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Given coprime integers ged(a, b) = 1, the rational Catalan number is defined as
1 a+b l{a—1+b
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And the rational g-Catalan number is defined as
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Cat(a,b)q = it |
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Facts
1. Cat(a,b) €N (this is not difficult)
2. Cat(a,b)q € Z[g] (thisis not difficult)
3. Cat(a,b)q € N[g] (thisis difficult)
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One solution to this problem is known. Let Dyck, , be the set of Dyck paths in an
a x b rectangle, though of as a sequence of a up steps (u) and b right steps (r)
staying above the diagonal. For example, uurruurrrrr € Dyck, ;.
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Stanton’s Problem (~2005): Find a natural set X with #:X = Cat(a,b) and a
function stat : X — N satisfying
Cat(a,b)g =Y s
xXeX
One solution to this problem is known. Let Dyck, , be the set of Dyck paths in an

a x brectangle, though of as a sequence of a up steps (u) and b right steps (r)
staying above the diagonal. For example, uurruurrrrr € Dyck, ;.

Given P € Dyck, , let area(P) be the number of full squares between the path and
the diagonal. For example, area(uurruurrrrr) = 5.
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1. Rational g-Catalan numbers

Stanton’s Problem (~2005): Find a natural set X with #:X = Cat(a,b) and a
function stat : X — N satisfying

Cat(a,b)g =) s
xex

Define the sweep map Dyck, , — Dyck, , as follows. Label each step with
endpoint (x, y) by the “height” yb — ax. Then sort the steps by decreasing labels.
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Example: sweep(uurruurrrrr) = uruurrrurrr.
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1. Rational g-Catalan numbers

Stanton’s Problem (~2005): Find a natural set X with #:X = Cat(a,b) and a
function stat : X — N satisfying

Cat(a,b)g =) s

xex

Theorem (conjectured by many, proved by Mellit 2021)

Cat(a, b)q _ Z qarea(P)—area(sweep(P))+(a—1)(b—1)/2
PEDyck,

Actually, Mellit proved that the statistics area and area o sweep give the rational
g, t-Catalan number

Cat(a b)q - Z qarea(P) tarea(sweep(P))'

PEDyckayb
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difficult to work with.

+ It does not explain some basic properties such as the...
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Example:

Cat(a, c)q — Cat(a, b)q € N[q].

Cat(3,1)g = 1,

Cat(3@) = 1 + g
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2. Lattice points

This is not a satisfactory resolution of Stanton’s problem because:

+ The function stat(P) = area(P) — area(sweep(P)) + (a — 1)(b —1)/2is
difficult to work with.

+ It does not explain some basic properties such as the...

Monotonicity Conjecture
Fora, b,c > 1 with ged(a, b) = ged(a,c) = 1land b < c we have

Cat(a, c)q — Cat(a, b)q € N[q].

In this talk | will present a new point of view that | have used to prove monotonicity
for the infinite set of triples a, b, ¢ satisfying a < 20. Here’s the idea:

Dyckpaths ~~ lattice points.
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2. Lattice points

Some notation for the root lattice of type Ag—1.

Let £ := Z° ! be the weight lattice with inner product

=i

20 —1
-1 2
xy) =x y
-1
-1 2
The coordinate basis are called the fundamental weights wy, . . . , wg—1 and the dual
basis are called the simple roots as, . . ., atg—1.
&N = (1,080,...,0) o = (2,-1,0,...,0,0)

4 — (0,M,...,0) o= (=128 __ 0]

&, = (0,¢H .,0,1) a1 = (0,0,...,0,—1,2)









2. Lattice points

Example a = 3: And the dotted lines are the level sets of the tilted height function

T, X2, .3 Xa—1) == X1+ 20+ -+ + (0 — 1)Xo—1 = (X, wa—1).
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Important Observation: For any integer b, the tilted height generating function for
the dilated alcove bA is the g-binomial coefficient:

T(x) _ a—1+b
Z q _[ a—1

xe(LNbA)

q
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Important Observation: For any integer b, the tilted height generating function for
the dilated alcove bA is the g-binomial coefficient:

T(x) _ a—1+b
Z q _[ a—1

xe(LNbA)

q

6
H =14+qg+2¢° +2¢°+3q"
q

+29° +2¢°+q" + ¢
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But if gcd(a, b) = 1 then Mark Haiman tells us that the number of points of the root
lattice in the dilated alcove bA is the rational Catalan number:

#(RNbA) = Cat(a, b) = ;(";:Lb>
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We need some way to “divide by [a],” using the geometry.

1

Cat(3,4) = &l

6
q XE(RN4A)
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Preview:

1 |6
Cat(3,4), = & H =1+¢+¢ +4¢"+4".
q
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simultaneous core partitions, 2015).

Definition
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+ (Periodic) Forallx € R andy € £ we have J(x + ay) = J(x) + aT(y).
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3. Johnson statistics

Note that aL C R henceforanyx € Randy € £ we havex + ay € R. The
following definition is inspired by work of Paul Johnson (Lattice points and
simultaneous core partitions, 2015).

Definition

Afunction J : R — Zis called a Johnson statistic if it satisfies:
+ (Periodic) Forallx € R andy € £ we have J(x + ay) = J(x) + aT(y).
+ (Catalan) Forall gcd(a, b) = 1 we have

> '™ = Cat(a,b),.

XE(RNbA)

Theorem
Johnson statistics exist for all a < 20.
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Because of periodicity a Johnson statistic is determined by its values on the cosets
R/aL.We note that #(R /aL) = a° * because
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There is a canonical set of coset representatives. Define the fundamental box

Box = {x e R"™': 0 < x; < aforall i}.



3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets
R/aL.We note that #(R /aL) = a° * because

—
aLCRCL
N—————

qd—1
There is a canonical set of coset representatives. Define the fundamental box
Box = {x € R *:0 < x < aforalli}.
Then taking remainders mod a gives a bijection

R/alL +— RNBox.



3. Johnson statistics

We have the following expressions on the fundamental box.

Theorem
If J : R — Zis a Johnson statistic then we have

[delalg - [aler = D> %,

x€(RNBox)

Cat(a, b)q = Z qJ(x) a—1+ |-(b - Zin)/GJ

a—1
x€(RNBox) q@
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When a = 3 there is exists a unique Johnson statistic.
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When a = 3 there is exists a unique Johnson statistic.

Monotonicity:  Cat

(3,1)g =1,
Cat(3 PN — 1 toq8
(
(

Cat
Cat
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3,5=1+4+¢+q" +¢"+¢° + 4"



3. Johnson statistics

When a = 3 there is exists a unique Johnson statistic.

11 Al .17

2

Since a®~% = 3! the fundamental domain contains three points:

R NBox = {(x1,%) : 0 <x < 3andx; + 2x; = 0 mod 3}
= {(0,0),(1,1),(2,2)}.
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3. Johnson statistics

When a = 3 there is exists a unique Johnson statistic.

5 2 1
Since a®~% = 3! the fundamental domain contains three points:
2) b ) b—2 9 b—4
cat@3,b) = |° | 2T g 2TLSY
2], 20| 2],
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3. Johnson statistics

o= L

4% = 16 cosets. Here is a Johnson statistic.

When g = 4 there are o

Don’t ask me any questions about this picture. For a > 51do not know any
natural construction of Johnson statistics, but | know that they exist for a < 20.
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Given a set S C R?! define the Johnson generating function:

(Sh= 3 o

xE(RNS)

The formula (Box); = [a]2[a] - - - [a] 01 is proved by inclusion-exclusion, e.g.,

Cat(3,7)q — g°Cat(3,4)q — ¢°Cat(3,4)q + ¢°Cat(3,1)q = [3],2
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To prove this we need a g-identity.

Lemma

Define the Pochhammer symbol (u; q), = (1 — u)(1 — ug)--- (1 — ug" ). For
anysetJ C Nwelet ) Jdenote thesum )~ j. Then forany u we have

Z (_1)#anzJ(Uq_"#J;q)a—1 _ (9%4%)as
e (d:9)o—1 (G:)a1

Note that the right hand side is independent of u.



4. Brion’s theorem and rational g-Catalan numbers

To prove this we need a g-identity.

Lemma
Define the Pochhammer symbol (u; q), = (1 — u)(1 — ug)--- (1 — ug" ). For
anysetJ C Nwelet ) Jdenote thesum )~ j. Then forany u we have

_1\#/ aZJ(Uq_a#J;q)a—l ~ (9%9%) a1
> ()% ) o

Note that the right hand side is independent of u.

We put u = g°** for some large b with gcd(a, b) = 1 and divide by [a], to get

(Box)y= Y (-1)*¢">’Cat(a,b — a#J)q

= [a]q2 [a]q3 i ° [(J]qa—1.



4. Brion’s theorem and rational g-Catalan numbers

Asimilar identity gives a generating function for a fundamental domain at each
vertex of the dilated simplex bA:

Cat(3,7)g — Cat(3,4), — ¢°Cat(3,4), + ¢°Cat(3,1); = ¢°[3],



4. Brion’s theorem and rational g-Catalan numbers

Asimilar identity gives a generating function for a fundamental domain at each
vertex of the dilated simplex bA:

If gcd(a, b) = 1 then the kth vertex of bA has the following g-analogue of a®~ %

a—1—k

(Borty = 9 & Tl T Lo



4. Brion’s theorem and rational g-Catalan numbers

Let K be the vertex cone of bA at the kth vertex bwy. By using the periodicity of
Johnson statistics and the previous result, we obtain the Johnson generating
function of the cone:
k (Boxh), 1 YR )i (D)
(Kp)s = . = — i
II - o (@a(qglarr

i€{0,1,...,a—1}\{k}




4. Brion’s theorem and rational g-Catalan numbers

Let K be the vertex cone of bA at the kth vertex bwy. By using the periodicity of
Johnson statistics and the previous result, we obtain the Johnson generating
function of the cone:
(Kk) y (BOX‘g)J | i (_l)kqbk+(k42r1)
- 11 (1= g0y ldle (@ (q: @)a-1-k

i€{0,1,...,a—1}\{k}

Finally, by applying the g-binomial theorem we obtain the following identity:

@=1k

(bA), = Cat(a,b)g = Y (K ).

k=0

This is some g-analogue of Brion’s formula for the dilated simplex bA, which is a
rational polytope with regard to the root lattice R.



4. Brion’s theorem and rational g-Catalan numbers

Example:
18
14
1
-5 2 1
1+q" +4° F+q°+q g +q_+am

+

-@)i-0) (-a0-a) (-g1-q7)

=1+0+¢+4' +¢"+26° + 9" + ¢’ + ¢’ + ¢° + " = Cat(3,7),.
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then the corresponding Brion’s theorem holds when g = 1 or when
z=(1,1,...,1) butnotin general.



5. Closing remarks

« | conjecture that the same result holds for all alcoved polytopes P:

Z (KV)J

vertices v

« If we define the Johnson point enumerator

(S)sz = Z qJ(x)Zx — Z qJ(x)z)l(l P 'Z)c(:a__ll

xe(RNS) x€(RNS)

then the corresponding Brion’s theorem holds when g = 1 or when
z=(1,1,...,1) butnotin general.

+ Hence this does not follow from Chapoton-style g-Ehrhart theory.
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