Rational Associahedra

Drew Armstrong

University of Miami
www.math.miami.edu/~armstrong

York University
Applied Algebra Seminar
Nov 25, 2013
What is a Catalan Number?

Convention

Given $x \in \mathbb{Q} \setminus [-1, 0]$ there exist unique positive coprime $a, b \in \mathbb{Z}$ with

$$x = \frac{a}{b-a}.$$

We will always identify $x \leftrightarrow (a, b)$.

Examples: Given $n \geq 1$ we have
What is a Catalan Number?

Convention
Given \(x \in \mathbb{Q} \setminus [-1, 0] \) there exist unique positive coprime \(a, b \in \mathbb{Z} \) with

\[
x = \frac{a}{b - a}.
\]

We will always identify \(x \leftrightarrow (a, b) \).

Examples: Given \(n \geq 1 \) we have
What is a Catalan Number?

Convention

Given \(x \in \mathbb{Q} \setminus [-1, 0] \) there exist unique positive coprime \(a, b \in \mathbb{Z} \) with

\[
x = \frac{a}{b - a}.
\]

We will always identify \(x \leftrightarrow (a, b) \).

Examples: Given \(n \geq 1 \) we have

\[
x = n = \frac{n}{1} = \frac{n}{(n + 1) - n} \leftrightarrow (n, n + 1)
\]
What is a Catalan Number?

Convention

Given \(x \in \mathbb{Q} \setminus [-1, 0] \) there exist unique positive coprime \(a, b \in \mathbb{Z} \) with

\[
x = \frac{a}{b - a}.
\]

We will always identify \(x \leftrightarrow (a, b) \).

Examples: Given \(n \geq 1 \) we have

\[
x = \frac{1}{n} = \frac{1}{(n + 1) - 1} \leftrightarrow (1, n + 1)
\]
What is a Catalan Number?

Convention

Given \(x \in \mathbb{Q} \setminus [-1, 0] \) there exist unique *positive coprime* \(a, b \in \mathbb{Z} \) with

\[
x = \frac{a}{b - a}.
\]

We will always identify \(x \leftrightarrow (a, b) \).

Examples: Given \(n \geq 1 \) we have

\[
x = -n = \frac{n}{-1} = \frac{n}{(n - 1) - n} \leftrightarrow (n, n - 1) \quad \text{need } n \geq 2
\]
What is a Catalan Number?

Convention

Given \(x \in \mathbb{Q} \setminus [-1, 0] \) there exist unique positive coprime \(a, b \in \mathbb{Z} \) with

\[
x = \frac{a}{b - a}.
\]

We will always identify \(x \leftrightarrow (a, b) \).

Examples: Given \(n \geq 1 \) we have

\[
x = -\frac{1}{n} = \frac{1}{-n} = \frac{1}{(-n + 1) - 1} \leftrightarrow \text{impossible!}
\]
What is a Catalan Number?

Definition

For each \(x \in \mathbb{Q} \setminus [-1, 0] \) we define the **Catalan number**:

\[
\text{Cat}(x) = \text{Cat}(a, b) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a!b!}.
\]

Claim: This is an integer. (Proof postponed.)

Example:

\[
\text{Cat} \left(\frac{5}{3} \right) = \text{Cat} \left(\frac{5}{8 - 5} \right) = \text{Cat}(5, 8) = \frac{12!}{5!8!} = 99.
\]
What is a Catalan Number?

Definition
For each $x \in \mathbb{Q} \setminus [-1, 0]$ we define the **Catalan number**:

$$
\text{Cat}(x) = \text{Cat}(a, b) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a!b!}.
$$

Claim: This is an integer. (Proof postponed.)

Example:

$$
\text{Cat} \left(\frac{5}{3} \right) = \text{Cat} \left(\frac{5}{8 - 5} \right) = \text{Cat}(5, 8) = \frac{12!}{5!8!} = 99.
$$
What is a Catalan Number?

Definition
For each $x \in \mathbb{Q} \setminus [-1, 0]$ we define the **Catalan number**:

$$\text{Cat}(x) = \text{Cat}(a, b) := \frac{1}{a + b} \binom{a + b}{a, b} = \frac{(a + b - 1)!}{a!b!}.$$

Claim: This is an integer. (Proof postponed.)

Example:

$$\text{Cat} \left(\frac{5}{3} \right) = \text{Cat} \left(\frac{5}{8 - 5} \right) = \text{Cat}(5, 8) = \frac{12!}{5!8!} = 99.$$
When $b = 1 \mod a$ we have . . .

- **Eugène Charles Catalan (1814-1894)**

 $(a, b) = (n, n + 1)$ gives the good old **Catalan number**:

 $$
 \text{Cat}(n) = \text{Cat} \left(\frac{n}{(n + 1) - n} \right) = \frac{1}{2n + 1} \binom{2n + 1}{n}.
 $$

- **Nicolaus Fuss (1755-1826)**

 $(a, b) = (n, kn + 1)$ gives the **Fuss-Catalan number**:

 $$
 \text{Cat} \left(\frac{n}{(kn + 1) - n} \right) = \frac{1}{(k + 1)n + 1} \binom{(k + 1)n + 1}{n}.
 $$
When $b = 1 \mod a$ we have . . .

- **Eugène Charles Catalan (1814-1894)**

 $(a, b) = (n, n + 1)$ gives the **good old Catalan number**:

 $$\text{Cat}(n) = \text{Cat} \left(\frac{n}{(n+1) - n} \right) = \frac{1}{2n+1} \binom{2n+1}{n}.$$

- **Nicolaus Fuss (1755-1826)**

 $(a, b) = (n, kn + 1)$ gives the **Fuss-Catalan number**:

 $$\text{Cat} \left(\frac{n}{(kn+1) - n} \right) = \frac{1}{(k+1)n + 1} \binom{(k+1)n + 1}{n}.$$
When $b = 1 \mod a$ we have . . .

▶ Eugène Charles Catalan (1814-1894)

$(a, b) = (n, n + 1)$ gives the good old Catalan number:

$$\text{Cat}(n) = \text{Cat} \left(\frac{n}{(n + 1) - n} \right) = \frac{1}{2n + 1} \binom{2n + 1}{n}. $$

▶ Nicolaus Fuss (1755-1826)

$(a, b) = (n, kn + 1)$ gives the Fuss-Catalan number:

$$\text{Cat} \left(\frac{n}{(kn + 1) - n} \right) = \frac{1}{(k + 1)n + 1} \binom{(k + 1)n + 1}{n}. $$
Symmetry about $x = -1/2$

Definition

By definition we have $\text{Cat}(a, b) = \text{Cat}(b, a)$, which implies that

$$\text{Cat}(x) = \text{Cat}(a, b) = \text{Cat}(b, a) = \text{Cat}(-x - 1).$$

This implies that for $0 < x \in \mathbb{Q}$ (i.e. $a < b$) we have

$$\text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$

We will call this the derived Catalan number:

$$\text{Cat}'(x) := \text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$
Symmetry about $x = -1/2$

Definition

By definition we have $\text{Cat}(a, b) = \text{Cat}(b, a)$, which implies that

$$\text{Cat}(x) = \text{Cat}(a, b) = \text{Cat}(b, a) = \text{Cat}(-x - 1).$$

This implies that for $0 < x \in \mathbb{Q}$ (i.e. $a < b$) we have

$$\text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$

We will call this the derived Catalan number:

$$\text{Cat}'(x) := \text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$
Symmetry about $x = -1/2$

Definition

By definition we have $\text{Cat}(a, b) = \text{Cat}(b, a)$, which implies that

$$\text{Cat}(x) = \text{Cat}(a, b) = \text{Cat}(b, a) = \text{Cat}(-x - 1).$$

This implies that for $0 < x \in \mathbb{Q}$ (i.e. $a < b$) we have

$$\text{Cat}\left(\frac{1}{x - 1}\right) = \text{Cat}\left(\frac{x}{1 - x}\right).$$

We will call this the derived Catalan number:

$$\text{Cat}'(x) := \text{Cat}\left(\frac{1}{x - 1}\right) = \text{Cat}\left(\frac{x}{1 - x}\right).$$
Symmetry about $x = -1/2$

Definition

By definition we have $\text{Cat}(a, b) = \text{Cat}(b, a)$, which implies that

$$\text{Cat}(x) = \text{Cat}(a, b) = \text{Cat}(b, a) = \text{Cat}(-x - 1).$$

This implies that for $0 < x \in \mathbb{Q}$ (i.e. $a < b$) we have

$$\text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$

We will call this the **derived Catalan number**:

$$\text{Cat}'(x) := \text{Cat} \left(\frac{1}{x - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right).$$
Symmetry about $x = -1/2$

Definition

Note that $x > 0 \iff \frac{1}{x} > 0$ and we have

$$\text{Cat}'\left(\frac{1}{x}\right) = \text{Cat} \left(\frac{1}{(1/x) - 1}\right) = \text{Cat} \left(\frac{x}{1 - x}\right) = \text{Cat}'(x).$$

We call this rational duality:

$$\text{Cat}'(x) = \text{Cat}'\left(\frac{1}{x}\right).$$

In terms of coprime $0 < a < b$ this translates to

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

(This will appear later as Alexander duality of rational associahedra.)
Symmetry about $x = -1/2$

Definition

Note that $x > 0 \iff \frac{1}{x} > 0$ and we have

$$\text{Cat}'(1/x) = \text{Cat} \left(\frac{1}{(1/x) - 1} \right) = \text{Cat} \left(\frac{x}{1 - x} \right) = \text{Cat}'(x).$$

We call this rational duality:

$$\text{Cat}'(x) = \text{Cat}'(1/x).$$

In terms of coprime $0 < a < b$ this translates to

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

(This will appear later as Alexander duality of rational associahedra.)
Symmetry about $x = -1/2$

Definition

Note that $x > 0 \iff \frac{1}{x} > 0$ and we have

$$\text{Cat}'(1/x) = \text{Cat} \left(\frac{1}{(1/x) - 1} \right) = \text{Cat} \left(\frac{x}{1-x} \right) = \text{Cat}'(x).$$

We call this **rational duality**:

$$\text{Cat}'(x) = \text{Cat}'(1/x).$$

In terms of coprime $0 < a < b$ this translates to

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

(This will appear later as **Alexander duality** of rational associahedra.)
Symmetry about $x = -1/2$

Definition

Note that $x > 0 \iff \frac{1}{x} > 0$ and we have

$$\text{Cat}'\left(\frac{1}{x}\right) = \text{Cat}\left(\frac{1}{(1/x) - 1}\right) = \text{Cat}\left(\frac{x}{1 - x}\right) = \text{Cat}'(x).$$

We call this **rational duality**:

$$\text{Cat}'(x) = \text{Cat}'\left(\frac{1}{x}\right).$$

In terms of coprime $0 < a < b$ this translates to

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

(This will appear later as **Alexander duality** of rational associahedra.)
Euclidean Algorithm

Observation

Given $0 < a < b$ coprime, we observe that

\[
\text{Cat}'(a, b) = \frac{1}{b} \binom{b}{a} = \begin{cases}
\text{Cat}(a, b - a) & \text{for } a < (b - a) \\
\text{Cat}(b - a, a) & \text{for } (b - a) < a
\end{cases}
\]

This allows us to define a sequence

\[
\text{Cat}(x) \mapsto \text{Cat}'(x) \mapsto \text{Cat}''(x) \mapsto \cdots
\]

which is a “Categorification” of the Euclidean algorithm.
Observation

Given $0 < a < b$ coprime, we observe that

$$\text{Cat}'(a, b) = \frac{1}{b} \binom{b}{a} = \begin{cases} \text{Cat}(a, b-a) & \text{for } a < (b-a) \\ \text{Cat}(b-a, a) & \text{for } (b-a) < a \end{cases}$$

This allows us to define a sequence

$$\text{Cat}(x) \mapsto \text{Cat}'(x) \mapsto \text{Cat}''(x) \mapsto \cdots$$

which is a “Categorification” of the Euclidean algorithm.
Euclidean Algorithm

Observation

Given $0 < a < b$ coprime, we observe that

$$Cat'(a, b) = \frac{1}{b} \binom{b}{a} = \begin{cases} Cat(a, b - a) & \text{for } a < (b - a) \\ Cat(b - a, a) & \text{for } (b - a) < a \end{cases}$$

This allows us to define a sequence

$$Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$$

which is a “Categorification” of the Euclidean algorithm.
Euclidean Algorithm

Example: $x = 5/3$ and $(a, b) = (5, 8)$

Subtract the smaller from the larger:

\[
\begin{align*}
\text{Cat}(5, 8) &= 99,
\text{Cat'}(5, 8) &= \text{Cat}(3, 5) = 7,
\text{Cat''}(5, 8) &= \text{Cat'}(3, 5) = \text{Cat}(2, 3) = 2,
\text{Cat'''}(5, 8) &= \text{Cat''}(3, 5) = \text{Cat'}(2, 3) = \text{Cat}(1, 2) = 1 \quad \text{(STOP)}
\end{align*}
\]
Example: $x = 5/3$ and $(a, b) = (5, 8)$

Subtract the smaller from the larger:

\[
\begin{align*}
\text{Cat}(5, 8) &= 99, \\
\text{Cat}'(5, 8) &= \text{Cat}(3, 5) = 7, \\
\text{Cat}''(5, 8) &= \text{Cat}'(3, 5) = \text{Cat}(2, 3) = 2, \\
\text{Cat}'''(5, 8) &= \text{Cat}''(3, 5) = \text{Cat}'(2, 3) = \text{Cat}(1, 2) = 1 \quad \text{(STOP)}
\end{align*}
\]
How to put it in Sloane’s OEIS

Suggestion

The Calkin-Wilf sequence is defined by $q_1 = 1$ and

$$ q_n := \frac{1}{2 \lfloor q_{n-1} \rfloor - q_{n-1} + 1}. $$

Theorem: $(q_1, q_2, \ldots) = \mathbb{Q}_{>0}$.

Proof: See “Proofs from THE BOOK”, Chapter 17.

Study the function $n \mapsto \text{Cat}(q_n)$.

<table>
<thead>
<tr>
<th>q</th>
<th>$\frac{1}{1}$</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{3}$</th>
<th>$\frac{2}{1}$</th>
<th>$\frac{2}{2}$</th>
<th>$\frac{2}{3}$</th>
<th>$\frac{3}{1}$</th>
<th>$\frac{1}{4}$</th>
<th>$\frac{1}{3}$</th>
<th>$\frac{1}{5}$</th>
<th>$\frac{5}{2}$</th>
<th>$\frac{2}{5}$</th>
<th>$\frac{5}{3}$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat(q)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>30</td>
<td>15</td>
<td>66</td>
<td>4</td>
<td>99</td>
<td>\ldots</td>
</tr>
</tbody>
</table>
The *Calkin-Wilf sequence* is defined by $q_1 = 1$ and

$$q_n := \frac{1}{2\lfloor q_{n-1} \rfloor - q_{n-1} + 1}.$$

Theorem: $(q_1, q_2, \ldots) = \mathbb{Q}_{>0}$.
Proof: See “Proofs from THE BOOK”, Chapter 17.

Study the function $n \mapsto \text{Cat}(q_n)$.

<table>
<thead>
<tr>
<th>q</th>
<th>$\frac{1}{1}$</th>
<th>$\frac{1}{2}$</th>
<th>$\frac{1}{3}$</th>
<th>$\frac{2}{1}$</th>
<th>$\frac{3}{2}$</th>
<th>$\frac{3}{1}$</th>
<th>$\frac{1}{4}$</th>
<th>$\frac{4}{3}$</th>
<th>$\frac{3}{5}$</th>
<th>$\frac{5}{2}$</th>
<th>$\frac{2}{5}$</th>
<th>$\frac{5}{3}$</th>
<th>\ldots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat(q)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>30</td>
<td>15</td>
<td>66</td>
<td>4</td>
<td>99</td>
</tr>
</tbody>
</table>
Suggestion

The *Calkin-Wilf sequence* is defined by $q_1 = 1$ and

$$q_n := \frac{1}{2\lfloor q_{n-1} \rfloor - q_{n-1} + 1}.$$

Theorem: $(q_1, q_2, \ldots) = \mathbb{Q}_{>0}$.

Proof: See “Proofs from THE BOOK”, Chapter 17.

Study the function $n \mapsto \text{Cat}(q_n)$.

<table>
<thead>
<tr>
<th>q</th>
<th>1</th>
<th>1</th>
<th>2</th>
<th>1</th>
<th>3</th>
<th>3</th>
<th>1</th>
<th>4</th>
<th>4</th>
<th>3</th>
<th>5</th>
<th>2</th>
<th>5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{Cat}(q)$</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>30</td>
<td>15</td>
<td>66</td>
<td>4</td>
<td>99</td>
<td>\cdots</td>
</tr>
</tbody>
</table>
Well, that was fun.
The Prototype: Rational Dyck Paths
Consider the “Dyck paths” in an $a \times b$ rectangle.

Example $(a, b) = (5, 8)$
Again let $0 < x = a/(b - a)$ with $0 < a < b$ coprime.

Example $(a, b) = (5, 8)$
Let $\mathcal{D}(x) = \mathcal{D}(a, b)$ denote the set of Dyck paths.

Example $(a, b) = (5, 8)$
Theorem (Grossman 1950, Bizley 1954)

For \(a, b \) coprime, the number of Dyck paths is the Catalan number:

\[
|D(x)| = \text{Cat}(x) = \frac{1}{a + b} \binom{a + b}{a, b}.
\]

- Claimed by Grossman (1950), “Fun with lattice points, part 22”.
- Proof: Break \(\binom{a+b}{a,b} \) lattice paths into cyclic orbits of size \(a + b \). Each orbit contains a unique Dyck path.
The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For \(a, b \) coprime, the number of Dyck paths is the Catalan number:

\[
|\mathcal{D}(x)| = \text{Cat}(x) = \frac{1}{a + b} \binom{a + b}{a, b}.
\]

- **Claimed by Grossman (1950), “Fun with lattice points, part 22”.**
- **Proved by Bizley (1954), in Journal of the Institute of Actuaries.**
- **Proof:** Break \(\binom{a+b}{a,b} \) lattice paths into cyclic orbits of size \(a + b \). Each orbit contains a unique Dyck path.
The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For \(a, b\) coprime, the number of Dyck paths is the Catalan number:

\[
|D(x)| = \text{Cat}(x) = \frac{1}{a + b} \binom{a + b}{a, b}.
\]

- **Claimed by Grossman (1950), “Fun with lattice points, part 22”**.
- **Proved by Bizley (1954), in Journal of the Institute of Actuaries**.
- **Proof**: Break \(\binom{a+b}{a,b}\) lattice paths into cyclic orbits of size \(a + b\). Each orbit contains a unique Dyck path.
The Prototype: Rational Dyck Paths

Theorem (Grossman 1950, Bizley 1954)

For \(a, b \) coprime, the number of Dyck paths is the Catalan number:

\[
|D(x)| = \text{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.
\]

- **Claimed by Grossman (1950), “Fun with lattice points, part 22”.**
- **Proved by Bizley (1954), in Journal of the Institute of Actuaries.**
- **Proof:** Break \(\binom{a+b}{a,b} \) lattice paths into cyclic orbits of size \(a+b \). Each orbit contains a unique Dyck path.
Theorem (Grossman 1950, Bizley 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|D(x)| = \text{Cat}(x) = \frac{1}{a + b} \binom{a + b}{a, b}.$$

- **Claimed by Grossman (1950), “Fun with lattice points, part 22”**.
- **Proved by Bizley (1954), in Journal of the Institute of Actuaries**.
- **Proof**: Break $\binom{a + b}{a, b}$ lattice paths into cyclic orbits of size $a + b$. Each orbit contains a unique Dyck path.
The number of Dyck paths with \(k \) vertical runs equals

\[
\text{Nar}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b - 1}{k - 1}.
\]

Call these the \textbf{Narayana numbers}.

And the number with \(r_j \) vertical runs of length \(j \) equals

\[
\text{Krew}(x; r) := \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} = \frac{(b - 1)!}{r_0!r_1!\cdots r_a!}.
\]

Call these the \textbf{Kreweras numbers}.
Theorem (Armstrong 2010, Loehr 2010)

- **The number of Dyck paths with** k **vertical runs equals**

 \[\text{Nar}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b - 1}{k - 1}. \]

*Call these the **Narayana numbers**.*

- **And the number with** r_j **vertical runs of length** j **equals**

 \[\text{Krew}(x; r) := \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} = \frac{(b - 1)!}{r_0! r_1! \cdots r_a!}. \]

*Call these the **Kreweras numbers**.*
The number of Dyck paths with k vertical runs equals

$$\text{Nar}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}.$$

Call these the **Narayana numbers**.

And the number with r_j vertical runs of length j equals

$$\text{Krew}(x; r) := \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} = \frac{(b-1)!}{r_0!r_1!\cdots r_a!}.$$

Call these the **Kreweras numbers**.
Definition

Let $n \geq 0$ and consider a convex $(n+2)$-gon C. Let $\text{Ass}(n)$ be the abstract simplicial complex with

- vertices = chords of C
- faces = noncrossing sets of chords of C
- max. faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

$\text{Ass}(n)$ is a polytope.
The Classical Associahedron

Definition

Let $n \geq 0$ and consider a **convex** $(n + 2)$-gon C. Let $\text{Ass}(n)$ be the abstract simplicial complex with

- vertices = chords of C
- faces = noncrossing sets of chords of C
- max. faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

\[\text{Ass}(n) \text{ is a polytope.} \]
The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex $(n + 2)$-gon C. Let $\text{Ass}(n)$ be the abstract simplicial complex with

- vertices = chords of C
- faces = noncrossing sets of chords of C
- max. faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

Ass(n) is a polytope.
The Classical Associahedron

Definition

Let $n \geq 0$ and consider a **convex** $(n + 2)$-gon C. Let $Ass(n)$ be the abstract simplicial complex with

- vertices = chords of C
- faces = noncrossing sets of chords of C
- max. faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

$Ass(n)$ is a polytope.
The Classical Associahedron

Definition
Let \(n \geq 0 \) and consider a convex \((n + 2)\)-gon \(C \). Let \(\text{Ass}(n) \) be the abstract simplicial complex with
- vertices = chords of \(C \)
- faces = noncrossing sets of chords of \(C \)
- max. faces = triangulations of \(C \)

Theorem (Milnor, Haiman, C. Lee, etc.)
\(\text{Ass}(n) \) is a polytope.
The Classical Associahedron

Definition

Let $n \geq 0$ and consider a convex $(n + 2)$-gon C. Let $Ass(n)$ be the abstract simplicial complex with

- vertices = chords of C
- faces = noncrossing sets of chords of C
- max. faces = triangulations of C

Theorem (Milnor, Haiman, C. Lee, etc.)

$Ass(n)$ is a polytope.
Example: Here is Ass(4).
The Classical Associahedron

Theorem (Euler, 1751)

The f-vector and h-vector of \(\text{Ass}(n) \) *are given by the Kirkman numbers*

\[
\text{Kirk}(n; k) = \frac{1}{n} \binom{n}{k} \binom{n+k}{k-1}
\]

and the Narayana numbers

\[
\text{Nar}(n; k) = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}.
\]
Example: Here are the *f*-vector and *h*-vector of Ass(4).

```
1
1  6
1  7  6
1  8 13  1
1  9 21 14
```
The Rational Associahedron?

Question

Given $0 < x = a/(b - a)$ with $0 < a < b$ coprime, can one define a “rational associahedron”

$$\text{Ass}(x) = \text{Ass}(a, b)$$

with the “correct” numerology and structure?

Answer

Yes.
Question

Given $0 < x = a/(b - a)$ with $0 < a < b$ coprime, can one define a “rational associahedron”

$$\text{Ass}(x) = \text{Ass}(a, b)$$

with the “correct” numerology and structure?

Answer

Yes.
The Rational Associahedron?

Question

Given $0 < x = a/(b - a)$ with $0 < a < b$ coprime, can one define a “rational associahedron”

$$\text{Ass}(x) = \text{Ass}(a, b)$$

with the “correct” numerology and structure?

Answer

Yes.
To define a “rational triangulation” . . .

- Start with a Dyck path. Here \((a, b) = (5, 8)\).
To define a “rational triangulation” . . .

- Label the columns by \(\{1, 2, \ldots, b + 1\} \).
To define a “rational triangulation” . . .

- Shoot lasers from the bottom left with slope a/b.
To define a “rational triangulation” . . .

- Lift the lasers up.
To define a “rational triangulation” ...
To define a “rational triangulation” . . .

- We have constructed \(\text{Cat}(a, b) \) many “rational triangulations” of a convex \((b + 1)\)-gon, and each of them has \(a - 1 \) chords.
The Rational Associahedron

Definition

Given $0 < x = a/(b - a)$, let $\text{Ass}(x) = \text{Ass}(a, b)$ be the abstract simplicial complex whose maximal faces are the “rational triangulations”.

Geometric Realization

Note that $\text{Ass}(a, b)$ is a pure $(a - 1)$-dimensional subcomplex of the $(b - 1)$-dimensional polytope $\text{Ass}(b - 1)$.
The Rational Associahedron

Definition

Given $0 < x = a/(b - a)$, let $\text{Ass}(x) = \text{Ass}(a, b)$ be the abstract simplicial complex whose maximal faces are the “rational triangulations”.

Geometric Realization

Note that $\text{Ass}(a, b)$ is a pure $(a - 1)$-dimensional subcomplex of the $(b - 1)$-dimensional polytope $\text{Ass}(b - 1)$.
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- Ass\((n, n + 1)\) is the **classical associahedron** \(\text{Ass}(n)\).
- Ass\((n, (k - 1)n + 1)\) is the **generalized cluster complex** of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass\((x)\) has \(\text{Cat}(x)\) max. faces and **Euler characteristic** \(\text{Cat}'(x)\).
- Ass\((x)\) is **shellable** and hence homotopy equivalent to a wedge of \(\text{Cat}'(x)\) many \((a - 1)\)-dimensional spheres.
- Ass\((x)\) has **\(h\)-vector** \(\text{Nar}(x; k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}\).
- Hence its **\(f\)-vector** is given by the **rational Kirkman numbers**:

\[
\text{Kirk}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}.
\]
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- Ass$(n, n + 1)$ is the **classical associahedron** Ass(n).
- Ass$(n, (k - 1)n + 1)$ is the **generalized cluster complex** of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) max. faces and **Euler characteristic** Cat$'(x)$.
- Ass(x) is **shellable** and hence homotopy equivalent to a wedge of Cat$'(x)$ many $(a - 1)$-dimensional spheres.
- Ass(x) has **h-vector** Nar$(x; k) = \begin{pmatrix} a \\ k \end{pmatrix} \begin{pmatrix} b - 1 \\ k - 1 \end{pmatrix}$.
- Hence its **f-vector** is given by the **rational Kirkman numbers**:

 $$Kirk(x; k) := \frac{1}{a} \begin{pmatrix} a \\ k \end{pmatrix} \begin{pmatrix} b + k - 1 \\ k - 1 \end{pmatrix}.$$
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- $\text{Ass}(n, n + 1)$ is the classical associahedron $\text{Ass}(n)$.
- $\text{Ass}(n, (k - 1)n + 1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- $\text{Ass}(x)$ has $\text{Cat}(x)$ max. faces and Euler characteristic $\text{Cat}'(x)$.
- $\text{Ass}(x)$ is shellable and hence homotopy equivalent to a wedge of $\text{Cat}'(x)$ many $(a - 1)$-dimensional spheres.
- $\text{Ass}(x)$ has h-vector $\text{Nar}(x; k) = \frac{1}{a} \binom{a}{k} \binom{b - 1}{k - 1}$.
- Hence its f-vector is given by the rational Kirkman numbers:

$$\text{Kirk}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}.$$
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- Ass(n, $n+1$) is the **classical associahedron** Ass(n).
- Ass(n, $(k - 1)n + 1$) is the **generalized cluster complex** of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) max. faces and **Euler characteristic** Cat'(x).
- Ass(x) is shellable and hence homotopy equivalent to a wedge of Cat'(x) many ($a - 1$)-dimensional spheres.
- Ass(x) has **h-vector** Nar(x; k) = \(\frac{1}{a} \binom{a}{k} \binom{b - 1}{k - 1} \).
- Hence its **f-vector** is given by the **rational Kirkman numbers**:

\[
\text{Kirk}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}.
\]
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- Ass\((n, n + 1)\) is the **classical associahedron** Ass\((n)\).
- Ass\((n, (k - 1)n + 1)\) is the **generalized cluster complex** of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass\((x)\) has Cat\((x)\) max. faces and **Euler characteristic** Cat′\((x)\).
- Ass\((x)\) is **shellable** and hence homotopy equivalent to a wedge of Cat′\((x)\) many \((a - 1)\)-dimensional spheres.
- Ass\((x)\) has **\(h\)-vector** Nar\((x; k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}\).
- Hence its **\(f\)-vector** is given by the **rational Kirkman numbers**:

\[
Kirk(x; k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}.
\]
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- Ass\((n, n + 1)\) is the **classical associahedron** Ass\((n)\).
- Ass\((n, (k - 1)n + 1)\) is the **generalized cluster complex** of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass\((x)\) has Cat\((x)\) max. faces and **Euler characteristic** Cat\(^{'}(x)\).
- Ass\((x)\) is **shellable** and hence homotopy equivalent to a wedge of Cat\(^{'}(x)\) many \((a - 1)\)-dimensional spheres.
- Ass\((x)\) has **h-vector** Nar\((x; k)\) = \(\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}\).
- Hence its **f-vector** is given by the **rational Kirkman numbers**:

\[
\text{Kirk}(x; k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}.
\]
The Rational Associahedron

Theorems (with B. Rhoades and N. Williams)

- \text{Ass}(n, n + 1)\) is the \textbf{classical associahedron} \text{Ass}(n).
- \text{Ass}(n, (k - 1)n + 1)\) is the \textbf{generalized cluster complex} of Athanasiadis-Tzanaki and Fomin-Reading.
- \text{Ass}(x)\) has \text{Cat}(x)\) max. faces and \textbf{Euler characteristic} \text{Cat}'(x).
- \text{Ass}(x)\) is \textbf{shellable} and hence homotopy equivalent to a wedge of \text{Cat}'(x)\) many \((a - 1)\)-dimensional spheres.
- \text{Ass}(x)\) has \textbf{h-vector} \text{Nar}(x; \, k) = \frac{1}{a} \binom{a}{k} \binom{b - 1}{k - 1}.
- Hence its \textbf{f-vector} is given by the \textbf{rational Kirkman numbers}:

\[\text{Kirk}(x; \, k) := \frac{1}{a} \binom{a}{k} \binom{b + k - 1}{k - 1}. \]
Observation

Note that $\text{Ass}(b - 1)$ has this many vertices:

$$\binom{b + 1}{2} - (b + 1) = \frac{(b + 1)b}{2} - \frac{2(b + 1)}{2} = \frac{(b - 2)(b + 1)}{2}.$$

For all $0 < a < b$ coprime, the subcomplexes $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ bipartition the vertices of $\text{Ass}(b - 1)$ because

$$\frac{(a - 1)(b + 1)}{2} + \frac{(b - a - 1)(b + 1)}{2} = \frac{(b - 2)(b + 1)}{2}.$$
Example: Here are subcomplexes $\text{Ass}(2, 5)$ and $\text{Ass}(3, 5)$ in $\text{Ass}(4)$.
Conjecture (with B. Rhoades and N. Williams)

We know that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

We conjecture that the homotopy spheres are “intertwined” in a nice way. In particular, we conjecture that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ are Alexander dual inside the sphere $\text{Ass}(b - 1)$.

Theorem (B. Rhoades)

The conjecture is true.
Conjecture (with B. Rhoades and N. Williams)

We know that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

We conjecture that the homotopy spheres are “intertwined” in a nice way. In particular, we conjecture that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ are Alexander dual inside the sphere $\text{Ass}(b - 1)$.

Theorem (B. Rhoades)

The conjecture is true.
Conjecture (with B. Rhoades and N. Williams)

We know that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ have the same number of homotopy spheres (of complementary dimensions) because

$$\text{Cat}'(a, b) = \text{Cat}'(b - a, b).$$

We conjecture that the homotopy spheres are “intertwined” in a nice way. In particular, we conjecture that $\text{Ass}(a, b)$ and $\text{Ass}(b - a, b)$ are Alexander dual inside the sphere $\text{Ass}(b - 1)$.

Theorem (B. Rhoades)

The conjecture is true.
Definition
Given $0 < a < b$ coprime, if we define

$$\text{Ass}'(a, b) := \begin{cases}
\text{Ass}(a, b - a) & \text{for } a < (b - a) \\
\text{Ass}(b - a, a) & \text{for } (b - a) < a
\end{cases}$$

then the number of **homotopy spheres** of $\text{Ass}(a, b)$ equals the number of **maximal faces** of $\text{Ass}'(a, b)$.

Question
What does the following mean?

$$\text{Ass}(a, b) \mapsto \text{Ass}'(a, b) \mapsto \text{Ass}''(a, b) \mapsto \cdots \mapsto \text{a point}$$
Definition

Given $0 < a < b$ coprime, if we define

$$
\text{Ass}'(a, b) := \begin{cases}
\text{Ass}(a, b - a) & \text{for } a < (b - a) \\
\text{Ass}(b - a, a) & \text{for } (b - a) < a
\end{cases}
$$

then the number of **homotopy spheres** of $\text{Ass}(a, b)$ equals the number of **maximal faces** of $\text{Ass}'(a, b)$.

Question

What does the following mean?

$$
\text{Ass}(a, b) \mapsto \text{Ass}'(a, b) \mapsto \text{Ass}''(a, b) \mapsto \cdots \mapsto \text{a point}
$$
Euclidean Algorithm = ?

Definition

Given $0 < a < b$ coprime, if we define

$$\text{Ass}'(a, b) := \begin{cases}
\text{Ass}(a, b - a) & \text{for } a < (b - a) \\
\text{Ass}(b - a, a) & \text{for } (b - a) < a
\end{cases}$$

then the number of **homotopy spheres** of $\text{Ass}(a, b)$ equals the number of **maximal faces** of $\text{Ass}'(a, b)$.

Question

What does the following mean?

$$\text{Ass}(a, b) \mapsto \text{Ass}'(a, b) \mapsto \text{Ass}''(a, b) \mapsto \cdots \mapsto \text{a point}$$
Epilogue: Parking Functions
Definition

- Label the up-steps by \(\{1, 2, \ldots, a\} \), increasing up columns.

- Call this a parking function.

- Let \(\text{PF}(x) = \text{PF}(a, b) \) denote the set of parking functions.

- Classical form \((z_1, z_2, \ldots, z_a)\) has label \(z_i\) in column \(i\).

- Example: \((3, 1, 4, 4, 1)\)
Definition

- Label the up-steps by \(\{1, 2, \ldots, a\} \), increasing up columns.

- Call this a parking function.

- Let \(PF(x) = PF(a, b) \) denote the set of parking functions.

- Classical form \((z_1, z_2, \ldots, z_a) \) has label \(z_i \) in column \(i \).

- Example: \((3, 1, 4, 4, 1) \)
Definition

- Label the up-steps by \(\{1, 2, \ldots, a\} \), increasing up columns.
- Call this a parking function.
- Let \(\text{PF}(x) = \text{PF}(a, b) \) denote the set of parking functions.
- Classical form \((z_1, z_2, \ldots, z_a)\) has label \(z_i\) in column \(i\).
- Example: \((3, 1, 4, 4, 1)\)
Definition

- Label the up-steps by \(\{1, 2, \ldots, a\} \), increasing up columns.

- Call this a parking function.

- Let \(\text{PF}(x) = \text{PF}(a, b) \) denote the set of parking functions.

- Classical form \((z_1, z_2, \ldots, z_a)\) has label \(z_i\) in column \(i\).

- Example: \((3, 1, 4, 4, 1)\)
Definition

- Label the up-steps by \(\{1, 2, \ldots, a\} \), increasing up columns.

- Call this a parking function.

- Let \(\text{PF}(x) = \text{PF}(a, b) \) denote the set of parking functions.

- **Classical form** \((z_1, z_2, \ldots, z_a)\) has label \(z_i\) in column \(i\).

- Example: \((3, 1, 4, 4, 1)\)
The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_a acts on classical forms.

Example: $(3, 1, 4, 4, 1)$ versus $(3, 1, 1, 4, 4)$

- By abuse, let $\text{PF}(x) = \text{PF}(a, b)$ denote this representation of \mathfrak{S}_a.
- Call it the rational parking space.
The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_a acts on classical forms.

- Example: $(3, 1, 4, 4, 1)$ versus $(3, 1, 1, 4, 4)$

- By abuse, let $PF(x) = PF(a, b)$ denote this representation of \mathfrak{S}_a.

- Call it the rational parking space.
Definition

- The symmetric group \mathcal{S}_a acts on classical forms.

Example: $(3, 1, 4, 4, 1)$ versus $(3, 1, 1, 4, 4)$

- By abuse, let $PF(x) = PF(a, b)$ denote this representation of \mathcal{S}_a.
- Call it the rational parking space.
Definition

- The symmetric group \mathfrak{S}_a acts on classical forms.
- Example: $(3, 1, 4, 4, 1)$ versus $(3, 1, 1, 4, 4)$
- By abuse, let $PF(x) = PF(a, b)$ denote this representation of \mathfrak{S}_a.
- Call it the rational parking space.
The Rational Parking Space

Definition

- The symmetric group \mathfrak{S}_a acts on classical forms.

- Example: $(3, 1, 4, 4, 1)$ versus $(3, 1, 1, 4, 4)$

- By abuse, let $PF(x) = PF(a, b)$ denote this representation of \mathfrak{S}_a.

- Call it the **rational parking space**.
The dimension of $PF(a, b)$ is b^{a-1}.

The complete homogeneous expansion is

$$PF(a, b) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,$$

where the sum is over $r = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

That is: $PF(a, b)$ is the coefficient of t^a in $\frac{1}{b} H(t)^b$, where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots.$$
The dimension of $PF(a, b)$ is b^{a-1}.

The complete homogeneous expansion is

$$PF(a, b) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,$$

where the sum is over $r = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

That is: $PF(a, b)$ is the coefficient of t^a in $\frac{1}{b} H(t)^b$, where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots.$$
The Rational Parking Space

Theorems (with N. Loehr and G. Warrington)

- The dimension of $PF(a, b)$ is b^{a-1}.

- The complete homogeneous expansion is

$$PF(a, b) = \sum_{r \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,$$

where the sum is over $r = 0^r_0 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

- That is: $PF(a, b)$ is the coefficient of t^a in $\frac{1}{b} H(t)^b$, where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots.$$
The dimension of PF(a, b) is b^{a-1}.

The complete homogeneous expansion is

$$PF(a, b) = \sum_{r|-a} \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a} h_r,$$

where the sum is over $r = 0^{r_0}1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

That is: PF(a, b) is the coefficient of t^a in $\frac{1}{b} H(t)^b$, where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots.$$
Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get...

- The power sum expansion is

\[\text{PF}(a, b) = \sum_{r \vdash a} b^{\ell(r)-1} \frac{p_r}{z_r} \]

i.e. the # of parking functions fixed by \(\sigma \in \mathfrak{S}_a \) is \(b^{\# \text{cycles}(\sigma)-1} \).

- The Schur expansion is

\[\text{PF}(a, b) = \sum_{r \vdash a} \frac{1}{b^{s_r(1^b)}} s_r. \]
A Few Facts

Theorems (with N. Loehr and G. Warrington)

Then using the Cauchy product identity we get...

- The **power sum expansion** is

\[\text{PF}(a, b) = \sum_{r \vdash a} b^{\ell(r)-1} \frac{p_r}{z_r} \]

i.e. the # of parking functions fixed by \(\sigma \in \mathfrak{S}_a \) is \(b^{\# \text{cycles}(\sigma)-1} \).

- The **Schur expansion** is

\[\text{PF}(a, b) = \sum_{r \vdash a} \frac{1}{b} s_r(1^b) s_r. \]
Then using the Cauchy product identity we get...

- The **power sum expansion** is

\[
PF(a, b) = \sum_{r \vdash a} b^{\ell(r)} \frac{p_r}{z_r}
\]

i.e. the \# of parking functions fixed by \(\sigma \in S_a \) is \(b^{\#\text{cycles} (\sigma) - 1} \).

- The **Schur expansion** is

\[
PF(a, b) = \sum_{r \vdash a} \frac{1}{b} s_r(1^b) s_r.
\]
The multiplicities of the hook Schur functions $s[k + 1, 1^{a-k-1}]$ in $\text{PF}(a, b)$ are given by the rational Schröder numbers:

$$\text{Schrö}(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- Trivial character: $\text{Schrö}(a, b; a - 1) = \text{Cat}(a, b)$.

- Smallest k that occurs is $k = \max\{0, a - b\}$, in which case

$$\text{Schrö}(a, b; k) = \text{Cat}'(a, b).$$

- Hence $\text{Schrö}(x; k)$ interpolates between $\text{Cat}(x)$ and $\text{Cat}'(x)$.
A Few Facts

Observation/Definition

The multiplicities of the **hook Schur functions** \(s[k + 1, 1^{a-k-1}] \) in \(\text{PF}(a, b) \) are given by the **rational Schröder numbers**:

\[
\text{Schrö}(a, b; k) := \frac{1}{b} s[k+1,1^{a-k-1}](1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.
\]

Special Cases:

- Trivial character: \(\text{Schrö}(a, b; a - 1) = \text{Cat}(a, b) \).
- Smallest \(k \) that occurs is \(k = \max\{0, a - b\} \), in which case \(\text{Schrö}(a, b; k) = \text{Cat}'(a, b) \).
- Hence \(\text{Schrö}(x; k) \) interpolates between \(\text{Cat}(x) \) and \(\text{Cat}'(x) \).
A Few Facts

Observation/Definition

The multiplicities of the **hook Schur functions** \(s[k + 1, 1^{a-k-1}] \) in \(\text{PF}(a, b) \) are given by the **rational Schröder numbers**:

\[
\text{Schrö}(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.
\]

Special Cases:

- **Trivial character:** \(\text{Schrö}(a, b; a-1) = \text{Cat}(a, b) \).

- Smallest \(k \) that occurs is \(k = \max\{0, a-b\} \), in which case
 \[
 \text{Schrö}(a, b; k) = \text{Cat}'(a, b).
 \]

- Hence \(\text{Schrö}(x; k) \) interpolates between \(\text{Cat}(x) \) and \(\text{Cat}'(x) \).
A Few Facts

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k + 1, 1^{a-k-1}]$ in $PF(a, b)$ are given by the **rational Schröder numbers**:

$$Schrö(a, b; k) := \frac{1}{b} s_{[k+1,1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- **Trivial character**: $Schrö(a, b; a-1) = Cat(a, b)$.

- **Smallest k that occurs is $k = \max\{0, a-b\}$**, in which case

 $$Schrö(a, b; k) = Cat'(a, b).$$

- **Hence $Schrö(x; k)$ interpolates between $Cat(x)$ and $Cat'(x)$**.
The multiplicities of the **hook Schur functions** $s[k + 1, 1^{a-k-1}]$ in $\text{PF}(a, b)$ are given by the **rational Schröder numbers**:

$$\text{Schrö}(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a - 1}{k} \binom{b + k}{a}.$$

Special Cases:

- **Trivial character**: $\text{Schrö}(a, b; a - 1) = \text{Cat}(a, b)$.

- **Smallest k that occurs** is $k = \max\{0, a - b\}$, in which case
 $$\text{Schrö}(a, b; k) = \text{Cat}'(a, b).$$

- Hence $\text{Schrö}(x; k)$ interpolates between $\text{Cat}(x)$ and $\text{Cat}'(x)$.
What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an \mathbb{S}_a-module $\text{PF}(a, b)$ of dimension b^{a-1} and an \mathbb{S}_b-module $\text{PF}(b, a)$ of dimension a^{b-1}.

- What is the relationship between $\text{PF}(a, b)$ and $\text{PF}(b, a)$?
- Note that hook multiplicities are the same:

 $$\text{Schrö}(a, b; k) = \text{Schrö}(b, a; k + b - a).$$

What does switching $a \leftrightarrow b$ mean?

<table>
<thead>
<tr>
<th>Problem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a, b coprime we have an \mathfrak{S}_a-module $\text{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b-module $\text{PF}(b, a)$ of dimension a^{b-1}.</td>
</tr>
</tbody>
</table>

- What is the relationship between $\text{PF}(a, b)$ and $\text{PF}(b, a)$?

- Note that hook multiplicities are the same:

$$\text{Schrö}(a, b; k) = \text{Schrö}(b, a; k + b - a).$$

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an \mathfrak{S}_a-module $\text{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b-module $\text{PF}(b, a)$ of dimension a^{b-1}.

- What is the relationship between $\text{PF}(a, b)$ and $\text{PF}(b, a)$?
- Note that hook multiplicities are the same:

 $$\text{Schrö}(a, b; k) = \text{Schrö}(b, a; k + b - a).$$

What does switching $a \leftrightarrow b$ mean?

Problem

Given a, b coprime we have an \mathfrak{S}_a-module $\text{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b-module $\text{PF}(b, a)$ of dimension a^{b-1}.

- What is the relationship between $\text{PF}(a, b)$ and $\text{PF}(b, a)$?

- Note that hook multiplicities are the same:

 $$\text{Schrö}(a, b; k) = \text{Schrö}(b, a; k + b - a).$$

The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. \((1 < k < a − 1)\)

\[
\begin{align*}
\text{Kirk}(x; k) &= \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1} & \text{f-vector} \\
\text{Nar}(x; k) &= \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1} & \text{h-vector} \\
\text{Schrö}(x; k) &= \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a} & \text{“dual” f-vector}
\end{align*}
\]

The Kreweras numbers are more refined. They contain parabolic information. \((r \vdash a)\)

\[
\text{Krew}(x; r) = \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a}
\]
The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. \((1 < k < a - 1)\)

\[
\begin{align*}
\text{Kirk}(x; k) &= \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1} & \text{ } & f\text{-vector} \\
\text{Nar}(x; k) &= \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1} & \text{ } & h\text{-vector} \\
\text{Schrö}(x; k) &= \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a} & \text{ } & \text{“dual” } f\text{-vector}
\end{align*}
\]

The Kreweras numbers are more refined. They contain parabolic information. \((r \vdash a)\)

\[
\text{Krew}(x; r) = \frac{1}{b} \binom{b}{r_0, r_1, \ldots, r_a}
\]
But what about q and t?

There exists a bigraded version $PF_{q,t}(a, b)$. Here is the coefficient of the (non-hook) Schur function $s[2, 2, 1]$ in $PF_{q,t}(5, 8)$:

\[
\begin{pmatrix}
1 & 1 & 1 & 1 & 1 \\
1 & 3 & 4 & 3 & 2 & 1 \\
2 & 6 & 6 & 4 & 2 & 1 \\
2 & 7 & 7 & 4 & 2 & 1 \\
1 & 6 & 7 & 4 & 2 & 1 \\
3 & 6 & 4 & 2 & 1 \\
1 & 4 & 4 & 2 & 1 \\
1 & 3 & 2 & 1 \\
1 & 2 & 1 \\
1 & 1 \\
1
\end{pmatrix}
\]
But what about q and t?

Tease

There **exists** a bigraded version $\text{PF}_{q,t}(a, b)$. Here is the coefficient of the (non-hook) Schur function $s[2, 2, 1]$ in $\text{PF}_{q,t}(5, 8)$:

$$
\begin{array}{cccccc}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 4 & 3 & 2 & 1 \\
2 & 6 & 6 & 4 & 2 & 1 \\
2 & 7 & 7 & 4 & 2 & 1 \\
1 & 6 & 7 & 4 & 2 & 1 \\
3 & 6 & 4 & 2 & 1 \\
1 & 4 & 4 & 2 & 1 \\
1 & 3 & 2 & 1 \\
1 & 2 & 1 \\
1 & 1 \\
1
\end{array}
$$
Thanks! Here is a crazy picture.

by Dan Drake and Drew Armstrong