

that the fact π1 “ π was completely unknown in Euclid’s time.

The absence of π in the Elements leaves us with two questions:

(1) Who first stated and proved that C{d “ π “ π1 “ A{r2 for all circles?

(2) Who first stated and proved that π “ C{d is a constant for all circles?

The answer to the first question is: Archimedes. The answer to the second question is:
probably Archimedes, but it’s not explicitly written in any of his surviving works. The earliest
known explicit statement and proof of (2) appears in a 9th century work called Kitab fi ma’rifat
misahat al-ashkal al-basita wa al-kuriya (c. 850 AD) (The Measurement of Plane and Spherical
Figures). It was written by the three Banu Musa brothers who were mathematicians and
astronomers working at the House of Widsom in Baghdad.47

Their book was largely a commentary on Archimedes’ work, which had recently been translated
into Arabic by Thabit ibn Qurra (836–901 AD). In particular, they derived (2) as a direct
consequence of Archimedes’ theorem (1) and Euclid’s Proposition XII.2.

Proof that π Exists. Archimedes proved48 that for any circle we have

C

d
“
A

r2
,

where C, d,A, r are the circumference, diameter, area and radius, respectively. Now recall
from Euclid’s Proposition XII.2 above that for any two circles we have

A

r2
“

A1

pr1q2
.

By putting these two equations together, it follows that for any two circles we have

C

d
“
A

r2
“

A1

pr1q2
“
C 1

d1
,

and hence the ratio C{d is a universal constant.

46but I find it unlikely
47The House of Wisdom was the center of mathematical knowledge during the Islamic Golden Age, just as

the Library of Alexandria was the center of mathematics during the Hellenistic period.
48see below for the proof
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To complete the proof that π exists, it remains to show that we have C{d “ A{r2. This was
the great contribution of Archimedes, to which we now turn.

Archimedes of Syracuse (c. 287–212 BC) is regarded as the greatest mathematician of antiq-
uity, and possibly the greatest mathematician of all time. He was born in Syracuse, Sicily,
approximately two generations after Euclid. He studied at the Library of Alexandria so he
would have been intimately familiary with Euclid’s work. But then he chose to move back to
Sicily where he spent the rest of his life. Unlike the pure geometers of the Euclidean tradition,
Archimedes was deeply interested in applications of his work to practical problems. He pio-
neered the use of screws, pulleys and levers, and he was renowned for the military technology
that he developed for King Hiero II of Syracuse. His greatest discovery in physics is called
Archimedes’ princple, which he described in his work On Floating Bodies as follows:

Any object, wholly or partially immersed in a fluid, is buoyed up by a force equal
to the weight of the fluid displaced by the object.

Legend says that he discovered this principle while in the bath and that he was so pleased
with the discovery that he ran naked through the streets of Syracuse shouting “Eureka!” (I
have found it!).

Archimedes’ most famous mathematical works are the Measurement of a Circle and On the
Sphere and Cylinder, both written around 225 BC. Scholars disagree on which came first, so
they are usually regarded as a single work. The great achievement of this work is that it
completely solves the measurement problem for spheres and circles, something pre-Euclidean
mathematicians had failed to do. Archimdes’ theorem on the area of a circle is so famous that
we can hardly imagine a time before it was known.

Theorem (Measurement of a Circle, Proposition 1). The area of any circle is equal to
a right-angled triangle in which one of the sides about the right angle is equal to the radius,
and the other to the circumference, of the circle.

In modern terms, consider a circle with circumference C and radius r. Then the area A of
the circle is equal to the area of a right triangle with side lengths C and r as in the following
picture:
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Archimedes realized that it was likely impossible to prove this theorem on the basis of Euclid’s
Elements, but he didn’t let that hold him back. Perhaps because of his geographic distance
from Alexandria he was bold enough to suggest new axioms on top of Euclid’s 5 Postulates
and 5 Common Notions. He stated these axioms explicitly in On the Sphere and Cylinder and
he used them implicitly in Measurement of a Circle. Here are the two axioms that are needed
for the proof of Archimedes’ Proposition 1.

Archimedes Postulate 1: That among lines which have the same limits the straight line is
the smallest.

In modern terms, this axioms says that a straight line is the shortest path between two
points.49 The next axiom says that paths become shorter as they approach a straight line.

Archimedes Postulate 2: And, among the other lines (if, being in a plane, they have the
same limits), that such lines are unequal, when they are both concave in the same direction
and either one of them is whole contained by the other and by the straight line having the
same limits as itself, or some is contained, and some it has as common, and the contained is
smaller.

49In other words, straight lines are geodesic paths in Euclidean geometry. We already assumed this fact in
Section 2.4.
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In modern terms, we have two concave paths on the same side of a straight line segment. (The
term concave means that the paths don’t wobble back and forth.) If one curve is completely
between the line and the other curve, then this path is shorter. The following picture illustrates
why the “concave” condition is necessary:

//

These are reasonable axioms because they are self-evidently true.50 Both of these facts can
be proved from Euclid’s Elements when the paths are piecewise-linear, i.e., composed of line
segments glued together. Archimedes’ axioms are only necessary when dealing with curved
paths. We will apply them to arcs of a circle.

Proof of Archimedes’ Proposition 1. Consider a circle and denote its area, circumference
and radius by A, C and r, respectively. The goal is to show that

A “
1

2
Cr.

For this purpose Archimedes considered two regular 2n-gons, one inscribed in the circle and
one circumscribed around it. Here is a picture for n “ 3:

50At least for short paths in a locally-flat surface. For long paths in a curved surface, who knows?
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We will denote the inner 2n-gon by Pn and the outer 2n-gon by Qn. Now we want to relate
Pn and Qn to the area and circumference of the circle. Here is a zoomed-in picture of 1{2n-th
of the circle (the angle is exaggerated to make it more readable):

In this picture I have labeled the side lengths of the polygons Pn and Qn by sn and tn,
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respectively, so that the perimeters are given by

perimpPnq “ 2n ¨ sn and perimpQnq “ 2n ¨ tn.

Furthermore, note that each of Pn and Qn is composed of 2n identical triangles. Thus by
using the formula

parea of a triangleq “
1

2
¨ pbaseqpheightq

we see that the areas of the polygons Pn and Qn are given by

areapPnq “ 2n ¨ 12hnsn

areapPnq “
1
2hnp2

n ¨ snq

areapPnq “
1
2hn ¨ perimpPnq

and

areapQnq “ 2n ¨ 12rtn

areapQnq “
1
2rp2

n ¨ tnq

areapQnq “
1
2r ¨ perimpQnq

where hn is the “height” shown in the diagram.

The rest of the proof will proceed by a double contradiction, exactly as in Euclid’s Propo-
sition XII.2. That is, we will show that each of the assumptions A ă 1

2Cr and A ą 1
2Cr

leads to a contradiction, and so it must be the case that A “ 1
2Cr as desired. To obtain the

contradictions, however, we will first need to use Archimedes’ Postulates 1 and 2 to prove the
following reasonable fact:

perimpPnq ă C ă perimpQnq.

To prove these inequalities, let cn denote the length of 1{2n-th of the circumference and
consider the following pictures:

Then applying Postulate 1 to the picture on the left gives

sn ă cn Postulate 1

2n ¨ sn ă 2n ¨ cn
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perimpPnq ă C

and applying Postulate 2 to the picture on the right gives

cn ă tn{2` tn{2 Postulate 2

cn ă tn

2n ¨ cn ă 2n ¨ tn

C ă perimpQnq

as desired.

Finally, let us assume for contradiction that A ą 1
2Cr, so that

ˆ

A´
1

2
Cr

˙

ą 0.

It was shown in the proof of Euclid’s Proposition XII.2 above that by choosing n large enough
we can make the area A´ areapPnq smaller than any given area. In particular, we can choose
some n such that

ˆ

A´
1

2
Cr

˙

ą pA´ areapPnqq ą 0,

and it follows from this that
1

2
Cr ă areapPnq. (˚)

On the other hand, we showed above that areapPnq “
1
2hn ¨ perimpPnq and perimpPnq ă C.

Since hn and r are two sides of a triangle it also follows from Euclid’s Proposition I.20 that
hn ă r. Putting these facts together gives

areapPnq “
1

2
hn ¨ perimpPnq ă

1

2
hnC ă

1

2
rC,

which contradicts the inequality (˚). We conclude from this contradiction that the inequality
A ą 1

2Cr is impossible. A similar argument (omitted) shows that the inequality A ă 1
2Cr is

also impossible. Therefore it must be the case that A “ 1
2Cr.

This completes Archimedes’ proof of the immortal formula A “ πr2, where π is defined as the
ratio C{d. Putting together Archimedes’ Proposition 1 and Euclid’s Proposition XII.2 then
yields a proof that C{d “ C 1{d1 for all circles, and hence the universal constant π exists. For
whatever reason, Archimedes did not include a statement of this fact in the Measurement of a
Circle, however he did use the same method of proof (by inscribing and circumscribing regular
polygons) to compute the following extremely accurate bounds on the value of π.

Theorem (Measurement of the Circle, Proposition 3). The ratio of the circumference
of any circle to its diameter is less than 31

7 but greater than 310
71 . In modern language:

223{71 ă C{d ă 22{7
3.1407 ă C{d ă 3.1429
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This proposition indicates that Archimedes was aware of the existence of π. It is possible that
he stated this explicitly in some work that was lost, or perhaps he felt that the result was
not important enough to write down. It is also possible that the prejudice against comparing
straight lines and curved paths (as shown in the above quote from Aristotle) was too strong
to allow Archimedes to claim a rigorous theorem about the ratio C{d.

Indeed, this prejudice persisted for thousands of years. In the revolutionary work Géométrie
(1637) in which René Descartes introduced the idea of (Des)cartesian coordinates into geom-
etry, he also made the following surprising statement:

Geometry should not include lines that are like strings, in that they are sometimes
straight and sometimes curved, since the ratios between straight and curved lines
are not known, and I believe cannot be discovered by human minds, and therefore
no conclusion based upon such ratios can be accepted as rigorous and exact.51

3.4 Trigonometry is Hard

With hindsight we can view the theorem on the existence of π as an important step towards
the modern subject of trigonometry. I mentioned above that the word trigonometria (coined
by Bartholomeo Pitiscus in 1595) literally means “triangle measurement”, but it is mathemat-
ically and historically more correct to think of the subject of trigonometry in terms of “circle
measurement”. In particular, the existence of π gives us a clever way to measure angles.

Idea of Radian Measure. Consider a fixed angle and draw any two concentric cirles with
radii r and r1 centered on the angle. Now let c and c1 denote the lengths of the circular arcs
cut out by the angle, as in the following picture:

51This quote and the Archimedes quote are taken from Richeson’s Circular Reasonong: Who First Proved
that C{d is a Constant?
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As a consequence of the theorem on the existence of π we have

c

r
“
c1

r1
.

The idea of radian measure is to use this common ratio c{r “ c1{r1 as a measure of the
angle. In the extreme case that the angle fills up the whole circle then c is equal to the whole
circumference C “ 2πr and hence the angle has measure

C

r
“

2πr

r
“ 2π.

From this we see that measure of the angle can take any value between 0 and 2π. Conversely,
for any number 0 ď θ ď 2π we see that the angle of radian measure θ cuts out an arc length
of θr from the circle of radius r:
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In other words, the circular arc cut out by the angle of radian measure θ has arc length equal
to θ radii. This explains the terminology. //

This notation illustrates that

the problem of measuring an angle is equivalent to the problem of
measuring the length of a circular arc.

And it is based on the fact that we know the relationship between the full circumference and
the radius. But the radius is not the only straight line segment associated to a given angle/arc.
The fundamental problem of trigonometry is to find an explicit relationship between a given
angle/arc and the chord of the circle that it subtends.

The Fundamental Problem of Trigonometry. Consider a chord in a circle of radius r.
Suppose that the chord has length s and subtends an angle θ as in the following picture:
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Consider the isoceles triangle with side lengths r, r, s. Because of the side-angle-side criterion
for congruence of triangles (which is Euclid’s Proposition I.4) we know that the chord length
s is uniquely determined by the radius r and the angle θ. In other words, we can think of s
as a function of r and θ:

s “ chordpr, θq.

The fundamental problem of trigonometry is to compute this function. That is, for a fixed
radius r, the problem is to compute s from θ or to compute θ from s. //

There are certain specific values of θ and s for which we know that answer. For example, if
θ “ 0 or θ “ 2π then the length of the chord is zero:

chordpr, 0q “ 0 and chordpr, 2πq “ 0.

In fact, we can restrict our attention to angles less than a straight line (0 ď θ ď π) since for
any angle θ we have

chordpr, θq “ chordpr, 2π ´ θq.

Proof: The triangles in the following picture are congruent by the side-angle-side criterion:

We also know that the angle θ “ p2πq{6 “ π{3 corresponds to the chord length s “ r:

chordpr, π{3q “ r.

Proof: Consider a regular hexagon inscribed in the circle of radius r:
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Since the hexagon is built out of six equilateral triangles we see that each of the sides of the
hexagon has length r.

[Remark: Using Archimedes’ Postulate 1 (that the straight line is the shortest distance between
two points) this argument also shows that

plength of chordq ă plength of arcq

s ă pπ{3qr

r ă pπ{3qr

1 ă π{3

3 ă π,

which gives us a crude lower bound for π.]

Finally, let me note that the radius is mostly irrelevant to the chord function. Indeed, if we
can compute chord lengths for the “unit circle” of radius 1 then we obtain the chord lengths
for any circle of radius r:

chordpr, θq “ r ¨ chordp1, θq.

Proof: Consider a fixed angle of θ in concentric circles of radius 1 and r. This defines two
isoceles triangles with interior angles θ, α, α and θ, β, β as in the following picture:
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The fact that the triangles are isoceles comes from the Pons Asinorum (Euclid’s Proposition
I.5). Then from the fact that the interior angles sum to 180˝ (or π radius) we conclude that

θ ` α` α “ θ ` β ` β

2α “ 2β

α “ β.

In other words, the two triangles are similar (they have the same angles). Finally, it follows
from Euclid’s Proposition VI.4 (proportionality of similar triangles) that

1

r
“

chordp1, θq

chordpr, θq

chordpr, θq “ r ¨ chordp1, θq

as desired.

The pure geometers weren’t able to make much headway in the computation of chord length,
except for a few special angles such as π, π{2, π{3, π{4, π{5 and π{6.52 However, the as-
tronomers didn’t have the luxury of waiting for rigorous theorems. Indeed, astronomers must
do all of their computations in terms of angles because straight line distances in the heav-
ens are inaccessible to us. The astronomers therefore had to perform many trigonometric
computations in their work and in the absence of exact formulas they were happy to accept
approximate values.

52The angle π{7 was too difficult.

88



The most famous astronomer of the ancient world was Claudius Ptolemy (c. 100–170 AD), who
lived in Alexandria approximately 450 years after Euclid. In Chapter 1 we discussed Ptolemy’s
work the Almagest which provided the first accurate quantitative model of the universe. In
order to obtain this accuracy, Ptolemy needed to be able to compute the approximate chord
length for an arbitrary angle, and so Book I of his XIII volume work is devoted to compiling
a table of chord lengths. To be specific, Ptolemy fixed the radius r “ 6053 and then he
computed an approximate value of chordp60, θq for each angle θ between 0˝ and 180˝, measured
in increments of p1{2q˝.

The commentator Theon of Alexandria (c. 335–405 AD) tells us that earlier tables of chords
were compiled by Hipparchus and Menelaus, but Ptolemy’s table of chords is the earliest
example that survives. The table itself appears in Book I Chapter 11 of the Almagest and
Chapter 10 presents the geometric theorems that were used in preparation of the table. Most
of the ideas in Chapter 10 come from the Elements but there is one remarkably beautiful
theorem that is original to the Almagest and has become known as “Ptolemy’s Theorem”.

Ptolemy’s Theorem. Consider any four points A,B,C,D on the boundary of a circle:

Then the six distances between these points are related by the equation

AC ¨BD “ AB ¨ CD `AD ¨BD.

//

The proof of the theorem is not important (I’m sure you could come up with a proof if you tried
hard enough). The point is that Ptolemy’s Theorem provides a simple algebraic relationship

53We saw above that the radius is not mathematically important; presumably he chose this radius for com-
putational convenience. The fact that Ptolemy used a base-60 system of angle measurement comes from the
Babylonian tradition. The ancient Babylonians were talented astronomers who had compiled extensive tables
of observations. The Babylonian tables were translated to Greek after the conquest of Alexander the Great in
331 BC and had a strong influence on the Hellenistic astronomers of Alexandria.
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between various chord lengths in a circle. In particular, Ptolemy used his theorem to derive
formulas relating the chord lengths when angles are added and subtracted.

Ptolemy’s Angle Sum and Difference Formulas. Consider angles θ1 ą θ2 in a circle of
radius r and define the following chord lengths:

s1 :“ chordpr, θ1q

s2 :“ chordpr, θ2q

s1`2 :“ chordpr, θ1 ` θ2q

s1´2 :“ chordpr, θ1 ´ θ2q.

Then we have the following formulas expressing s1`2 and s1´2 in terms of s1 and s2:

s1`2 “

ˆ

s1 ¨
b

4r2 ´ s22 ` s2 ¨
b

4r2 ´ s21

˙

{ 2r

s1´2 “

ˆ

s1 ¨
b

4r2 ´ s22 ´ s2 ¨
b

4r2 ´ s21

˙

, 2r

Proof: First let us recall Thales’ Theorem from Chapter 1. Consider a triangle ABC inscribed
in a circle of radius r. If the segment AC is a diameter of the circle then it follows that =ABC
is a right angle:

Furthermore, if we denote the side lengths by s :“ BC and c :“ AB then it follows from the
Pythagorean Theorem that

s2 ` c2 “ p2rq2 “ 4r2.

Observe that if s “ chordpr, θq is the chord length corresponding to an angle θ then we can
think of c “ chordpr, π ´ θq as the chord length of the complementary angle π ´ θ.54

54I have chosen the letters “s” and “c” to stand for “sine” and “cosine”. See the Epilogue for more details.
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Now let us use Ptolemy’s Theorem to prove the angle sum and difference formulas. In the
following computations we will denote the complementary chord lengths by

c1 :“ chordpr, π ´ θ1q “
b

4r2 ´ s21,

c2 :“ chordpr, π ´ θ1q “
b

4r2 ´ s22.

To compute s1`2 “ chordpr, θ1`θ2q we consider the following inscribed quadrilateral in which
the segment AC is a diameter:

Then by applying Ptolemy’s Theorem we obtain

AC ¨BD “ AB ¨ CD `AD ¨BD

p2rq ¨ s1`2 “ s2 ¨ c1 ` s1 ¨ c2

p2rq ¨ s1`2 “ s2 ¨
b

4r2 ´ s21 ` s1

b

4r2 ´ s22

as desired. Finally, to compute s1´2 “ chordpr, θ1 ´ θ2q we consider the following inscribed
quadrilateral in which the segment AD is a diameter:
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Then by applying Ptolemy’s Theorem we obtain

AC ¨BD “ AB ¨ CD `AD ¨BD

s1 ¨ c2 “ s2 ¨ c1 ` p2rq ¨ s1´2

s1 ¨ c2 ´ s2 ¨ c1 “ p2rq ¨ s1´2

s1 ¨
b

4r2 ´ s22 ´ s2 ¨
b

4r2 ´ s21 “ p2rq ¨ s1´2

as desired.

Recall from Section 3.1 that the Babylonians had an efficient computational method for ap-
proximating square roots. Thus, by starting from the chord lengths of a few special angles,
Ptolemy was able to use these general rules to compute the approximate length of chordpr, θq
for each half-degree angle between 0˝ and 180˝. //

Nevertheless, exact formulas for the chord length remained difficult to find. To illustrate
the difficulty of this problem, let us return to the classical question of constructing regular
polygons.

Question: For which numbers n can a regular n-gon be constructed with straightedge and
compass?

Suppose that we are given a circle of radius r. Then the side length of an inscribed n-gon is just
the chord corresponding to the angle 2π{n, which is 1{n-th of the full circle. For convenience
we will denote this chord length by

sn :“ chordpr, 2π{nq “ r ¨ chordp1, 2π{nq.
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Now it is clear that the regular n-gon is constructible if and only if we can construct a line
segment of length sn. The first few values are easy to compute:

s1 “ 0

s2 “ 2 ¨ r

s3 “
?

3 ¨ r

s4 “
?

2 ¨ r

s6 “ r

If r is constructible then we know that
?

2 ¨ r is constructible because it is just the diagonal of
a square with side length r. Furthermore, it is not too difficult to see that

?
3 is constructible.

In general, we have the following theorem.

Constructible Line Segments. Suppose we are given line segments of length α and β.
Then it is possible to construct line segments of length

α` β, α´ β (if α ą β), α ¨ β and α{β

using only a straightedge and compass. Furthermore, if we are given a line segment of length
α then we can construct a line segment of length

?
α. //

Proof: The fact that α` β and α´ β are constructible is immediate and the fact that α ¨ β
and α{β are constructible is not so interesting. So I’ll just prove that

?
α is constructible.

To do this, we begin with a line segment AB of length α and then we extend the line segment
AB to C so that BC has length 1. Now we construct the circle on the diameter AC and
extend a perpendicular line from B to D as in the following figure:

I didn’t spell out the details, but you will be happy to believe that all of this was possible using
compass and straightedge. Finally, I claim that the line segment BD (which we constructed)
has length

?
α. To see this, we define the lengths c :“ AD, h :“ BD and s :“ CD as in the

diagram. On the one hand, the Pythagorean Theorem applied to the right triangles ABD
and BCD gives

c2 “ α2 ` h2 and s2 “ 12 ` h2.
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On the other hand, Thales’ Theorem tells us that =ADC is a right angle. Thus we can apply
the Pythagorean Theorem to the right triangle ADC to obtain

pα` 1q2 “ c2 ` s2

α2 ` 2α` 1 “ c2 ` s2

��α
2 ` 2α` �1 “ p��α

2 ` h2q ` p�1` h
2q

2α “ 2h2

α “ h2
?
α “ h

as desired.

We also have the following general result.

Theorem (Doubling a Regular Polygon). If the regular n-gon is constructible then the
regular 2n-gon is constructible. //

Proof: In Chapter 2 we discussed how to perform this construction by bisecting each angle.
Now I’ll give an algebraic proof that the construction exists without saying how to do it.

We assume that the radius r and the line segment of length sn are constructible. Then from
Ptolemy’s Angle Sum Formula with s1 “ s2 “ sn and s1`2 “ s2n we obtain

s2n “
´

sn ¨
a

4r2 ´ s2n ` sn ¨
a

4r2 ´ s2n

¯

{ 2r “
´

sn ¨
a

4r2 ´ s2n

¯

{ r.

Since the operations of addition/subtraction, mutiplication/division and square root extrac-
tion are constructible this formula shows that a line segment of length s2n (and hence a regular
2n-gon) is constructible.

Now assume that we have a circle with constructible radius r. Since whole numbers and square
roots are constructible we conclude that the lengths s3 “

?
3 ¨ r, s4 “

?
3 ¨ r and s6 “ r are

constructible and hence we can construct the regular triangle, square and hexagon inscribed
in our circle. Furthermore, since any regular polygon can be doubled we conclude that the
regular 2k-gon and 2k ¨ 3-gon are constructible for any k.

At this point, we have the following knowledge of constructible polygons:
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n regular n-gon is constructible

3 yes
4 yes
5 ?
6 yes
7 ?
8 yes
9 ?
10 ?

You might object that we already knew explicit constructions for these polygons, so the alge-
braic results above have gained us exactly nothing. That’s true. But we won’t be able to go
any further without algebra. The last big result of the ancient geometers on contructibility of
polygons was to show that the regular pentagon is constructible. Euclid’s Proposition
IV.11 gives an explicit and tedious construction. However, an easier way to prove the exis-
tence of a construction comes from one of the final propositions of the Elements, which gives
an implicit formula for the side length of a regular pentagon.

Proposition XIII.10 (Side Length of a Regular Pentagon). If an equilateral pentagon
is inscribed in a circle, then the square on the side of the pentagon equals the sum of the
squares on the sides of the hexagon and the decagon inscribed in the same circle.

In our notation, this says that
s25 “ s210 ` s

2
6.

//

Proof: Since s6 “ r we want to show that s25 “ s210 ` r
2. So consider a circle of radius r and

cut out a segment with angle α “ 2π{5. By dividing α into four equal angles we obtain the
following diagram (where the angle α is exaggerated to make the diagram more readable):
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Note that we have =OAC “ =OCA “ pπ ´ αq{2 because the triangle 4OAC is isoceles. For
the same reason we know that the three angles labeled by γ are equal to each other. Our first
task is to compute the angle β “ =OBA. On the one hand, since the angles in the triangle
4OAB sum to π we have

β “ π ´
π ´ α

2
´

3α

4
“

2π ´ α

4
.

On the other hand, since α “ 2π{5 we have

5α “ 2π

4α “ 2π ´ α

α “
2π ´ α

4

and it follows that α “ β (even though it doesn’t look that way in my exaggerated diagram).
We conlude that the triangles 4OAB and 4CAO are similar (they have the same angles)
and hence

CA{AO “ OA{AB

s5{r “ r{AB

AB ¨ s5 “ r2. (1)

Next observe that the triangles 4BCD and 4DAC are similar because they are both isoceles
with base angle γ and it follows that

AC{CD “ DC{CB
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s5{s10 “ s10{CB

CB ¨ s5 “ s210.

Finally, by adding equations (1) and (2) we obtain

AB ¨ s5 `BC ¨ s5 “ r2 ` s210

pAB `BCq ¨ s5 “ r2 ` s210

s5 ¨ s5 “ r2 ` s210

s25 “ s210 ` r
2

as desired.

[Remark: It follows from this result and the Pythagorean Theorem that a triangle with side
lengths s10, s6 and s5 has a right angle between the sides s10 and s6. It is interesting that no
such triangle appears in the proof.]

For Euclid it was preferable to state this result in geometric terms but we moderns would like
to have an algebraic formula for s5. We can do this with a bit of High School algebra.

In order to make the notation cleaner we will assume that r “ 1. First note that we obtain
a second equation relating s5 and s10 from Ptolemy’s Angle Sum Formula. By setting θ1 “
θ2 “ 2π{10 so that θ1 ` θ2 “ 2π{5 we obtain

s5 “ s10 ¨
b

4´ s210

s25 “

ˆ

s10 ¨
b

4´ s210

˙2

s25 “ s210
`

4´ s210
˘

.

Then we substitute this expression together with s6 “ r “ 1 into Euclid’s equation to obtain

s25 “ s210 ` s
2
6

s210
`

4´ s210
˘

“ s210 ` 1

4 ¨ s210 ´ ps
2
10q

2 “ s210 ` 1

0 “ 1 ¨ ps210q
2 ´ 3 ¨ s210 ` 1. (3)

We have arrived at a “quadratic equation” for the quantity s210. The Greeks would have re-
garded this as fairly meaningless because it does not have any obvious geometric interpretion.
The modern theory of equations was developed by the mathematician, astronomer and ge-
ographer Al-Khwarizmi (c. 780–850 AD) who worked at the House of Wisdom in Baghdad.
In fact, we take the word “algebra” (Arabic: al-jabr) from the title of his book: al-Kitab
al-mukhtasar fi hisab al-jabr wal-muqabala (c. 830 AD) (The Compendious Book on Calcula-
tion by Completion and Balancing). The point of Al-Khwarizmi’s theory is that we should
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temporarily ignore any geometric meaning contained in the equation (3) and simply proceed
by a mechanical process of computation.55 Today we know this mechanical process as the
quadratic formula, and in the case of equation (3) it tells us that

s210 “
´p´3q ˘

a

p´3q2 ´ 4p1qp1q

2p1q
“

3˘
?

5

2
.

Since the quantity s210 is positive we throw away the negative value of the square root to obtain
s210 “ p3`

?
5q{2 and then we substitute this value back into Euclid’s equation to obtain

s25 “ s210 ` s
2
6

s25 “ p3`
?

5q{2` 1

s25 “ p3`
?

5q{2` 2{2

s25 “ p5`
?

5q{2

s5 “

b

p5`
?

5q{2

chordp1, 2π{5q “

b

p5`
?

5q{2.

Finally, we obtain the chord length for an arbitrary radius r:

s5 “ chordpr, 2π{5q “ r ¨ chordp1, 2π{5q “ r ¨

d

5`
?

5

2
.

Now we see the value of algebra for the study of constructible polygons: The number
b

p5`
?

5q{2
is complicated, but since it is formed from the constructible numbers 2 and 5 via the con-
structible operations of addition/subtraction, addition/multiplication and the extraction of
square roots, we conclude that the regular pentagon is constructible with straight-
edge and compass.

In fact, this formula gives us a recipe for the construction. First we use our square root trick
to construct a line segment of length r ¨ p5`

?
5q:

55It is no surprise that the word “algorithm” is based on the Latin version of Al-Khwarizmi’s name.
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Then we bisect this segment, add r, and bisect it again. Finally, we do the square root trick

a second time to obtain a line segment of length s5 “ r ¨
b

p5`
?

5q{2:

At this point it’s easy to construct the regular pentagon but I won’t bother because nobody
really cares about constructing regular pentagons. I just wanted to illustrate to you that the
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process is highly nontrivial. //

We have seen that the regular n-gon is constructible when n “ 2k, n “ 2k ¨ 3 or n “ 2k ¨ 5
for any k. And this is where human knowledge stood for over two thousand years until 1796
when the young Carl Friedrich Gauss56 proved the shocking result that

the regular 17-gon is contructible!

As you can imagine, he did not actually provide a construction (because no one really cares
about constructing the regular 17-gon) but instead he showed that the side length s17 has a
formula that can be computed in terms of the constructible operations of addition/subtraction,
multiplication/division and extracting square roots. The explicit formula is so long that it
doesn’t even fit on one line:

s17 “
r

4
¨
?

2 ¨

d

17´
?

17´
?

2 ¨

ˆ

?
α`

b

17´
?

17

˙

, where

α “ 34` 6 ¨
?

17`
?

2 ¨
´?

17´ 1
¯

¨

b

17´
?

17´ 8 ¨
?

2 ¨

b

17`
?

17 .

After seeing the compass-and-straightedge construction of s5 you can imagine that the con-
struction of s17, while logically possible, is not practical for a human geometer.57

But why 17 ? Why didn’t Gauss find a construction for the regular 7-gon or 9-gon, which were
both open problems at the time? The reason is that the 7-gon and 9-gon are impossible
to construct with compass and straightedge. After thinking about the problem for
five years, Gauss stated the following result without proof in his Disquisitiones Arithmeticae
(1801). A full proof was supplied by Pierre Wantzel in 1837.

The Gauss-Wantzel Theorem (1796–1837). For any positive integer n, let ϕpnq count
the numbers between 1 and n that share no common factors with n.58 Then the regular n-gon
is constructible with straightedge and compass if and only if ϕpnq is a power of 2. Moreover,
if ϕpnq “ 2k then an algebraic expression for sn will require k levels of nested square roots. //

This is a result of abstract algebra and number theory, so unfortunately I cannot explain it in
this course. But let’s add the quantity ϕpnq to our table to see if it agrees with our previous
results:

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

ϕpnq 1 1 2 2 4 2 6 4 6 4 10 4 12 6 8 8 16

constructible? Y Y Y Y Y Y N Y N Y N Y N N Y Y Y

56him again!
57Wikipedia probably has a computer animation of the construction.
58The fancy name for this is “Euler’s totient function”. It was given this name by a strange mathematician

named James Joseph Sylvester.
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We see that the regular n-gon is not constructible when n “ 7, 9, 11, 13, 14 because in these
cases ϕpnq is not a power of 2. For example, here are the numbers from 1 to 14 with the
numbers that share a common factor with 14 crossed out:

1 �2 3 �4 5 �6 �7 �8 9 ��10 11 ��12 13 ��14

Since there are six numbers not crossed out we verify that ϕp14q “ 6. Then since 6 is not a
power of 2 the Gauss-Wantzel theorem tells us that the regular 14-gon cannot be constructed
with straightedge and compass. Thus the question of constructibility of regular polygons has
been transformed into the following question of number theory.

Question: For which values of n is the totient function ϕpnq a power of 2?

One can show that ϕpnq is a power of 2 precisely when n equals a power of 2 multiplied by a set
of distinct prime numbers of the form 22

p
` 1 (called Fermat prime numbers). Unfortunately

the Fermat prime numbers are not completely understood59 so in some sense the problem is
still open.

Epilogue: From Jya-Ardha to Sine. Throughout this section I have avoided the modern
notation for trigonometry because it is rather terrible and it tends to obscure the motivat-
ing problems behind the subject. As with our modern symbol π, the modern language for
trigonometry in terms of “sin, cos, tan” and all that nonsense was standardized by Leonhard
Euler’s textbook Introductio in analysin infinitorum (1748) (Introduction to Analysis of the
Infinite). Where did the seemingly random names “sin, cos, tan” come from?

I mentioned above that the most sophisticated trigonometry of the Hellenistic world was done
by Claudius Ptolemy (c. 100–170 AD) in the Almagest. The next burst of progress came
during the Gupta Empire of India. While earlier work in trigonometry had focused on the
chord function, the mathematician-astronomer Aryabhata (c. 476–550 AD) provided a table
of “half-chords” in his work the Aryabhatiya (499 AD).

The Indian notation for trigonometry was quite natural. They noticed that the chord of a
circle subtended by a given angle looks like a pulled bowstring:

59For example, we don’t know if there are infinitely many of them.
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For this reason they referred to the chord and the circular arc by the Sanskrit words jya and
capa which mean “bowstring” and “bow”, respectively. They used the word koti-jya for the
distance between the center of the circle and the midpoint of the chord (koti means “point”
or “cusp”.) Then at some point, for whatever reason, they began to refer to the jya-ardha
(literally “half-bowstring”) instead of the jya. Aryabhata’s work contained a table of jya-
ardha for various angles and for the fixed radius r “ 3438 (which is the approximate number
of arc-minutes contained in one radian).

The next stage of development occurred during the Islamic Golden Age in Baghdad. The
Islamic mathematicians and astronomers had access to Arabic translations of both the Hel-
lenistic and Indian works of astronomy, thus they were able to compare them and take the
best from both. At first the Sanskrit term jya was transliterated into the nonsense term jiba
or jyb. However, since vowels are often removed from the Arabic script, the nonsense word
jiba/jyb was later mistaken for the Arabic word jaib, which means “bosom”, “fold of a gar-
ment”, or “bay”. Meanwhile, Ptolemy’s work had been lost in Europe and was recovered in
Arabic translation. When Gerard of Cremona (c. 1114–1187) translated the Arabic version
of Ptolemy’s Almagest60 into Latin he interpreted the word jaib as sinus, which has similar
meanings, and this became our modern sine function.

To see the relationship, let me recall the modern school definitions of sin, cos and tan. Con-
sider the following right triangles with side lengths labeled a, o, h, a1, o1, h1 (for “adjacent”,
“opposite” and “hypotenuse”):

60In fact, the title Almagest comes from this translation. The original Greek title was Mathematike Syntaxis
(Mathematical Treatise) which later became Megale Syntaxis (The Great Treatise) or Megiste Syntaxis (The
Greatest Treatise). This was translated into Arabic as al-majisti and finally into Latin as Almagest.
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If the angle θ is common to both triangles then the third angle must also be equal (because
the angles in each triangle sum to π). Therefore by Euclid’s Proposition VI.4 (proportionality
of similar triangles) the following ratios are well-defined:

sin θ :“
o

h
“
o1

h1
, cos θ :“

a

h
“
a1

h1
and tan θ :“

o

a
“
o1

a1
.

Now let h “ r be the radius of a circle so that o “ r ¨ sin θ is the jya-ardha (or half-chord) and
a “ r ¨ cos θ is the koti-jya. The “jya” explains the “sine” and the “koti” explains the “co”.61

Then by considering a right triangle with angle θ{2 we obtain the following expression for the
full chord length in terms of the sine function:

chordpr, θq “ 2r ¨ sinpθ{2q.

And what about “tan”? To understand this we need to look back to Archimedes’ proof for
the area of a circle. By considering the inscribed and circumscribed 2n-gons for a circle of
radius r we obtained the following diagram with θ “ π{2n:

61Or maybe the “co” refers to the “complementary” angle π ´ θ between sides h and o.
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This diagram explains the meaning of “tan”: it stands for “tangent” because the line segment
of length r ¨ tan θ in the diagram is tangent to the circle. This also explains why I used the
letters “s” and “t” in Archimedes’ proof (i.e., to stand for “sin” and “tan”). I didn’t use “c”
at that time because it would have been confused with “circumference”.

Finally, recall that the purpose of this diagram in Archimedes’ proof was to compare the areas
of the inscribed and the circumscribed polygon to the area of the circle. Now that we know
the formula πr2 for the area of the circle we can reinterpret this argument in an interesting
way. If we measure the angle θ in radians then we observe that the sector of the circle (the
pizza slice) defined by θ contains θ{2π of the full area of the circle. In other words:

parea of sector OADq “
θ

2π
¨ parea of circleq “

θ

2π
¨ πr2 “

r2θ

2
.

But this sector is contained between the two right triangles in the diagram, so that

parea of triangle OABq ă parea of sector OADq ă parea of triangle OCDq
pr sin θqpr cos θq{2 ă pr2θq{2 ă r ¨ pr tan θq{2

sin θ cos θ ă θ ă tan θ.

If we rewrite tan θ as sin θ{ cos θ and then divide all three expressions by sin θ (which is a
positive number because 0 ă θ ă π) then we obtain the inequalities

sin θ cos θ ă θ ă sin θ{ cos θ
cos θ ă θ{ sin θ ă 1{ cos θ.

So what? Well, if the angle θ is very small (i.e., close to zero) then the quantities cos θ and
1{ cos θ are both very close to 1. Since the ratio pθ{ sin θq is squeezed between two quantities
that both approach 1, we conclude that

the ratio θ
sin θ approaches 1 as the angle θ approaches zero.

It turns out that this harmless statement, which was foreshadowed in Archimedes’ computation
of circular area, is the key fact upon which all of modern trigonometry is based.

The mathematician and astronomer Madhava of Sangamagrama (c. 1340–1425) was the founder
of a thriving mathematical school in the Kerala region of India. By using the ratio pθ{ sin θq
he was able to find explicit (but infinite) formulas for the basic trigonometric functions. These
ideas were rediscovered later by Isaac Newton and Gottfried Leiniz in the 1670s as part of
their discovery of the Calculus. The modern algebraic formula for the sine function is

sin θ “ θ ´
θ3

3 ¨ 2 ¨ 1
`

θ5

5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
´

θ7

7 ¨ 6 ¨ 5 ¨ 4 ¨ 3 ¨ 2 ¨ 1
` ¨ ¨ ¨ .

For this formula to be valid we need to measure θ in radians and we need to carry out the
computation to infinity. If we truncate the computation after several steps then we will obtain
a good approximate value for sin θ.62

62This is how your calculator does it.
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In retrospect, we realize that the sine function (and hence the chord function) is transcendental,
meaning that it is impossible to compute with a finite number of algebraic operations. This
is the ultimate reason why “trigonometry is hard” and why the subject is a lot more modern
than one would expect.

3.5 Rigorous and Intuitive Mathematics

In section 3.3 we saw Archimedes’ proof from Measurement of a Circle that the area of a circle
is given by

A “
1

2
Cr,

where C is the circumference and r is the radius. Since Euclid’s Elements provides no way
to talk about the length of a curved path, Archimedes needed to introduce some new axioms
in order to make the proof rigorous. He introduced these axioms (postulates) explicitly in an
accompanying two-volume work called On the Sphere and Cylinder; perhaps not coincidentally,
he had exactly five postulates. Here they are in modern language:

Postulate 1. The shortest path between two points is a straight line.

Postulate 2. Given two concave paths on the same side of a straight line, the path
closer to the line is shorter.

Postulate 3. Among surfaces whose boundary lies in a plane, the flat surface has the
least area.

Postulate 4. Given two concave surfaces on the same side of a flat plane with their
common boundary in the plane, the surface closer to the plane has less area.

Postulate 5. Any two geometric magnitudes of the same kind “have a ratio”.

We already discussed Postulates 1 and 2 in the previous section. They allow comparisons
between lengths of curved paths. Postulates 3 and 4 do the same thing for areas of curved
surfaces. Archimedes Postulate 5 is a direct extension of Euclid’s Definition V.5 which we
discussed in Section 3.2. There Euclid defined what it means for two geometric magnitudes to
“have a ratio”, i.e., when either can be contained in a multiple of the other. It is clear that any
two straight line segments, areas or volumes “have a ratio” in this sense, but is unclear how
the definition should apply to curved paths and surfaces. For example, consider the following
line segment of length ` and curve of length c:
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For ` and c to “have a ratio” in the Euclidean sense there must exist whole numbers m and n
such that m ¨ ` Ă c and ` Ă n ¨ c. We see on the right of the figure that c and 2 ¨ ` are sort of
comparable, but it is clear that c will never fit completely inside n ¨ ` for any whole number
n. To get around this problem, Archimedes simply declared that ` and c do have a ratio so
he could go about the business of computing it.

In the previous section we saw that Archimedes’ Theorem A “ 1
2Cr can be proved rigorously

from the results in Euclid’s Elements by adding Postulates 1 and 2 (and I suppose it also
needs Postulate 5), but

did you find the proof convincing?

Before answering, let me show you a “non-rigorous” proof that A “ 1
2Cr.

Non-Rigorous Proof. Consider a circle with area, circumference and radius given by A,
C and r, respectively. Now cut the circle into 2n equal sectors, just like slicing a pizza. By
rearranging the pieces of pizza we can form exactly one half of a shape that is approximately
a rectangle with side lengths C and r:
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It seems that we can make the shape on the right arbitrarily close to a perfect rectangle by
taking n large enough. Thus in the limit we must have A “ 1

2Cr.

I’ll bet you find this argument more convincing than the official (rigorous) proof from Mea-
surement of a Circle. This illustrates a strange phenomenon in mathematics:

sometimes a proof gives no hint of how the theorem was discovered.

In practice, every mathematical proof has to make a compromise between rigor (precision)
and readability (clarity):

The style of proof in Euclid’s Elements favors precision over clarity. The goal here is to provide
a certificate of absolute truth, not necessarily to persuade an audience. It is the reader’s job
to do the hard work of deciphering the theorems.

For most of the modern era, mathematicians had access to Archimedes’ Euclidean-style proofs
for properties of circles and spheres, but they had no hint of how Archimedes had discovered
the theorems in the first place. Then in 1906, a momentous discovery was made: a lost work of
Archimedes called The Method of Mechanical Theorems was found hidden underneath a 13th
century Christian religious text written on parchment (i.e., stretched and bleached animal
skin). Since parchment was valuable, it was often scraped clean to make way for a new text.
In this case the 13th century monks had erased a 10th century Byzantine Greek copy of works
by Archimedes. But the erasure was not perfect and scholars were able to recover the text of
Archimedes hiding underneath the religious text. The parchment (known as the Archimedes
Palimpsest63) is now on display at the Cambridge University Library.

In The Method of Mechanical Theorems (henceforth known as The Method), Archimedes de-
scribes the intuitive process by which he arrived at many of his geometric theorems. In this
section I will present his fundamental results from On The Sphere and Cylinder, but instead

63A palimpsest is a piece of writing material on which the original has been erased to make room for new
writing, but on which traces of the original are still legible.
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of following the elaborate Euclidean-style proofs I will follow a process closer to the one that
Archimedes describes in The Method. That is, my primary goal will be to convince you64

that the results are true.

Here is the big theorem that we will prove

Theorem (Volume and Surface Area of a Sphere). Consider a sphere inscribed in a
right cylinder. Then the volume of the sphere is 2{3 of the volume of the cylinder and the
surface area of the sphere is equal to the surface area of the side of the cylinder (excluding
the top and bottom circles). //

You can see why Archimedes called his work On the Sphere and Cylinder. In modern terms
we prefer to express the volume and surface area as algebraic formulas in terms of the radius
and the universal constant π. Suppose the sphere has radius r as in the following picture:

We already know that the area of the base circle is πr2 so volume of the cylinder is given by

pvolume of cylinderq “ parea of baseqpheightq

“ pπr2qp2rq

“ 2πr3.

Therefore the theorem states that

pvolume of sphereq “
2

3
pvolume of cylinderq “

2

3
p2πr3q “

4

3
πr3.

To compute the surface area of the cylinder we can make a vertical cut and unwrap the surface
into a rectangle65 whose height is 2r and whose base equals the circumference C “ 2πr:

64yes you
65Recall from the previous chapter that the surface of a cylinder has zero Gaussian curvature.

108



Therefore the theorem states that

psurface area of sphereq “ parea of side of cylinderq

“ parea of unwrapped rectangleq

“ pbaseqpheightq

“ p2πrqp2rq

“ 4πr2.

//

So let’s get started.

Area of a triangle.

Cavalieri’s Principle.

Volume of a parallelopiped.

Volume of a tetrahedron.

Volume of a cone.

Volume of a sphere.

Surface area of a sphere.

3.6 Impossible Problems

Axioms for measurement. Wallace-Bolyai-Gerwien Theorem. Hilbert’s third problem. Dehn’s
Theorem. “Measure theory” is impossible.

Squaring the circle, trisecting angles, doubling cubes.
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4 Coordinate Geometry and Transformations

5 Projective Geometry
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