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1. Rational q-Catalan numbers

Given coprime integers gcd(a, b) = 1, the rational Catalan number is defined as

Cat(a, b) =
1

a + b

(
a + b
a

)
=

1
a

(
a− 1 + b
a− 1

)
,

And the rational q-Catalan number is defined as

Cat(a, b)q =
1

[a + b]q

[
a + b
a

]
q

=
1

[a]q

[
a− 1 + b
a− 1

]
q

.

Facts

1. Cat(a, b) ∈ N (this is not di�icult)
2. Cat(a, b)q ∈ Z[q] (this is not di�icult)
3. Cat(a, b)q ∈ N[q] (this is di�icult)
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1. Rational q-Catalan numbers

Stanton’s Problem (~2005): Find a natural set X with #X = Cat(a, b) and a
function stat : X → N satisfying

Cat(a, b)q =
∑
x∈X

qstat(x).

One solution to this problem is known. Let Dycka,b be the set of Dyck paths in an
a× b rectangle, though of as a sequence of a up steps (u) and b right steps (r)
staying above the diagonal. For example, uurruurrrrr ∈ Dyck4,7.

Given P ∈ Dycka,b let area(P) be the number of full squares between the path and
the diagonal. For example, area(uurruurrrrr) = 5.
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1. Rational q-Catalan numbers

Stanton’s Problem (~2005): Find a natural set X with #X = Cat(a, b) and a
function stat : X → N satisfying

Cat(a, b)q =
∑
x∈X

qstat(x).

Define the sweep map Dycka,b → Dycka,b as follows. Label each step with
endpoint (x, y) by the “height” yb− ax. Then sort the steps by decreasing labels.
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Example: sweep(uurruurrrrr) = uruurrrurrr.
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1. Rational q-Catalan numbers

Stanton’s Problem (~2005): Find a natural set X with #X = Cat(a, b) and a
function stat : X → N satisfying

Cat(a, b)q =
∑
x∈X

qstat(x).

Theorem (conjectured by many, proved by Mellit 2021)

Cat(a, b)q =
∑

P∈Dycka,b

qarea(P)−area(sweep(P))+(a−1)(b−1)/2

Actually, Mellit proved that the statistics area and area ◦ sweep give the rational
q, t-Catalan number

Cat(a, b)q,t =
∑

P∈Dycka,b

qarea(P)tarea(sweep(P)).
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2. Lattice points

This is not a satisfactory resolution of Stanton’s problem because:

• The function stat(P) = area(P)− area(sweep(P)) + (a− 1)(b− 1)/2 is
di�icult to work with.

• It does not explain some basic properties such as the. . .

Monotonicity Conjecture

For a, b, c ≥ 1 with gcd(a, b) = gcd(a, c) = 1 and b < cwe have

Cat(a, c)q − Cat(a, b)q ∈ N[q].

Example: Cat(3, 1)q = 1,
Cat(3, 2)q = 1 + q2,

Cat(3, 4)q = 1 + q2 + q3 + q4 + q6,

Cat(3, 5)q = 1 + q2 + q3 + q4 + q5 + q6 + q8.
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This is not a satisfactory resolution of Stanton’s problem because:

• The function stat(P) = area(P)− area(sweep(P)) + (a− 1)(b− 1)/2 is
di�icult to work with.

• It does not explain some basic properties such as the. . .

Monotonicity Conjecture

For a, b, c ≥ 1 with gcd(a, b) = gcd(a, c) = 1 and b < cwe have

Cat(a, c)q − Cat(a, b)q ∈ N[q].

In this talk I will present a new point of view that I have used to prove monotonicity
for the infinite set of triples a, b, c satisfying a ≤ 20. Here’s the idea:

Dyck paths  lattice points.



2. Lattice points

Some notation for the root lattice of type Aa−1.

LetL := Za−1 be the weight lattice with inner product

〈x, y〉 = xT


2 −1

−1 2
. . .

. . . . . . −1
−1 2



−1

y

The coordinate basis are called the fundamental weights ω1, . . . , ωa−1 and the dual
basis are called the simple roots α1, . . . , αa−1.

ω1 = (1, 0, 0, . . . , 0)

ω2 = (0, 1, 0, . . . , 0)
...

ωa−1 = (0, 0, . . . , 0, 1)

α1 = (2,−1, 0, . . . , 0, 0)

α2 = (−1, 2,−1, . . . , 0)
...

αa−1 = (0, 0, . . . , 0,−1, 2)
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2. Lattice points

Example a = 3: The red points are the root lattice

R = Z{α1, . . . , αa−1}.



2. Lattice points

Example a = 3: The grey triangle ∆ is the fundamental alcove

∆ = hull{0, ω1, . . . , ωa−1}.



2. Lattice points

Example a = 3: And the dotted lines are the level sets of the tilted height function

T(x1, x2, . . . , xa−1) := x1 + 2x2 + · · ·+ (a− 1)xa−1 = a〈x, ωa−1〉.



2. Lattice points

Example a = 3: Note that we can also write

R = {x ∈ L : T(x) ≡ 0 mod a}.



2. Lattice points

Important Observation: For any integer b, the tilted height generating function for
the dilated alcove b∆ is the q-binomial coe�icient:

∑
x∈(L∩b∆)

qT(x) =

[
a− 1 + b
a− 1

]
q

.
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8

6

[
6
2

]
q

= 1 + q + 2q2 + 2q3 + 3q4

+2q5 + 2q6 + q7 + q8
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2. Lattice points

But if gcd(a, b) = 1 then Mark Haiman tells us that the number of points of the root
lattice in the dilated alcove b∆ is the rational Catalan number:

#(R∩ b∆) = Cat(a, b) =
1
a

(
a− 1 + b
a− 1

)
.

Cat(3, 4) =
1
3

(
6
2

)
= 5



2. Lattice points

But if gcd(a, b) = 1 then Mark Haiman tells us that the number of points of the root
lattice in the dilated alcove b∆ is the rational Catalan number:

#(R∩ b∆) = Cat(a, b) =
1
a

(
a− 1 + b
a− 1

)
.

Cat(3, 4) =
1
3

(
6
2

)
= 5



2. Lattice points

We need some way to “divide by [a]q” using the geometry.
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?

Cat(3, 4)q =
1

[3]q

[
6
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]
q

= 1 + q2 + q3 + q4 + q6 =
∑

x∈(R∩4∆)

q?
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3. Johnson statistics

Preview:
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3. Johnson statistics

Note that aL ⊆ R hence for any x ∈ R and y ∈ Lwe have x + ay ∈ R. The
following definition is inspired by work of Paul Johnson (Lattice points and
simultaneous core partitions, 2015).

Definition
A function J : R→ Z is called a Johnson statistic if it satisfies:

• (Periodic) For all x ∈ R and y ∈ Lwe have J(x + ay) = J(x) + aT(y).

• (Catalan) For all gcd(a, b) = 1 we have∑
x∈(R∩b∆)

qJ(x) = Cat(a, b)q.

Conjecture
Johnson statistics exist for all a.
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3. Johnson statistics

Note that aL ⊆ R hence for any x ∈ R and y ∈ Lwe have x + ay ∈ R. The
following definition is inspired by work of Paul Johnson (Lattice points and
simultaneous core partitions, 2015).

Definition
A function J : R→ Z is called a Johnson statistic if it satisfies:

• (Periodic) For all x ∈ R and y ∈ Lwe have J(x + ay) = J(x) + aT(y).

• (Catalan) For all gcd(a, b) = 1 we have∑
x∈(R∩b∆)

qJ(x) = Cat(a, b)q.

Theorem
Johnson statistics exist for all a ≤ 20.



3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets
R/aL. We note that #(R/aL) = aa−2 because

aL ⊆
a︷ ︸︸ ︷

R ⊆ L︸ ︷︷ ︸
aa−1

There is a canonical set of coset representatives. Define the fundamental box

Box = {x ∈ Ra−1 : 0 ≤ xi < a for all i}.

Then taking remainders mod a gives a bijection

R/aL ←→ R∩ Box.



3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets
R/aL. We note that #(R/aL) = aa−2 because

aL ⊆
a︷ ︸︸ ︷

R ⊆ L︸ ︷︷ ︸
aa−1

There is a canonical set of coset representatives. Define the fundamental box

Box = {x ∈ Ra−1 : 0 ≤ xi < a for all i}.

Then taking remainders mod a gives a bijection

R/aL ←→ R∩ Box.



3. Johnson statistics

Because of periodicity a Johnson statistic is determined by its values on the cosets
R/aL. We note that #(R/aL) = aa−2 because

aL ⊆
a︷ ︸︸ ︷

R ⊆ L︸ ︷︷ ︸
aa−1

There is a canonical set of coset representatives. Define the fundamental box

Box = {x ∈ Ra−1 : 0 ≤ xi < a for all i}.

Then taking remainders mod a gives a bijection

R/aL ←→ R∩ Box.



3. Johnson statistics

We have the following expressions on the fundamental box.

Theorem
If J : R→ Z is a Johnson statistic then we have

[a]q2 [a]q3 · · · [a]qa−1 =
∑

x∈(R∩Box)

qJ(x),

Cat(a, b)q =
∑

x∈(R∩Box)

qJ(x)

[
a− 1 + b(b−

∑
i xi)/ac

a− 1

]
qa

.



3. Johnson statistics

When a = 3 there is exists a unique Johnson statistic.
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Monotonicity: Cat(3, 1)q = 1,
Cat(3, 2)q = 1 + q2,

Cat(3, 4)q = 1 + q2 + q3 + q4 + q6,

Cat(3, 5)q = 1 + q2 + q3 + q4 + q5 + q6 + q8.
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Monotonicity: Cat(3, 1)q = 1,
Cat(3, 2)q = 1 + q2,

Cat(3, 4)q = 1 + q2 + q3 + q4 + q6,

Cat(3, 5)q = 1 + q2 + q3 + q4 + q5 + q6 + q8.
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Since aa−2 = 31 the fundamental domain contains three points:

R∩ Box = {(x1, x2) : 0 ≤ xi < 3 and x1 + 2x2 ≡ 0 mod 3}
= {(0, 0), (1, 1), (2, 2)}.
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When a = 3 there is exists a unique Johnson statistic.
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Since aa−2 = 31 the fundamental domain contains three points:∑
x∈(R∩Box)

qJ(x) = q0 + q2 + q4 = [3]q2 .



3. Johnson statistics

When a = 3 there is exists a unique Johnson statistic.
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Since aa−2 = 31 the fundamental domain contains three points:

Cat(3, b)q = q0

[
2 + b b3 c

2

]
q3

+ q2

[
2 + b b−2

3 c
2

]
q3

+ q4

[
2 + b b−4

3 c
2

]
q3

.



3. Johnson statistics

When a = 4 there are aa−2 = 42 = 16 cosets. Here is a Johnson statistic.

Don’t ask me any questions about this picture. For a ≥ 5 I do not know any
natural construction of Johnson statistics, but I know that they exist for a ≤ 20.



3. Johnson statistics

When a = 4 there are aa−2 = 42 = 16 cosets. Here is a Johnson statistic.

Don’t ask me any questions about this picture. For a ≥ 5 I do not know any
natural construction of Johnson statistics, but I know that they exist for a ≤ 20.



4. Brion’s theorem and rational q-Catalan numbers

Given a set S ⊆ Ra−1 define the Johnson generating function:

(S)J =
∑

x∈(R∩S)

qJ(x).

The formula (Box)J = [a]q2 [a]q3 · · · [a]qa−1 is proved by inclusion-exclusion, e.g.,
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Cat(3, 7)q − q3Cat(3, 4)q − q6Cat(3, 4)q + q9Cat(3, 1)q = [3]q2
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4. Brion’s theorem and rational q-Catalan numbers

Given a set S ⊆ Ra−1 define the Johnson generating function:

(S)J =
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x∈(R∩S)
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4. Brion’s theorem and rational q-Catalan numbers

To prove this we need a q-identity.

Lemma

Define the Pochhammer symbol (u; q)n = (1− u)(1− uq) · · · (1− uqn−1). For
any set J ⊆ N we let

∑
J denote the sum

∑
j∈J j. Then for any uwe have

∑
J⊆{1,...,a−1}

(−1)#Jqa
∑

J (uq−a#J; q)a−1

(q; q)a−1
=

(qa; qa)a−1

(q; q)a−1
,

Note that the right hand side is independent of u.

We put u = qb+1 for some large bwith gcd(a, b) = 1 and divide by [a]q to get

(Box)J =
∑

J⊆{1,...,a−1}

(−1)#qa
∑

JCat(a, b− a#J)q

= [a]q2 [a]q3 · · · [a]qa−1 .
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4. Brion’s theorem and rational q-Catalan numbers

A similar identity gives a generating function for a fundamental domain at each
vertex of the dilated simplex b∆:
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Cat(3, 7)q − Cat(3, 4)q − q6Cat(3, 4)q + q6Cat(3, 1)q = q6[3]q



4. Brion’s theorem and rational q-Catalan numbers

A similar identity gives a generating function for a fundamental domain at each
vertex of the dilated simplex b∆:
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If gcd(a, b) = 1 then the kth vertex of b∆ has the following q-analogue of aa−2:

(Boxkb)J = qbk−(a−1)(k+2
2 ) 1

[a]q

k∏
i=1

[a]qi

a−1−k∏
i=1

[a]qi .



4. Brion’s theorem and rational q-Catalan numbers

Let Kkb be the vertex cone of b∆ at the kth vertex bωk. By using the periodicity of
Johnson statistics and the previous result, we obtain the Johnson generating
function of the cone:

(Kkb)J =
(Boxkb)J∏

i∈{0,1,...,a−1}\{k}

(1− qa(i−k))
=

1
[a]q

(−1)kqbk+(k+1
2 )

(q; q)k(q; q)a−1−k
.

Finally, by applying the q-binomial theorem we obtain the following identity:

(b∆)J = Cat(a, b)q =
a−1∑
k=0

(Kkb)J.

This is some q-analogue of Brion’s formula for the dilated simplex b∆, which is a
rational polytope with regard to the root latticeR.
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4. Brion’s theorem and rational q-Catalan numbers

Example:
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1 + q2 + q4

(1− q3)(1− q6)
+

q5 + q6 + q7

(1− q−3)(1− q3)
+

q8 + q10 + q12

(1− q−6)(1− q−3)

= 1 + q2 + q3 + q4 + q5 + 2q6 + q7 + q8 + q9 + q10 + q12 = Cat(3, 7)q.



5. Closing remarks

• I conjecture that the same result holds for all alcoved polytopes P:

(P)J =
∑

vertices v

(Kv)J.

• If we define the Johnson point enumerator

(S)J,z =
∑

x∈(R∩S)

qJ(x)zx =
∑

x∈(R∩S)

qJ(x)zx1
1 · · · z

xa−1
a−1

then the corresponding Brion’s theorem holds when q = 1 or when
z = (1, 1, . . . , 1) but not in general.

• Hence this does not follow from Chapoton-style q-Ehrhart theory.
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Vielen Dank!

There is a secret in this picture.


