

Brion's Theorem and q -Catalan numbers

Séminaire Lotharingien de Combinatoire 94, Bad Boll

Drew Armstrong

Sept 17, 2025

University of Miami and RUB Bochum

www.math.miami.edu/~armstrong

1. Rational q -Catalan numbers

1. Rational q -Catalan numbers

Given **coprime** integers $\gcd(a, b) = 1$, the **rational Catalan number** is defined as

$$\text{Cat}(a, b) = \frac{1}{a+b} \binom{a+b}{a} = \frac{1}{a} \binom{a-1+b}{a-1},$$

1. Rational q -Catalan numbers

Given **coprime** integers $\gcd(a, b) = 1$, the **rational Catalan number** is defined as

$$\text{Cat}(a, b) = \frac{1}{a+b} \binom{a+b}{a} = \frac{1}{a} \binom{a-1+b}{a-1},$$

And the **rational q -Catalan number** is defined as

$$\text{Cat}(a, b)_q = \frac{1}{[a+b]_q} \left[\begin{matrix} a+b \\ a \end{matrix} \right]_q = \frac{1}{[a]_q} \left[\begin{matrix} a-1+b \\ a-1 \end{matrix} \right]_q.$$

1. Rational q -Catalan numbers

Given **coprime** integers $\gcd(a, b) = 1$, the **rational Catalan number** is defined as

$$\text{Cat}(a, b) = \frac{1}{a+b} \binom{a+b}{a} = \frac{1}{a} \binom{a-1+b}{a-1},$$

And the **rational q -Catalan number** is defined as

$$\text{Cat}(a, b)_q = \frac{1}{[a+b]_q} \left[\begin{matrix} a+b \\ a \end{matrix} \right]_q = \frac{1}{[a]_q} \left[\begin{matrix} a-1+b \\ a-1 \end{matrix} \right]_q.$$

Facts

1. $\text{Cat}(a, b) \in \mathbb{N}$ (this is not difficult)
2. $\text{Cat}(a, b)_q \in \mathbb{Z}[q]$ (this is not difficult)
3. $\text{Cat}(a, b)_q \in \mathbb{N}[q]$ (this is difficult)

1. Rational q -Catalan numbers

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

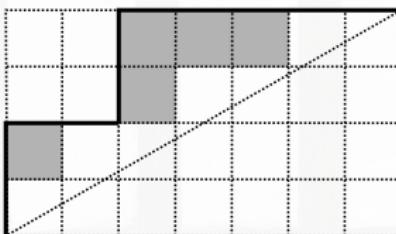
$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

One solution to this problem is known. Let $\text{Dyck}_{a,b}$ be the set of Dyck paths in an $a \times b$ rectangle, though of as a sequence of **a up steps (u)** and **b right steps (r)** staying above the diagonal. For example, $uurruurrrrr \in \text{Dyck}_{4,7}$.

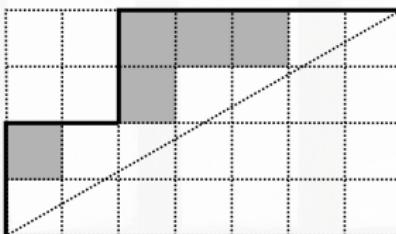


1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

One solution to this problem is known. Let $\text{Dyck}_{a,b}$ be the set of Dyck paths in an $a \times b$ rectangle, though of as a sequence of **a up steps (u)** and **b right steps (r)** staying above the diagonal. For example, $\text{uurruurrrrr} \in \text{Dyck}_{4,7}$.



Given $P \in \text{Dyck}_{a,b}$ let **area(P)** be the number of full squares between the path and the diagonal. For example, $\text{area}(\text{uurruurrrrr}) = 5$.

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

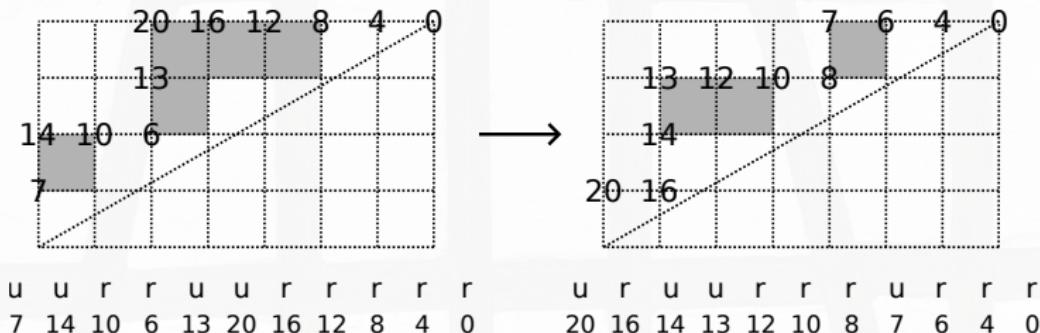
$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

Define the **sweep map** $\text{Dyck}_{a,b} \rightarrow \text{Dyck}_{a,b}$ as follows. Label each step with endpoint (x, y) by the “height” $yb - ax$. Then sort the steps by decreasing labels.



Example: $\text{sweep}(\text{uurruuurr}) = \text{uruurrrur}.$

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

Theorem (conjectured by many, proved by Mellit 2021)

$$\text{Cat}(a, b)_q = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2}$$

1. Rational q -Catalan numbers

Stanton's Problem (~2005): Find a natural set X with $\#X = \text{Cat}(a, b)$ and a function $\text{stat} : X \rightarrow \mathbb{N}$ satisfying

$$\text{Cat}(a, b)_q = \sum_{x \in X} q^{\text{stat}(x)}.$$

Theorem (conjectured by many, proved by Mellit 2021)

$$\text{Cat}(a, b)_q = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2}$$

Actually, Mellit proved that the statistics area and $\text{area} \circ \text{sweep}$ give the **rational q, t -Catalan number**

$$\text{Cat}(a, b)_{q,t} = \sum_{P \in \text{Dyck}_{a,b}} q^{\text{area}(P)} t^{\text{area}(\text{sweep}(P))}.$$

2. Lattice points

2. Lattice points

This is not a satisfactory resolution of Stanton's problem because:

- The function $\text{stat}(P) = \text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2$ is difficult to work with.
- It does not explain some basic properties such as the...

2. Lattice points

This is not a satisfactory resolution of Stanton's problem because:

- The function $\text{stat}(P) = \text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2$ is difficult to work with.
- It does not explain some basic properties such as the...

Monotonicity Conjecture

For $a, b, c \geq 1$ with $\gcd(a, b) = \gcd(a, c) = 1$ and $b < c$ we have

$$\text{Cat}(a, c)_q - \text{Cat}(a, b)_q \in \mathbb{N}[q].$$

2. Lattice points

This is not a satisfactory resolution of Stanton's problem because:

- The function $\text{stat}(P) = \text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2$ is difficult to work with.
- It does not explain some basic properties such as the...

Monotonicity Conjecture

For $a, b, c \geq 1$ with $\gcd(a, b) = \gcd(a, c) = 1$ and $b < c$ we have

$$\text{Cat}(a, c)_q - \text{Cat}(a, b)_q \in \mathbb{N}[q].$$

Example:

$$\text{Cat}(3, 1)_q = 1,$$

$$\text{Cat}(3, 2)_q = 1 + q^2,$$

$$\text{Cat}(3, 4)_q = 1 + q^2 + q^3 + q^4 + q^6,$$

$$\text{Cat}(3, 5)_q = 1 + q^2 + q^3 + q^4 + q^5 + q^6 + q^8.$$

2. Lattice points

This is not a satisfactory resolution of Stanton's problem because:

- The function $\text{stat}(P) = \text{area}(P) - \text{area}(\text{sweep}(P)) + (a-1)(b-1)/2$ is difficult to work with.
- It does not explain some basic properties such as the...

Monotonicity Conjecture

For $a, b, c \geq 1$ with $\gcd(a, b) = \gcd(a, c) = 1$ and $b < c$ we have

$$\text{Cat}(a, c)_q - \text{Cat}(a, b)_q \in \mathbb{N}[q].$$

In this talk I will present a new point of view that I have used to prove monotonicity for the infinite set of triples a, b, c satisfying $a \leq 20$. Here's the idea:

Dyck paths \rightsquigarrow lattice points.

2. Lattice points

Some notation for the root lattice of type A_{a-1} .

2. Lattice points

Some notation for the root lattice of type A_{a-1} .

Let $\mathcal{L} := \mathbb{Z}^{a-1}$ be the **weight lattice** with inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 2 \end{pmatrix}^{-1} \mathbf{y}$$

2. Lattice points

Some notation for the root lattice of type A_{a-1} .

Let $\mathcal{L} := \mathbb{Z}^{a-1}$ be the **weight lattice** with inner product

$$\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^T \begin{pmatrix} 2 & -1 & & & \\ -1 & 2 & \ddots & & \\ & \ddots & \ddots & -1 & \\ & & -1 & 2 & \end{pmatrix}^{-1} \mathbf{y}$$

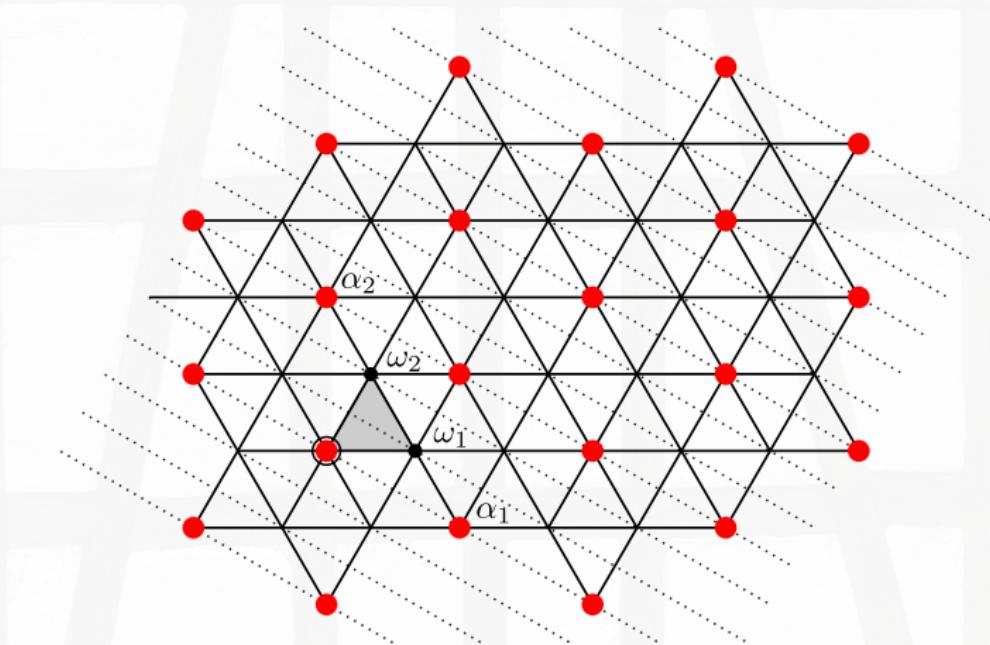
The coordinate basis are called the **fundamental weights** $\omega_1, \dots, \omega_{a-1}$ and the dual basis are called the **simple roots** $\alpha_1, \dots, \alpha_{a-1}$.

$$\begin{array}{ll} \omega_1 &= (1, 0, 0, \dots, 0) & \alpha_1 &= (2, -1, 0, \dots, 0, 0) \\ \omega_2 &= (0, 1, 0, \dots, 0) & \alpha_2 &= (-1, 2, -1, \dots, 0) \\ \vdots & & \vdots & \\ \omega_{a-1} &= (0, 0, \dots, 0, 1) & \alpha_{a-1} &= (0, 0, \dots, 0, -1, 2) \end{array}$$

2. Lattice points

Example $a = 3$: The red points are the root lattice

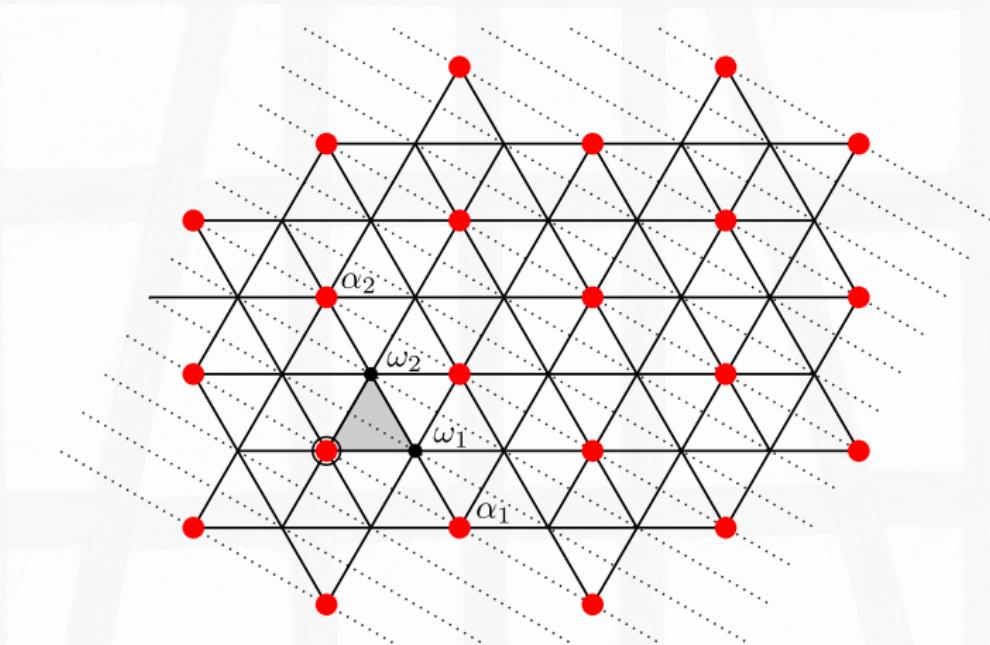
$$\mathcal{R} = \mathbb{Z}\{\alpha_1, \dots, \alpha_{a-1}\}.$$



2. Lattice points

Example $a = 3$: The grey triangle Δ is the **fundamental alcove**

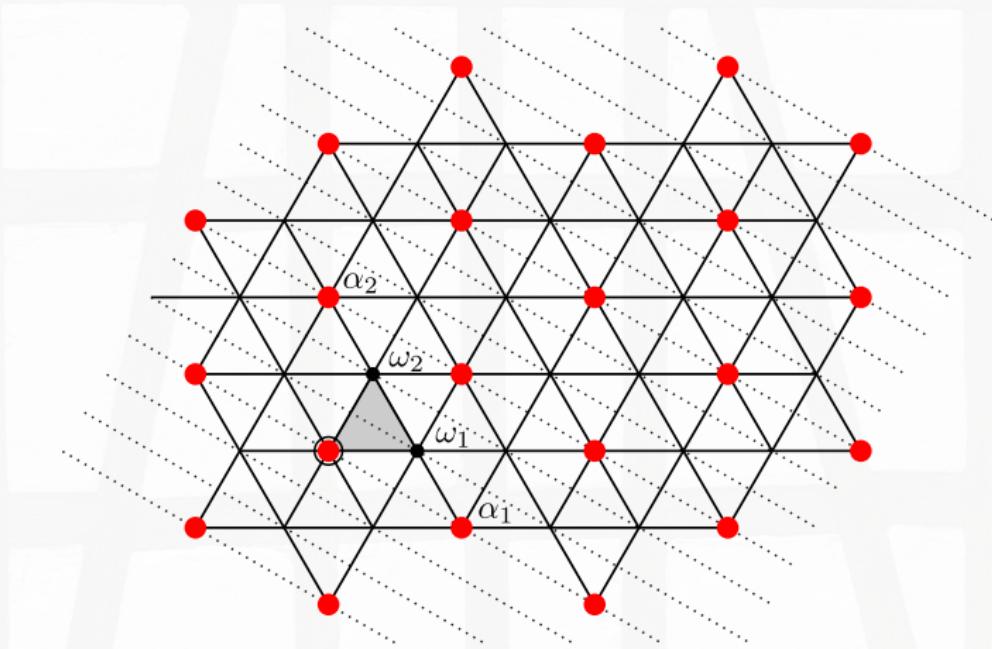
$$\Delta = \text{hull}\{0, \omega_1, \dots, \omega_{a-1}\}.$$



2. Lattice points

Example $a = 3$: And the dotted lines are the level sets of the **tilted height function**

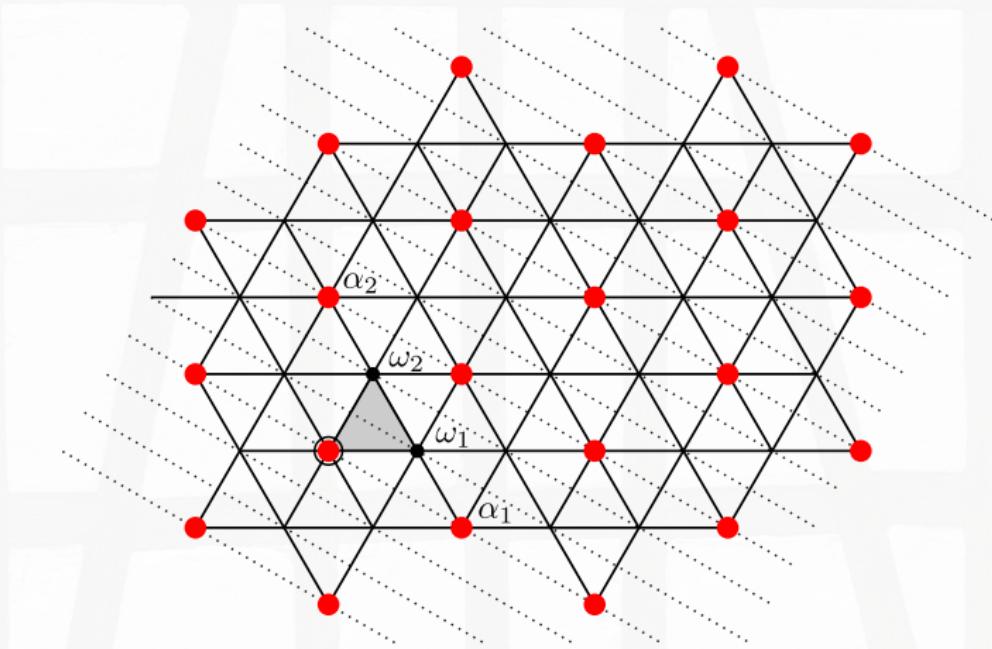
$$T(x_1, x_2, \dots, x_{a-1}) := x_1 + 2x_2 + \dots + (a-1)x_{a-1} = a\langle \mathbf{x}, \omega_{a-1} \rangle.$$



2. Lattice points

Example $a = 3$: Note that we can also write

$$\mathcal{R} = \{\mathbf{x} \in \mathcal{L} : \mathbf{T}(\mathbf{x}) \equiv 0 \pmod{a}\}.$$



2. Lattice points

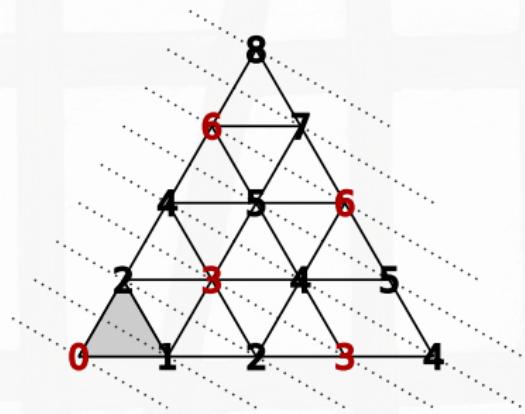
Important Observation: For any integer b , the tilted height generating function for the dilated alcove $b\Delta$ is the q -binomial coefficient:

$$\sum_{\mathbf{x} \in (\mathcal{L} \cap b\Delta)} q^{T(\mathbf{x})} = \begin{bmatrix} a-1+b \\ a-1 \end{bmatrix}_q.$$

2. Lattice points

Important Observation: For any integer b , the tilted height generating function for the dilated alcove $b\Delta$ is the q -binomial coefficient:

$$\sum_{x \in (\mathcal{L} \cap b\Delta)} q^{T(x)} = \begin{bmatrix} a-1+b \\ a-1 \end{bmatrix}_q.$$



$$\begin{bmatrix} 6 \\ 2 \end{bmatrix}_q = 1 + q + 2q^2 + 2q^3 + 3q^4 + 2q^5 + 2q^6 + q^7 + q^8$$

2. Lattice points

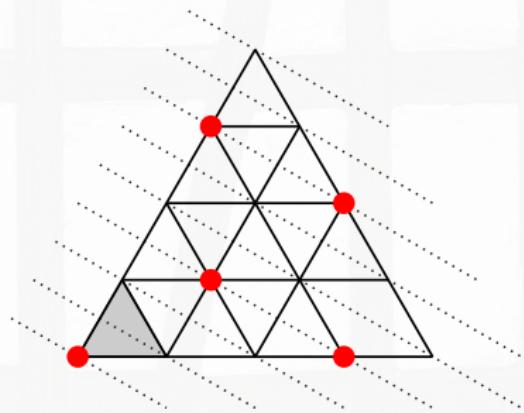
But if $\gcd(a, b) = 1$ then Mark Haiman tells us that the number of points of the root lattice in the dilated alcove $b\Delta$ is the rational Catalan number:

$$\#(\mathcal{R} \cap b\Delta) = \text{Cat}(a, b) = \frac{1}{a} \binom{a-1+b}{a-1}.$$

2. Lattice points

But if $\gcd(a, b) = 1$ then Mark Haiman tells us that the number of points of the root lattice in the dilated alcove $b\Delta$ is the rational Catalan number:

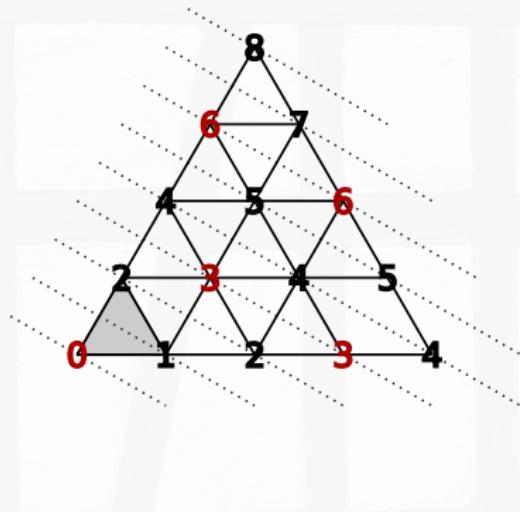
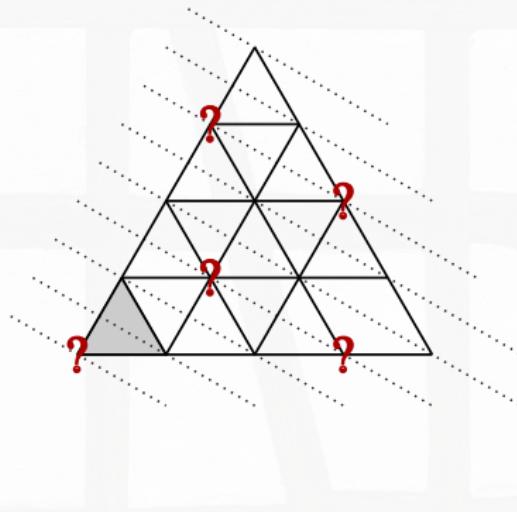
$$\#(\mathcal{R} \cap b\Delta) = \text{Cat}(a, b) = \frac{1}{a} \binom{a-1+b}{a-1}.$$



$$\text{Cat}(3, 4) = \frac{1}{3} \binom{6}{2} = 5$$

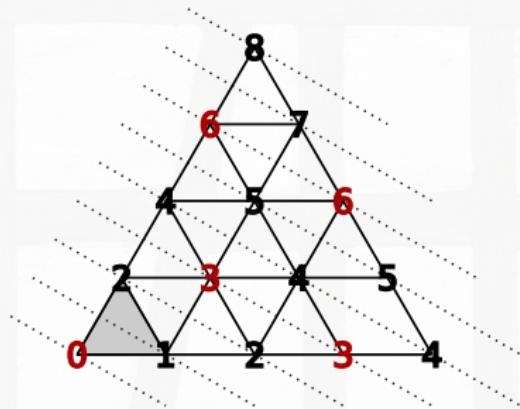
2. Lattice points

We need some way to “divide by $[a]_q$ ” using the geometry.



2. Lattice points

We need some way to “divide by $[a]_q$ ” using the geometry.

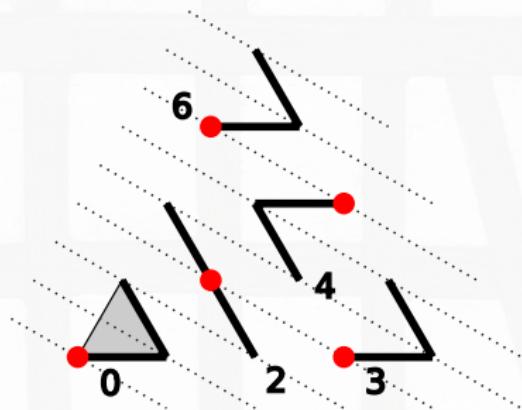


$$\text{Cat}(3,4)_q = \frac{1}{[3]_q} \begin{bmatrix} 6 \\ 2 \end{bmatrix}_q = 1 + q^2 + q^3 + q^4 + q^6 = \sum_{x \in (\mathcal{R} \cap 4\Delta)} q^x$$

3. Johnson statistics

3. Johnson statistics

Preview:



$$\text{Cat}(3, 4)_q = \frac{1}{[3]_q} \begin{bmatrix} 6 \\ 2 \end{bmatrix}_q = 1 + q^2 + q^3 + q^4 + q^6.$$

3. Johnson statistics

3. Johnson statistics

Note that $a\mathcal{L} \subseteq \mathcal{R}$ hence for any $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $\mathbf{x} + a\mathbf{y} \in \mathcal{R}$.

3. Johnson statistics

Note that $a\mathcal{L} \subseteq \mathcal{R}$ hence for any $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $\mathbf{x} + a\mathbf{y} \in \mathcal{R}$. The following definition is inspired by work of Paul Johnson (*Lattice points and simultaneous core partitions*, 2015).

Definition

A function $J : \mathcal{R} \rightarrow \mathbb{Z}$ is called a **Johnson statistic** if it satisfies:

- (Periodic) For all $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $J(\mathbf{x} + a\mathbf{y}) = J(\mathbf{x}) + aT(\mathbf{y})$.

3. Johnson statistics

Note that $a\mathcal{L} \subseteq \mathcal{R}$ hence for any $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $\mathbf{x} + a\mathbf{y} \in \mathcal{R}$. The following definition is inspired by work of Paul Johnson (*Lattice points and simultaneous core partitions*, 2015).

Definition

A function $J : \mathcal{R} \rightarrow \mathbb{Z}$ is called a **Johnson statistic** if it satisfies:

- (Periodic) For all $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $J(\mathbf{x} + a\mathbf{y}) = J(\mathbf{x}) + aT(\mathbf{y})$.
- (Catalan) For all $\gcd(a, b) = 1$ we have

$$\sum_{\mathbf{x} \in (\mathcal{R} \cap b\Delta)} q^{J(\mathbf{x})} = \text{Cat}(a, b)_q.$$

3. Johnson statistics

Note that $a\mathcal{L} \subseteq \mathcal{R}$ hence for any $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $\mathbf{x} + a\mathbf{y} \in \mathcal{R}$. The following definition is inspired by work of Paul Johnson (*Lattice points and simultaneous core partitions*, 2015).

Definition

A function $J : \mathcal{R} \rightarrow \mathbb{Z}$ is called a **Johnson statistic** if it satisfies:

- (Periodic) For all $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $J(\mathbf{x} + a\mathbf{y}) = J(\mathbf{x}) + aT(\mathbf{y})$.
- (Catalan) For all $\gcd(a, b) = 1$ we have

$$\sum_{\mathbf{x} \in (\mathcal{R} \cap b\Delta)} q^{J(\mathbf{x})} = \text{Cat}(a, b)_q.$$

Conjecture

Johnson statistics exist for all a .

3. Johnson statistics

Note that $a\mathcal{L} \subseteq \mathcal{R}$ hence for any $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $\mathbf{x} + a\mathbf{y} \in \mathcal{R}$. The following definition is inspired by work of Paul Johnson (*Lattice points and simultaneous core partitions*, 2015).

Definition

A function $J : \mathcal{R} \rightarrow \mathbb{Z}$ is called a **Johnson statistic** if it satisfies:

- (Periodic) For all $\mathbf{x} \in \mathcal{R}$ and $\mathbf{y} \in \mathcal{L}$ we have $J(\mathbf{x} + a\mathbf{y}) = J(\mathbf{x}) + aT(\mathbf{y})$.
- (Catalan) For all $\gcd(a, b) = 1$ we have

$$\sum_{\mathbf{x} \in (\mathcal{R} \cap b\Delta)} q^{J(\mathbf{x})} = \text{Cat}(a, b)_q.$$

Theorem

Johnson statistics exist for all $a \leq 20$.

3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets $\mathcal{R}/a\mathcal{L}$. We note that $\#(\mathcal{R}/a\mathcal{L}) = a^{a-2}$ because

$$\underbrace{a\mathcal{L} \subseteq \mathcal{R}}_{a^{a-1}} \subseteq \overbrace{\mathcal{R}}^a \subseteq \mathcal{L}$$

3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets $\mathcal{R}/a\mathcal{L}$. We note that $\#(\mathcal{R}/a\mathcal{L}) = a^{a-2}$ because

$$\underbrace{a\mathcal{L} \subseteq \mathcal{R} \subseteq \mathcal{L}}_{a^{a-1}}$$

There is a canonical set of coset representatives. Define the **fundamental box**

$$\text{Box} = \{\mathbf{x} \in \mathbb{R}^{a-1} : 0 \leq x_i < a \text{ for all } i\}.$$

3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets $\mathcal{R}/a\mathcal{L}$. We note that $\#(\mathcal{R}/a\mathcal{L}) = a^{a-2}$ because

$$a\mathcal{L} \subseteq \overbrace{\mathcal{R}}^{a^{a-1}} \subseteq \mathcal{L}$$

There is a canonical set of coset representatives. Define the **fundamental box**

$$\text{Box} = \{\mathbf{x} \in \mathbb{R}^{a-1} : 0 \leq x_i < a \text{ for all } i\}.$$

Then taking remainders mod a gives a bijection

$$\mathcal{R}/a\mathcal{L} \longleftrightarrow \mathcal{R} \cap \text{Box}.$$

3. Johnson statistics

We have the following expressions on the fundamental box.

Theorem

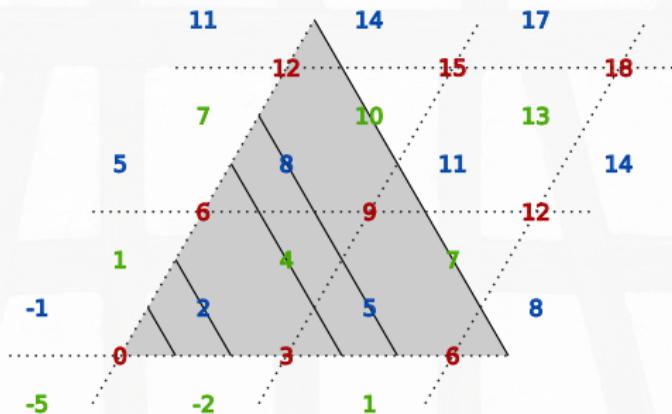
If $J : \mathcal{R} \rightarrow \mathbb{Z}$ is a Johnson statistic then we have

$$[a]_{q^2} [a]_{q^3} \cdots [a]_{q^{a-1}} = \sum_{\mathbf{x} \in (\mathcal{R} \cap \text{Box})} q^{J(\mathbf{x})},$$

$$\text{Cat}(a, b)_q = \sum_{\mathbf{x} \in (\mathcal{R} \cap \text{Box})} q^{J(\mathbf{x})} \left[\begin{matrix} a-1 + \lfloor (b - \sum_i x_i)/a \rfloor \\ a-1 \end{matrix} \right]_{q^a}.$$

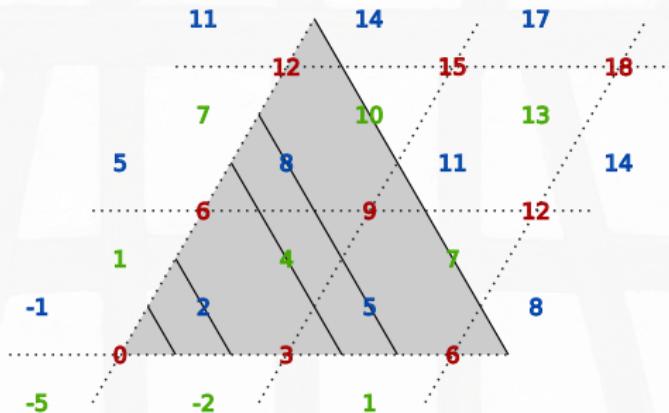
3. Johnson statistics

When $a = 3$ there is exists a unique Johnson statistic.



3. Johnson statistics

When $a = 3$ there is exists a unique Johnson statistic.

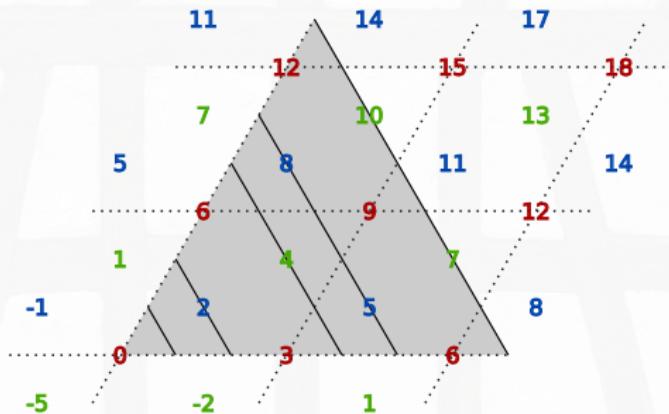


Monotonicity:

$$\text{Cat}(3, 1)_q = 1,$$
$$\text{Cat}(3, 2)_q = 1 + q^2,$$
$$\text{Cat}(3, 4)_q = 1 + q^2 + q^3 + q^4 + q^6,$$
$$\text{Cat}(3, 5)_q = 1 + q^2 + q^3 + q^4 + q^5 + q^6 + q^8.$$

3. Johnson statistics

When $a = 3$ there is exists a unique Johnson statistic.

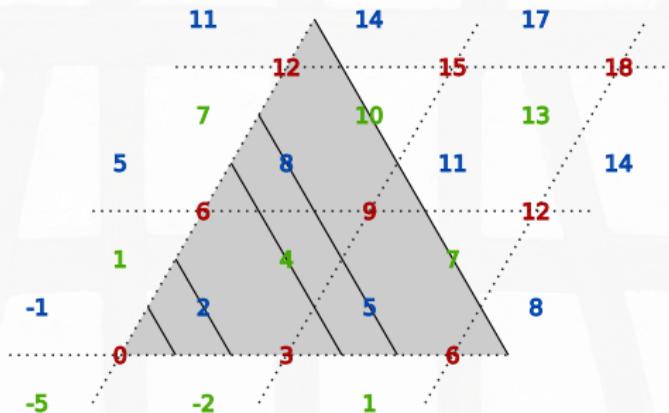


Since $a^{a-2} = 3^1$ the fundamental domain contains three points:

$$\begin{aligned}\mathcal{R} \cap \text{Box} &= \{(x_1, x_2) : 0 \leq x_i < 3 \text{ and } x_1 + 2x_2 \equiv 0 \pmod{3}\} \\ &= \{(0, 0), (1, 1), (2, 2)\}.\end{aligned}$$

3. Johnson statistics

When $a = 3$ there is exists a unique Johnson statistic.

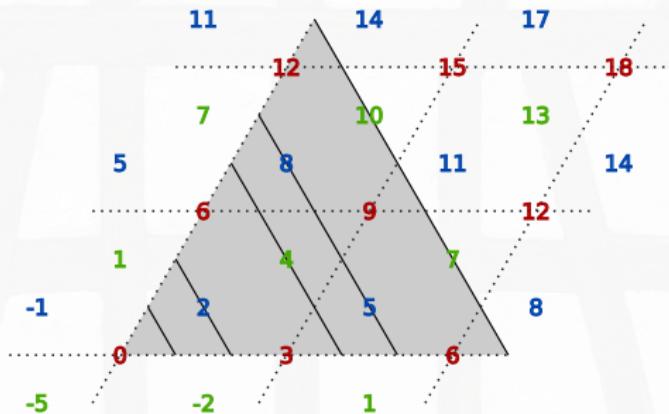


Since $a^{a-2} = 3^1$ the fundamental domain contains three points:

$$\sum_{\mathbf{x} \in (\mathcal{R} \cap \text{Box})} q^{J(\mathbf{x})} = q^0 + q^2 + q^4 = [3]_{q^2}.$$

3. Johnson statistics

When $a = 3$ there is exists a unique Johnson statistic.

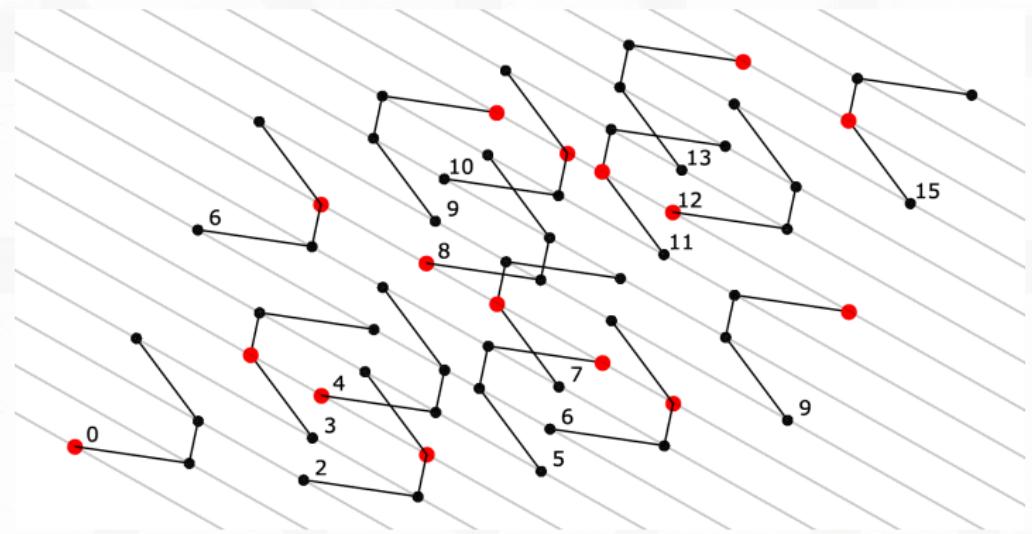


Since $a^{a-2} = 3^1$ the fundamental domain contains three points:

$$\text{Cat}(3, b)_q = q^0 \begin{bmatrix} 2 + \lfloor \frac{b}{3} \rfloor \\ 2 \end{bmatrix}_{q^3} + q^2 \begin{bmatrix} 2 + \lfloor \frac{b-2}{3} \rfloor \\ 2 \end{bmatrix}_{q^3} + q^4 \begin{bmatrix} 2 + \lfloor \frac{b-4}{3} \rfloor \\ 2 \end{bmatrix}_{q^3}.$$

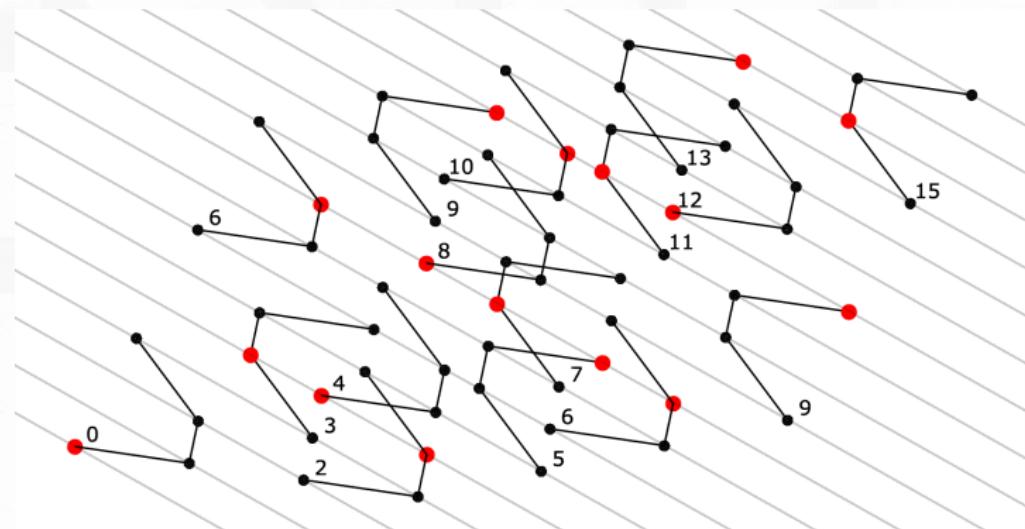
3. Johnson statistics

When $a = 4$ there are $a^{a-2} = 4^2 = 16$ cosets. Here is a Johnson statistic.



3. Johnson statistics

When $a = 4$ there are $a^{a-2} = 4^2 = 16$ cosets. Here is a Johnson statistic.



Don't ask me any questions about this picture. For $a \geq 5$ I do not know any natural construction of Johnson statistics, but I know that they exist for $a \leq 20$.

4. Brion's theorem and rational q -Catalan numbers

4. Brion's theorem and rational q -Catalan numbers

Given a set $S \subseteq \mathbb{R}^{a-1}$ define the **Johnson generating function**:

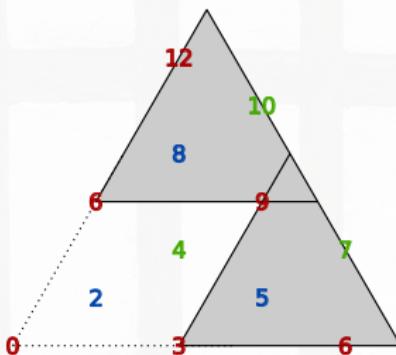
$$(S)_J = \sum_{\mathbf{x} \in (\mathcal{R} \cap S)} q^{J(\mathbf{x})}.$$

4. Brion's theorem and rational q -Catalan numbers

Given a set $S \subseteq \mathbb{R}^{a-1}$ define the **Johnson generating function**:

$$(S)_J = \sum_{\mathbf{x} \in (\mathcal{R} \cap S)} q^{J(\mathbf{x})}.$$

The formula $(\text{Box})_J = [a]_{q^2} [a]_{q^3} \cdots [a]_{q^{a-1}}$ is proved by **inclusion-exclusion**, e.g.,



$$\text{Cat}(3, 7)_q - q^3 \text{Cat}(3, 4)_q - q^6 \text{Cat}(3, 4)_q + q^9 \text{Cat}(3, 1)_q = [3]_{q^2}$$

4. Brion's theorem and rational q -Catalan numbers

To prove this we need a q -identity.

Lemma

Define the Pochhammer symbol $(u; q)_n = (1 - u)(1 - uq) \cdots (1 - uq^{n-1})$. For any set $J \subseteq \mathbb{N}$ we let $\sum J$ denote the sum $\sum_{j \in J} j$. Then for any u we have

$$\sum_{J \subseteq \{1, \dots, a-1\}} (-1)^{|J|} q^{\sum J} \frac{(uq^{-\#J}; q)_{a-1}}{(q; q)_{a-1}} = \frac{(q^a; q^a)_{a-1}}{(q; q)_{a-1}},$$

Note that the right hand side is independent of u .

4. Brion's theorem and rational q -Catalan numbers

To prove this we need a q -identity.

Lemma

Define the Pochhammer symbol $(u; q)_n = (1 - u)(1 - uq) \cdots (1 - uq^{n-1})$. For any set $J \subseteq \mathbb{N}$ we let $\sum J$ denote the sum $\sum_{j \in J} j$. Then for any u we have

$$\sum_{J \subseteq \{1, \dots, a-1\}} (-1)^{\#J} q^{\sum J} \frac{(uq^{-a\#\mathcal{J}}; q)_{a-1}}{(q; q)_{a-1}} = \frac{(q^a; q^a)_{a-1}}{(q; q)_{a-1}},$$

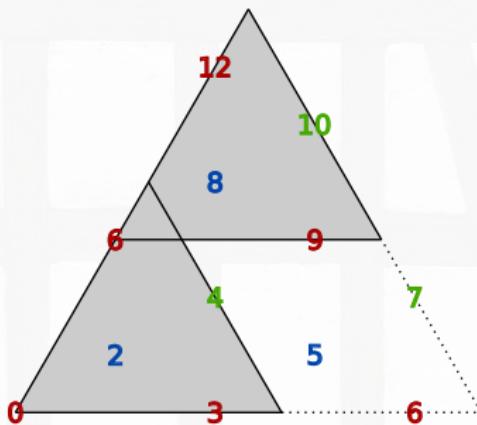
Note that the right hand side is independent of u .

We put $u = q^{b+1}$ for some large b with $\gcd(a, b) = 1$ and divide by $[a]_q$ to get

$$\begin{aligned} (\text{Box})_J &= \sum_{J \subseteq \{1, \dots, a-1\}} (-1)^{\#J} q^{\sum J} \text{Cat}(a, b - a\#\mathcal{J})_q \\ &= [a]_{q^2} [a]_{q^3} \cdots [a]_{q^{a-1}}. \end{aligned}$$

4. Brion's theorem and rational q -Catalan numbers

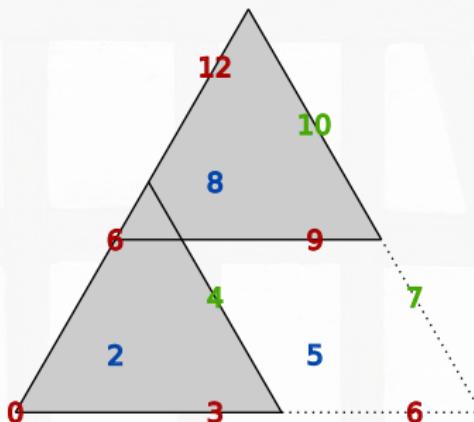
A similar identity gives a generating function for a fundamental domain at each vertex of the dilated simplex $b\Delta$:



$$\text{Cat}(3, 7)_q - \text{Cat}(3, 4)_q - q^6 \text{Cat}(3, 4)_q + q^6 \text{Cat}(3, 1)_q = q^6[3]_q$$

4. Brion's theorem and rational q -Catalan numbers

A similar identity gives a generating function for a fundamental domain at each vertex of the dilated simplex $b\Delta$:



If $\gcd(a, b) = 1$ then the k th vertex of $b\Delta$ has the following q -analogue of a^{a-2} :

$$(\text{Box}_b^k)_J = q^{bk - (a-1)\binom{k+2}{2}} \frac{1}{[a]_q} \prod_{i=1}^k [a]_{q^i} \prod_{i=1}^{a-1-k} [a]_{q^i}.$$

4. Brion's theorem and rational q -Catalan numbers

Let K_b^k be the **vertex cone** of $b\Delta$ at the k th vertex $b\omega_k$. By using the periodicity of Johnson statistics and the previous result, we obtain the Johnson generating function of the cone:

$$(K_b^k)_J = \frac{(\text{Box}_b^k)_J}{\prod_{i \in \{0,1,\dots,a-1\} \setminus \{k\}} (1 - q^{a(i-k)})} = \frac{1}{[a]_q} \frac{(-1)^k q^{bk + \binom{k+1}{2}}}{(q; q)_k (q; q)_{a-1-k}}.$$

4. Brion's theorem and rational q -Catalan numbers

Let K_b^k be the **vertex cone** of $b\Delta$ at the k th vertex $b\omega_k$. By using the periodicity of Johnson statistics and the previous result, we obtain the Johnson generating function of the cone:

$$(K_b^k)_J = \frac{(\text{Box}_b^k)_J}{\prod_{i \in \{0, 1, \dots, a-1\} \setminus \{k\}} (1 - q^{a(i-k)})} = \frac{1}{[a]_q} \frac{(-1)^k q^{bk + \binom{k+1}{2}}}{(q; q)_k (q; q)_{a-1-k}}.$$

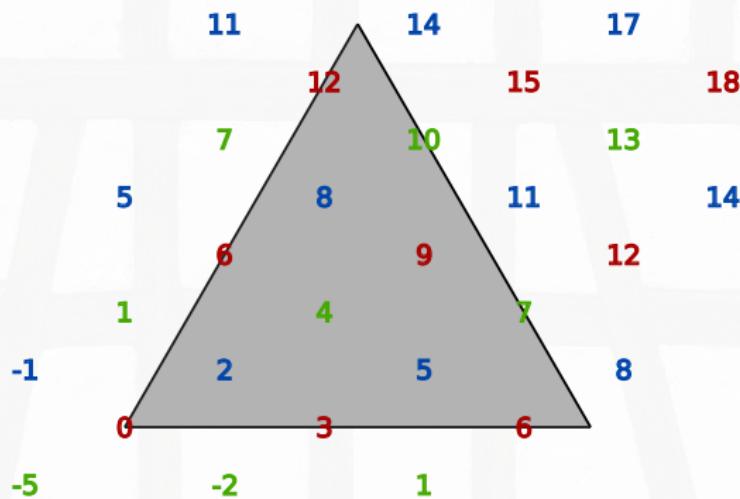
Finally, by applying the q -binomial theorem we obtain the following identity:

$$(b\Delta)_J = \text{Cat}(a, b)_q = \sum_{k=0}^{a-1} (K_b^k)_J.$$

This is some q -analogue of **Brion's formula** for the dilated simplex $b\Delta$, which is a **rational polytope** with regard to the root lattice \mathcal{R} .

4. Brion's theorem and rational q -Catalan numbers

Example:



$$\frac{1 + q^2 + q^4}{(1 - q^3)(1 - q^6)} + \frac{q^5 + q^6 + q^7}{(1 - q^{-3})(1 - q^3)} + \frac{q^8 + q^{10} + q^{12}}{(1 - q^{-6})(1 - q^{-3})}$$

$$= 1 + q^2 + q^3 + q^4 + q^5 + 2q^6 + q^7 + q^8 + q^9 + q^{10} + q^{12} = \text{Cat}(3, 7)_q.$$

5. Closing remarks

5. Closing remarks

- I conjecture that the same result holds for all **alcoved polytopes** P :

$$(P)_J = \sum_{\text{vertices } v} (K_v)_J.$$

5. Closing remarks

- I conjecture that the same result holds for all **alcoved polytopes** P :

$$(P)_J = \sum_{\text{vertices } v} (K_v)_J.$$

- If we define the **Johnson point enumerator**

$$(S)_J, z = \sum_{x \in (\mathcal{R} \cap S)} q^{J(x)} z^x = \sum_{x \in (\mathcal{R} \cap S)} q^{J(x)} z_1^{x_1} \cdots z_{a-1}^{x_{a-1}}$$

then the corresponding Brion's theorem holds when $q = 1$ or when $z = (1, 1, \dots, 1)$ but not in general.

5. Closing remarks

- I conjecture that the same result holds for all **alcoved polytopes** P :

$$(P)_J = \sum_{\text{vertices } v} (K_v)_J.$$

- If we define the **Johnson point enumerator**

$$(S)_J, z = \sum_{x \in (\mathcal{R} \cap S)} q^{J(x)} z^x = \sum_{x \in (\mathcal{R} \cap S)} q^{J(x)} z_1^{x_1} \cdots z_{a-1}^{x_{a-1}}$$

then the corresponding Brion's theorem holds when $q = 1$ or when $z = (1, 1, \dots, 1)$ but not in general.

- Hence this does **not** follow from Chapoton-style q -Ehrhart theory.

Vielen Dank!

There is a secret in this picture.