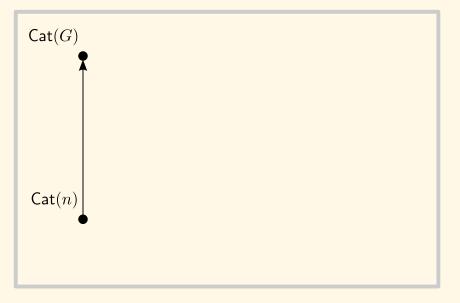
Rational Catalan Combinatorics (Type A)

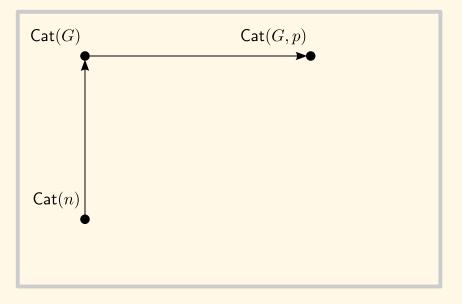
Drew Armstrong

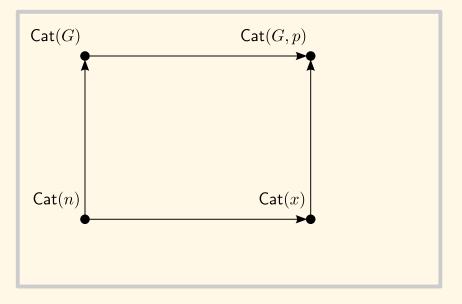
University of Miami www.math.miami.edu/~armstrong

AIM Workshop December 17–21, 2012

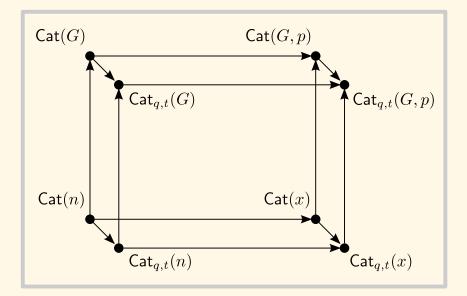
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで





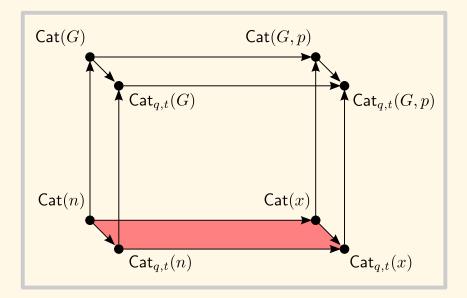


▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − 釣へで

Catalan Combinatorics? This talk is the red stuff.



Plan for the Talk

Catalan Numbers

- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Plan for the Talk

Catalan Numbers

- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Plan for the Talk

- Catalan Numbers
- Dyck Paths
- Noncrossing Partitions
- Associahedra
- Core Partitions
- Parking Functions
- Parking Spaces (q and t)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Rational Catalan Numbers

CONVENTION

Given $x \in \mathbb{Q} \setminus [-1, 0]$, there exist **unique coprime** $(a, b) \in \mathbb{N}^2$ such that

$$x = \frac{a}{b-a}$$

We will always identify $x \leftrightarrow (a, b)$.

Definition

For each $x \in \mathbb{Q} \setminus [-1, 0]$ we define the **Catalan number**:

$$Cat(x) = Cat(a, b) := \frac{1}{a+b} \binom{a+b}{a, b} = \frac{(a+b-1)!}{a!b!}$$

◆□ > ◆□ > ◆三 > ◆三 > ● ● ●

Rational Catalan Numbers

CONVENTION

Given $x \in \mathbb{Q} \setminus [-1, 0]$, there exist **unique coprime** $(a, b) \in \mathbb{N}^2$ such that

$$x = \frac{a}{b-a}$$

We will always identify $x \leftrightarrow (a, b)$.

Definition

For each $x \in \mathbb{Q} \setminus [-1, 0]$ we define the **Catalan number**:

$$Cat(x) = Cat(a, b) := \frac{1}{a+b} \binom{a+b}{a, b} = \frac{(a+b-1)!}{a!b!}$$

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 • のへで

Rational Catalan Numbers

CONVENTION

Given $x \in \mathbb{Q} \setminus [-1, 0]$, there exist **unique coprime** $(a, b) \in \mathbb{N}^2$ such that

$$x = \frac{a}{b-a}$$

We will always identify $x \leftrightarrow (a, b)$.

Definition

For each $x \in \mathbb{Q} \setminus [-1, 0]$ we define the **Catalan number**:

$$\operatorname{Cat}(x) = \operatorname{Cat}(a, b) := \frac{1}{a+b} \binom{a+b}{a, b} = \frac{(a+b-1)!}{a!b!}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a,b) = (n, n+1) gives the good old Catalan number:

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a,b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

When $b = 1 \mod a \ldots$

• Eugène Charles Catalan (1814-1894) (a, b) = (n, n + 1) gives the good old Catalan number: $Cat(n) = Cat\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$

Nicolaus Fuss (1755-1826)

(a,b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a, b) = (n, n+1) gives the good old Catalan number:

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{(n+1)-n}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a, b) = (n, kn + 1) gives the **Fuss-Catalan number**:

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

うっつ 川 (中) (山) (山) (山) (山)

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x - 1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$Cat(x) = Cat(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

By definition we have Cat(a, b) = Cat(b, a), which translates to

$$\operatorname{Cat}(x) = \operatorname{Cat}(-x-1)$$

(i.e. symmetry about x = -1/2), which implies that

$$\operatorname{Cat}\left(rac{1}{x-1}
ight) = \operatorname{Cat}\left(rac{x}{1-x}
ight).$$

We call this the derived Catalan number:

$$\operatorname{Cat}'(x) := \operatorname{Cat}\left(\frac{1}{x-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

From the same symmetry we also obtain

$$\operatorname{Cat}'(1/x) = \operatorname{Cat}\left(\frac{1}{(1/x) - 1}\right) = \operatorname{Cat}\left(\frac{x}{1 - x}\right) = \operatorname{Cat}'(x).$$

We call this rational duality:

 $\operatorname{Cat}'(1/x) = \operatorname{Cat}'(x).$

・ロト ・ 一下・ ・ モト・

æ

590

(Watch for it later...)

From the same symmetry we also obtain

$$\operatorname{Cat}'(1/x) = \operatorname{Cat}\left(\frac{1}{(1/x)-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right) = \operatorname{Cat}'(x).$$

We call this rational duality:

 $\operatorname{Cat}'(1/x) = \operatorname{Cat}'(x).$

(Watch for it later...)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

From the same symmetry we also obtain

$$\operatorname{Cat}'(1/x) = \operatorname{Cat}\left(\frac{1}{(1/x)-1}\right) = \operatorname{Cat}\left(\frac{x}{1-x}\right) = \operatorname{Cat}'(x).$$

We call this rational duality:

$$\operatorname{Cat}'(1/x) = \operatorname{Cat}'(x).$$

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

(Watch for it later...)

Observation

The process $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$ is a categorification of the Euclidean algorithm.

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5,8) = 99, Cat'(5,8) = Cat(3,5) = 7, Cat''(5,8) = Cat'(3,5) = Cat(2,3) = 2,Cat'''(5,8) = Cat''(3,5) = Cat'(2,3) = Cat(1,2) = 1 (STOP)

Observation

The process $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$ is a categorification of the Euclidean algorithm.

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5,8) = 99, Cat'(5,8) = Cat(3,5) = 7, Cat''(5,8) = Cat'(3,5) = Cat(2,3) = 2,Cat'''(5,8) = Cat''(3,5) = Cat'(2,3) = Cat(1,2) = 1 (STOP)

Observation

The process $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$ is a categorification of the Euclidean algorithm.

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

Cat(5,8) = 99, Cat'(5,8) = Cat(3,5) = 7, Cat''(5,8) = Cat'(3,5) = Cat(2,3) = 2,Cat'''(5,8) = Cat''(3,5) = Cat'(2,3) = Cat(1,2) = 1 (STOP)

Observation

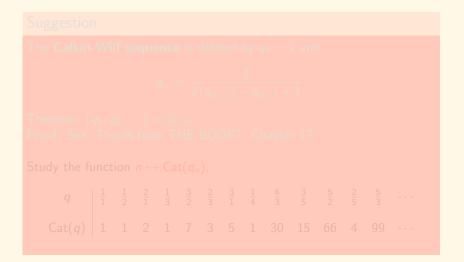
The process $Cat(x) \mapsto Cat'(x) \mapsto Cat''(x) \mapsto \cdots$ is a categorification of the Euclidean algorithm.

Example: x = 5/3 and (a, b) = (5, 8)

Subtract the smaller from the larger:

$$\begin{aligned} & \mathsf{Cat}(5,8) = 99, \\ & \mathsf{Cat}'(5,8) = \mathsf{Cat}(3,5) = 7, \\ & \mathsf{Cat}''(5,8) = \mathsf{Cat}'(3,5) = \mathsf{Cat}(2,3) = 2, \\ & \mathsf{Cat}'''(5,8) = \mathsf{Cat}''(3,5) = \mathsf{Cat}'(2,3) = \mathsf{Cat}(1,2) = 1 \end{aligned}$$

How to put it in Sloane's OEIS



▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

Suggestion

The **Calkin-Wilf sequence** is defined by $q_1 = 1$ and

$$q_n := rac{1}{2\lfloor q_{n-1}
floor - q_{n-1} + 1}.$$

Theorem: $(q_1, q_2, ...) = \mathbb{Q}_{>0}$. Proof: See "Proofs from THE BOOK", Chapter 17.

Study the function $n \mapsto Cat(q_n)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - ����

Suggestion

The **Calkin-Wilf sequence** is defined by $q_1 = 1$ and

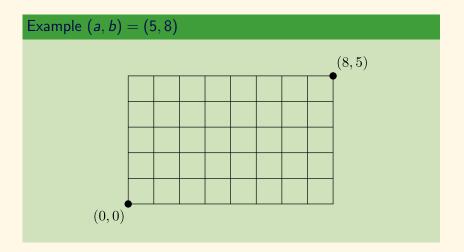
$$q_n := rac{1}{2\lfloor q_{n-1}
floor - q_{n-1} + 1}.$$

Theorem: $(q_1, q_2, \ldots) = \mathbb{Q}_{>0}$. Proof: See "Proofs from THE BOOK", Chapter 17.

Study the function $n \mapsto Cat(q_n)$.

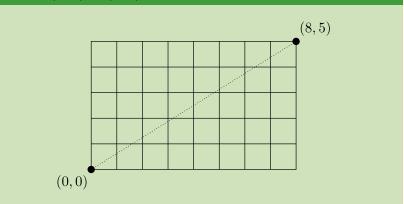
Well, that was fun.

• Consider the "Dyck paths" in an $a \times b$ rectangle.

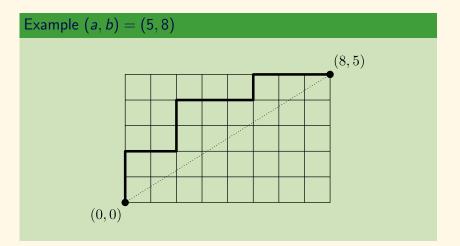


• Again let x = a/(b-a) with a, b positive and coprime.

Example (a, b) = (5, 8)



• Let $\mathcal{D}(x) = \mathcal{D}(a, b)$ denote the set of Dyck paths.



The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

SQA

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

Claimed by Grossman (1950), "Fun with lattice points, part 22".

- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

► Claimed by Grossman (1950), "Fun with lattice points, part 22".

Proved by Bizley (1954), in Journal of the Institute of Actuaries.

Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b.
 Each orbit contains a unique Dyck path.

The number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- ► Claimed by Grossman (1950), "Fun with lattice points, part 22".
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

Theorem (Armstrong 2010, Loehr 2010)

► The number of Dyck paths with k vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}.$$

Call these the Narayana numbers

And the number with r_j vertical runs of length j equals

Krew(x; **r**) :=
$$\frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} = \frac{(b-1)!}{r_0!r_1!\cdots r_a!}$$

・ 日 > ・ 一 戸 > ・ 日 > ・

Э

Sac

Call these the Kreweras numbers.

Theorem (Armstrong 2010, Loehr 2010)

► The number of Dyck paths with k vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} {a \choose k} {b-1 \choose k-1}.$$

Call these the Narayana numbers.

And the number with r_i vertical runs of length j equals

Krew(x; **r**) :=
$$\frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix} = \frac{(b-1)!}{r_0! r_1! \cdots r_a!}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Call these the Kreweras numbers.

Theorem (Armstrong 2010, Loehr 2010)

The number of Dyck paths with k vertical runs equals

$$\operatorname{Nar}(x;k) := \frac{1}{a} {a \choose k} {b-1 \choose k-1}$$

Call these the Narayana numbers.

► And the number with r_j vertical runs of length j equals

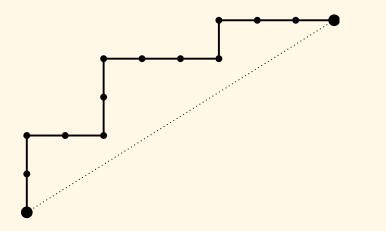
Krew(x; **r**) :=
$$\frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix} = \frac{(b-1)!}{r_0! r_1! \cdots r_a!}$$

Call these the Kreweras numbers.

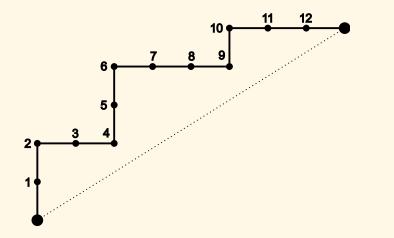
Next: Rational NC Partitions

・ロ・・西・・ヨ・・ヨ・ らくぐ

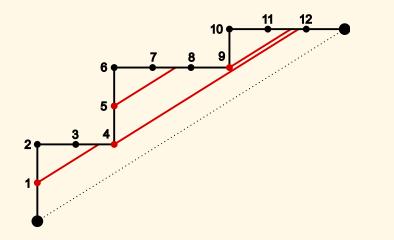
• Start with a Dyck path. Here (a, b) = (5, 8).



• Label the internal vertices by $\{1, 2, \ldots, a + b - 1\}$.



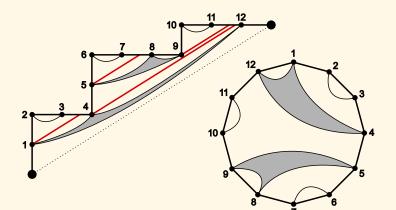
• Shoot lasers from the bottom left with slope a/b.



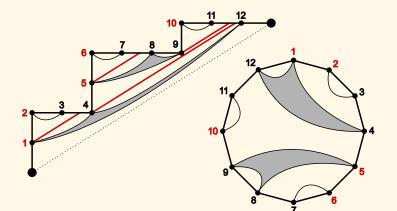
Who can see each other?



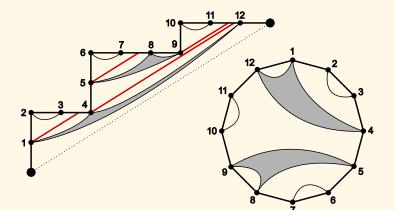
► There you go!



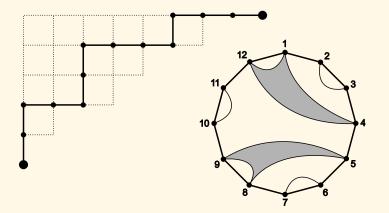
We have created Cat(x) = ¹/_a (^{a+b}/_{a,b}) different noncrossing partitions of the cycle [a + b − 1], and each of them has a blocks.



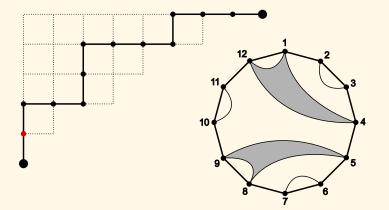
▶ Q: What does "rotation" of the partition correspond to?



• A: Think of the path as a maximal chain in a poset.

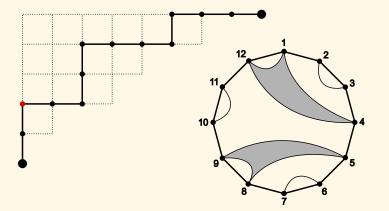


▶ Perform "promotion" on the chain.

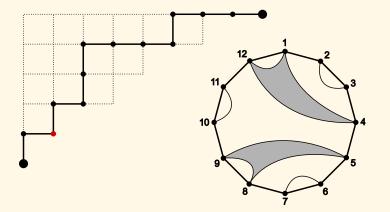


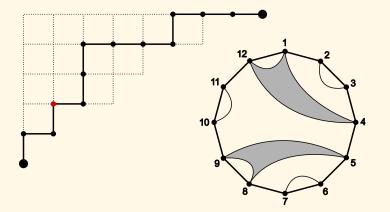
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

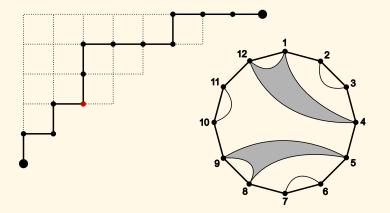
▶ Perform "promotion" on the chain.

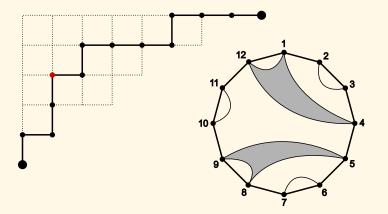


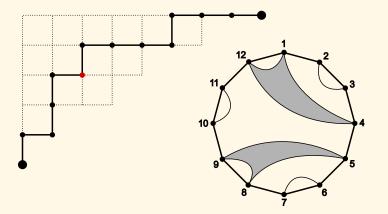
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

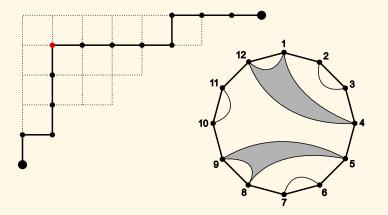


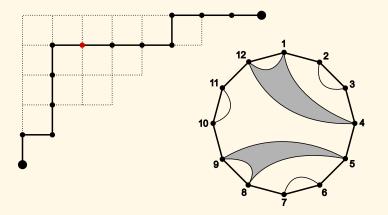


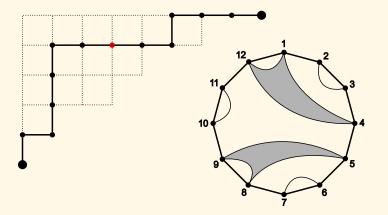


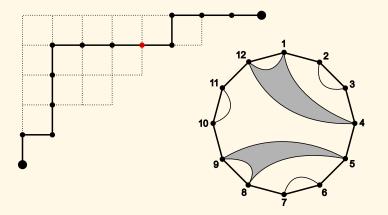


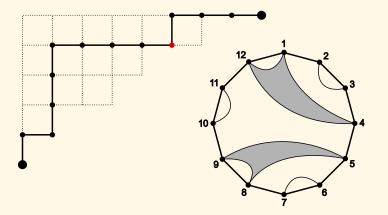


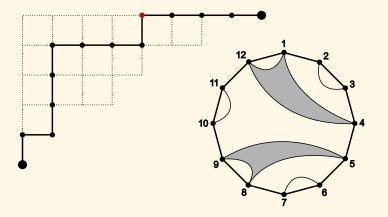


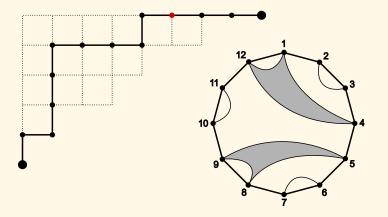


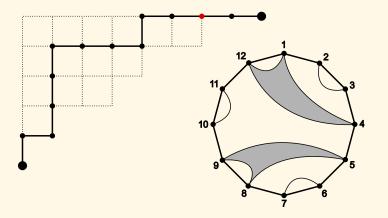




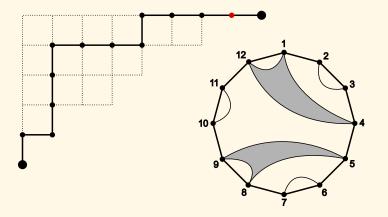




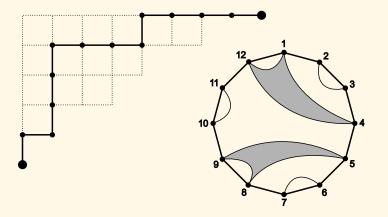




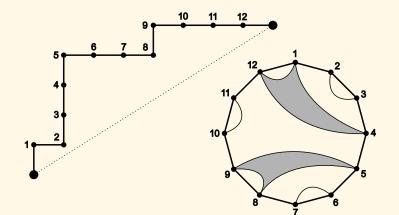
▶ Perform "promotion" on the chain.



▶ Perform "promotion" on the chain.

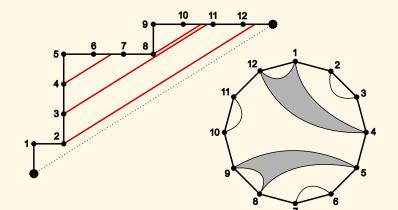


► Think of it as a path again.



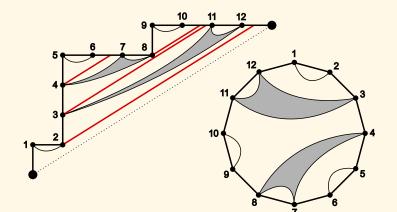
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

► Again the lasers.

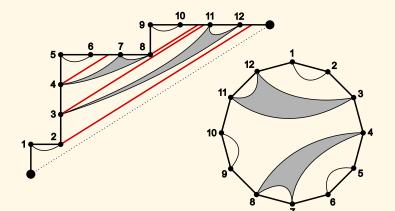


▲□ > ▲圖 > ▲ 国 > ▲ 国 > → 国 → のへ⊙

► And there you go!



• Drew: mention the case (a, b) = (n, (k-1)n+1).

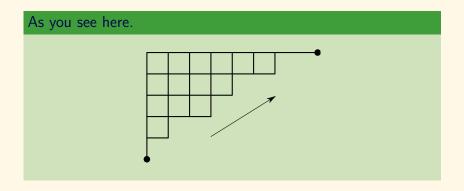


<ロト < 個 > < 目 > < 目 > 目 の < @</p>

Definition

For (a, b) coprime, consider the triangle poset

$$\mathcal{T}(a,b):=\{(x,y)\in\mathbb{Z}^2:y\leq a,\ x\leq b,\ yb-xa\geq 0\}.$$



Results (with Nathan Williams)

- ▶ Promotion on T(a, b) has order a + b 1.
- Conjecture: The number of chains invariant under promotion^d is the q-Catalan number evaluated at a root of unity:

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \Big|_{q=e^{\frac{2\pi id}{a+b-1}}}$$

𝓕 𝒯(n, n + 1) is related to the type A root poset.

D.White, Panyushev, Striker-Williams, A-Stump-Thomas.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Results (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order a + b 1.
- Conjecture: The number of chains invariant under promotion^d is the q-Catalan number evaluated at a root of unity:

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \Big|_{q=e^{\frac{2\pi id}{a+b-1}}}$$

SQA

• T(n, n+1) is related to the type A root poset.

Results (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order a + b 1.
- Conjecture: The number of chains invariant under promotion^d is the q-Catalan number evaluated at a root of unity:

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \Big|_{q=e^{\frac{2\pi id}{a+b-1}}}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

• T(n, n+1) is related to the type A root poset.

Results (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order a + b 1.
- Conjecture: The number of chains invariant under promotion^d is the q-Catalan number evaluated at a root of unity:

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \Big|_{q=e^{\frac{2\pi id}{a+b-1}}}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• T(n, n+1) is related to the type A root poset.

Results (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order a + b 1.
- Conjecture: The number of chains invariant under promotion^d is the q-Catalan number evaluated at a root of unity:

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \Big|_{q=e^{\frac{2\pi id}{a+b-1}}}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

• T(n, n+1) is related to the type A root poset.

Our rational NC partitions don't form a nice poset. Indeed, they each have the same number of blocks! (i.e., a)

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

I

Sac

Question

Can one define a nice poset of rational NC partitions?

Answer

Our rational NC partitions don't form a nice poset. Indeed, they each have the same number of blocks! (i.e., a)

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

SQA

Question

Can one define a nice poset of rational NC partitions?

Answer

Our rational NC partitions don't form a nice poset. Indeed, they each have the same number of blocks! (i.e., a)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Question

Can one define a nice poset of rational NC partitions?

Answer

Our rational NC partitions don't form a nice poset. Indeed, they each have the same number of blocks! (i.e., a)

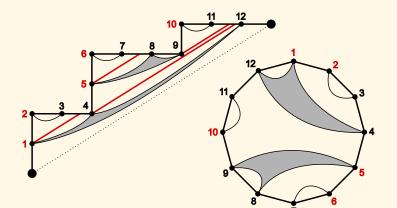
・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Question

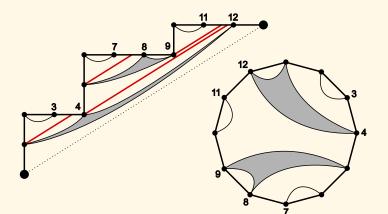
Can one define a nice poset of rational NC partitions?

Answer

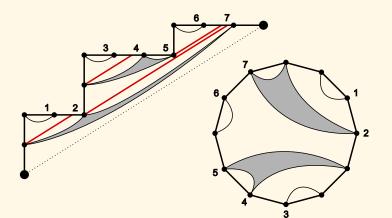
► Recall this.



► Now we label only the horizontal steps.

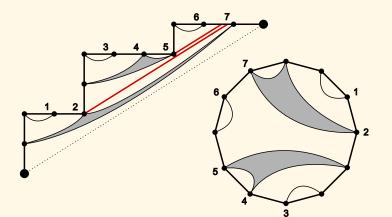


Now we label only the horizontal steps.

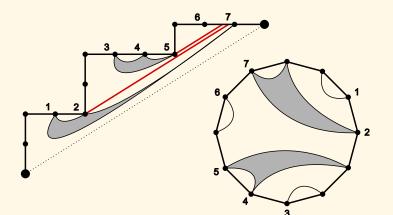


◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

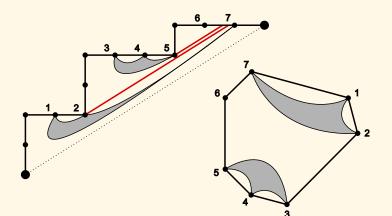
Now we shoot lasers only from the corners.



Now who can see each other?



► There you go!



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n+1) = NC(n) is the good old noncrossing partitions
- ▶ NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.
- ▶ NC(a, b) is a (graded) order filter in NC(b-1)
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions
- ▶ NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- ▶ NC(a, b) is a (graded) order filter in NC(b-1)
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ NC(a, b) is a (graded) order filter in NC(b 1)
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a+b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ▶ NC(a, b) is a (graded) order filter in NC(b-1)
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n+1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- NC(n, n+1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$ elements.
- ▶ NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

Facts (with Nathan Williams)

- ▶ NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$ elements.

▶ NC(x) has Cat'(x) = $\frac{1}{b} \binom{b}{2}$ elements of minimum rank.

Definition

Let NC(x) = NC(a, b) be the poset of non-homogeneous NC partitions.

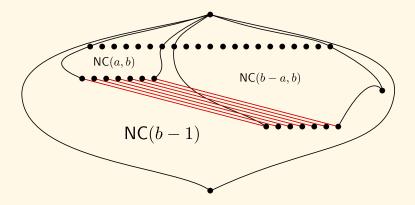
Facts (with Nathan Williams)

- ▶ NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.

- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a+b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Rational Duality

• Note that $x \leftrightarrow 1/x$ is the same as $(a < b) \leftrightarrow (b - a < b)$.



(ロ)、(国)、(E)、(E)、 E) の(の)

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a rational associahedron with *h*-vector given by

$$\operatorname{Nar}(x;k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}?$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Sac

Answer

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a rational associahedron with *h*-vector given by

$$\operatorname{Nar}(x;k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}?$$

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Э

Sac

Answer

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a rational associahedron with *h*-vector given by

$$\operatorname{Nar}(x;k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}?$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Answer

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

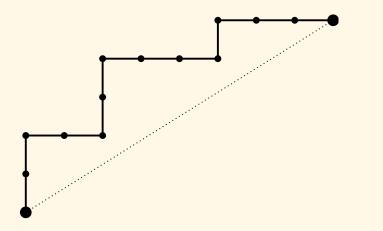
Can one define a rational associahedron with *h*-vector given by

$$\operatorname{Nar}(x;k) = \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}?$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

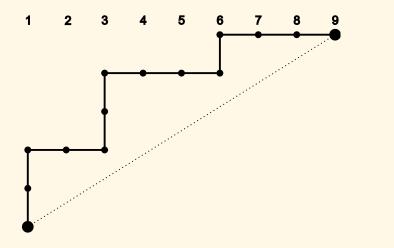
Answer

• Start with a Dyck path. Here (a, b) = (5, 8).



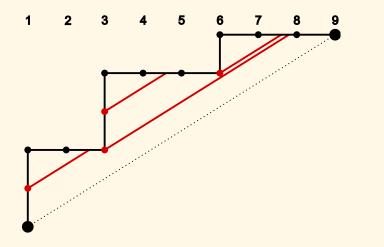
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

• Label the columns by $\{1, 2, \ldots, b+1\}$.

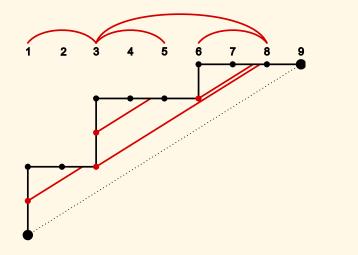


・ロット ●間マ ▲田マ ▲田マ ▲日マ

• Shoot some lasers from the bottom left with slope a/b.

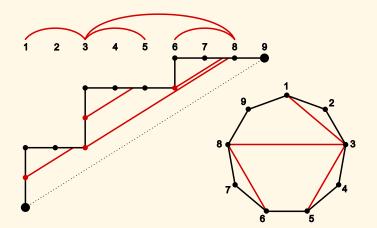


► Lift the lasers up.

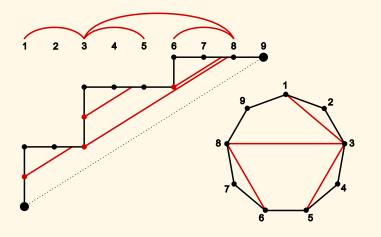


◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

► There you go!



▶ We have created Cat(x) = ¹/_a (^{a+b}) different "rational dissections" of the cycle [b + 1], and each of them has a diagonals.



Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

- Ass(n, n+1) = Ass(n) is the good old associated ron
- ▶ Ass(n, (k − 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- Hence its f-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

- Ass(n, n + 1) = Ass(n) is the good old associated associated ron
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- Hence its f-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k − 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ▶ Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- Hence its f-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- Hence its *f*-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- ▶ Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} \binom{a}{k} \binom{b-1}{k-1}$.
- Hence its *f*-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

Facts (with B. Rhoades and N. Williams)

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- Hence its *f*-vector is given by the Kirkman numbers:

$$\operatorname{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Definition

Let Ass(x) = Ass(a, b) be the simplicial complex with the desired facets.

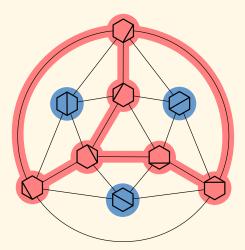
Facts (with B. Rhoades and N. Williams)

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets, and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x; k) = $\frac{1}{a} {a \choose k} {b-1 \choose k-1}$.
- ► Hence its *f*-vector is given by the **Kirkman numbers**:

$$\mathsf{Kirk}(x;k) := \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}.$$

Rational Duality = Alexander Duality

► E.g. Ass(2/3) and Ass(3/2) are Alexander dual inside Ass(4).



Definition

Let $\lambda \vdash n$ be an integer partition of "size" n.

- Say λ is a *p*-core if it has no cell with hook length *p*.
- Say λ is an (a, b)-core if it has no cell with hook length a or b.

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is a (5, 8)-core.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへ⊙

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Suggestion

Study Young's lattice restricted to (a, b)-cores

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime \exists unique largest (a, b)-core of size $\frac{(a^c-1)(b^c-1)}{24}$, which contains all others as subdiagrams.

ヘロト 人間 とくほど 人ほどう ほ

Suggestion

Study Young's lattice restricted to (a, b)-cores.

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Suggestion

Study Young's lattice restricted to (*a*, *b*)-cores.

Theorem (Anderson 2002)

The number of (a, b)-cores (of any size) is finite if and only if (a, b) are coprime, in which case they are counted by the Catalan number

$$\operatorname{Cat}(a,b) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}$$

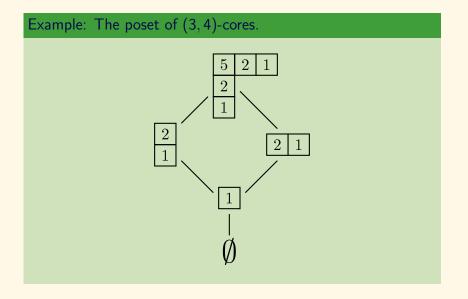
Theorem (Olsson-Stanton 2005, Vandehey 2008)

For (a, b) coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Suggestion

Study Young's lattice restricted to (a, b)-cores.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{d}{2} \rfloor + \lfloor \frac{d}{2} \rfloor \\ \lfloor \frac{d}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

Conjecture (Armstrong 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

Theorem (Ford-Mai-Sze 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{b}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{b}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{a=-1}$$

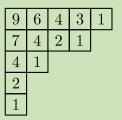
Conjecture (Armstrong 2011)

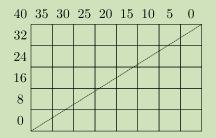
The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

Proof.

Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)



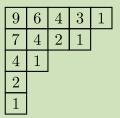


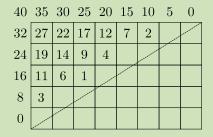
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

Proof.

Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (Label the rectangle cells by "height".)



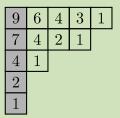


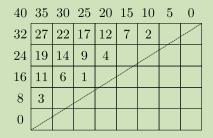
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (Label the first column hook lengths.)





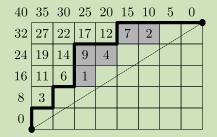
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Proof.

Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (Voila!)

9	6	4	3	1
7	4	2	1	
4	1			
2				
1				

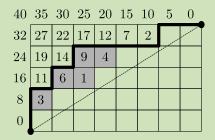


・ロト・日・モー・モー・ 日・ つへで

Proof.

Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (Observe: Conjugation is a bit strange.)

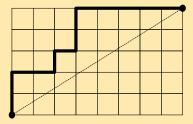


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Next: Rational Parking Functions/Spaces

Definition

• Label the up-steps by $\{1, 2, \ldots, a\}$, increasing up columns.

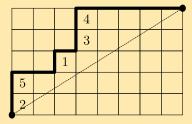


Call this a parking function.

- Let PF(x) = PF(a, b) denote the set of parking functions.
- Classical form (z_1, z_2, \ldots, z_a) has label z_i in column *i*.
- ► Example: (3,1,4,4,1)

Definition

• Label the up-steps by $\{1, 2, \ldots, a\}$, increasing up columns.

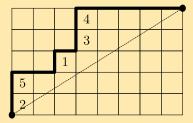


Call this a parking function.

- Let PF(x) = PF(a, b) denote the set of parking functions.
- Classical form (z_1, z_2, \ldots, z_a) has label z_i in column *i*.
- ► Example: (3,1,4,4,1)

Definition

• Label the up-steps by $\{1, 2, \ldots, a\}$, increasing up columns.

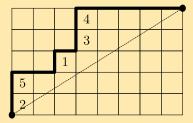


• Call this a **parking function**.

- Let PF(x) = PF(a, b) denote the set of parking functions.
- ▶ Classical form $(z_1, z_2, ..., z_a)$ has label z_i in column *i*.
- ► Example: (3,1,4,4,1)

Definition

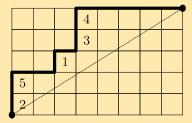
• Label the up-steps by $\{1, 2, \ldots, a\}$, increasing up columns.



- Call this a **parking function**.
- Let PF(x) = PF(a, b) denote the set of parking functions.
- Classical form (z₁, z₂,..., z_a) has label z_i in column i.
- ► Example: (3, 1, 4, 4, 1)

Definition

• Label the up-steps by $\{1, 2, \ldots, a\}$, increasing up columns.

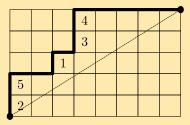


・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Call this a **parking function**.
- Let PF(x) = PF(a, b) denote the set of parking functions.
- ▶ Classical form (*z*₁, *z*₂, ..., *z*_a) has label *z*_i in column *i*.
- ▶ Example: (3, 1, 4, 4, 1)

Definition

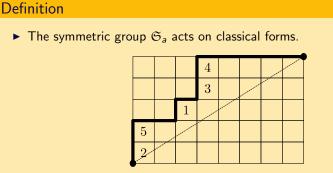
• The symmetric group \mathfrak{S}_a acts on classical forms.



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of \mathfrak{S}_a

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

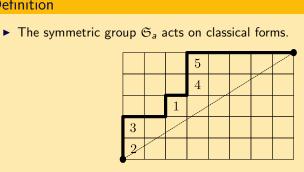
Call it the rational parking space.



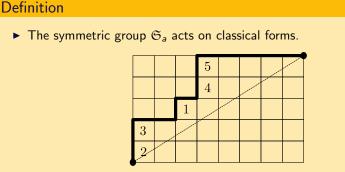
- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of \mathfrak{S}_a

Call it the rational parking space.

Definition



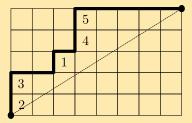
- Example: (3, 1, 4, 4, 1) versus (3, 1, 1, 4, 4)



- ► Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of \mathfrak{S}_a .

Call it the rational parking space.

▶ The symmetric group \mathfrak{S}_a acts on classical forms.



- Example: (3,1,4,4,1) versus (3,1,1,4,4)
- ▶ By abuse, let PF(x) = PF(a, b) denote this representation of \mathfrak{S}_a .

Call it the rational parking space.

Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is b^{a-1} .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

▶ That is: PF(a, b) is the coefficient of t^a in $\frac{1}{b}H(t)^b$, where

 $H(t)=h_0+h_1t+h_2t^2+\cdots$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is b^{a-1} .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• That is: PF(a, b) is the coefficient of t^a in $\frac{1}{b}H(t)^b$, where

 $H(t)=h_0+h_1t+h_2t^2+\cdots.$

Theorems (with N. Loehr and N. Williams)

• The dimension of PF(a, b) is b^{a-1} .

► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• That is: PF(a, b) is the coefficient of t^a in $\frac{1}{b}H(t)^b$, where

 $H(t)=h_0+h_1t+h_2t^2+\cdots.$

・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへつ

Theorems (with N. Loehr and N. Williams)

- The dimension of PF(a, b) is b^{a-1} .
- ► The complete homogeneous expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• That is: PF(a, b) is the coefficient of t^a in $\frac{1}{b}H(t)^b$, where

$$H(t) = h_0 + h_1 t + h_2 t^2 + \cdots$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

► The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} b^{\ell(\mathsf{r})-1} \frac{p_\mathsf{r}}{z_\mathsf{r}}$$

i.e. the # of parking functions fixed by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} \frac{1}{b} s_{\mathsf{r}}(1^b) s_{\mathsf{r}}.$$

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

i.e. the # of parking functions fixed by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$.

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} s_{\mathbf{r}}(1^b) s_{\mathbf{r}}.$$

Theorems (with N. Loehr and N. Williams)

Then using the Cauchy product identity we get...

The power sum expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

i.e. the # of parking functions fixed by $\sigma \in \mathfrak{S}_a$ is $b^{\# cycles(\sigma)-1}$.

► The Schur expansion is

$$\mathsf{PF}(a,b) = \sum_{\mathsf{r}\vdash a} \frac{1}{b} s_{\mathsf{r}}(1^b) s_{\mathsf{r}}.$$

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k+1, 1^{a-k-1}]$ in PF(*a*, *b*) are given by the **Schröder numbers**

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- ▶ Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is $k = \max\{0, a b\}$, in which case

 $\operatorname{Schr\"o}(a, b; k) = \operatorname{Cat}'(a, b).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k+1, 1^{a-k-1}]$ in PF(*a*, *b*) are given by the **Schröder numbers**

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

► Trivial character: Schrö(a, b; a - 1) = Cat(a, b).

Smallest k that occurs is $k = \max\{0, a - b\}$, in which case

 $\operatorname{Schr\"o}(a,b;k) = \operatorname{Cat}'(a,b).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k+1, 1^{a-k-1}]$ in PF(*a*, *b*) are given by the **Schröder numbers**

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

• Trivial character: Schrö(a, b; a - 1) = Cat(a, b).

Smallest k that occurs is $k = \max\{0, a - b\}$, in which case

 $\operatorname{Schr\"o}(a, b; \mathbf{k}) = \operatorname{Cat}'(a, b).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k+1, 1^{a-k-1}]$ in PF(*a*, *b*) are given by the **Schröder numbers**

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is $k = \max\{0, a b\}$, in which case

 $\operatorname{Schr}(a, b; \mathbf{k}) = \operatorname{Cat}'(a, b).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Observation/Definition

The multiplicities of the **hook Schur functions** $s[k+1, 1^{a-k-1}]$ in PF(*a*, *b*) are given by the **Schröder numbers**

Schrö
$$(a, b; k) := \frac{1}{b} s_{[k+1, 1^{a-k-1}]}(1^b) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}.$$

Special Cases:

- Trivial character: Schrö(a, b; a 1) = Cat(a, b).
- Smallest k that occurs is $k = \max\{0, a b\}$, in which case

$$\mathsf{Schr}\ddot{o}(a,b;\mathbf{k}) = \mathsf{Cat}'(a,b).$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Given a, b coprime we have an \mathfrak{S}_a -module $\mathsf{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b -module $\mathsf{PF}(b, a)$ of dimension a^{b-1} .

What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

 $\operatorname{Schr\"o}(a, b; k) = \operatorname{Schr\"o}(b, a; k + b - a).$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Э

Sac

See Eugene Gorsky, Arc spaces and DAHA representations, 2011.

Given a, b coprime we have an \mathfrak{S}_a -module $\mathsf{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b -module $\mathsf{PF}(b, a)$ of dimension a^{b-1} .

• What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

Schrö(a, b; k) = Schrö(b, a; k + b - a).

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

See Eugene Gorsky, Arc spaces and DAHA representations, 2011.

Given a, b coprime we have an \mathfrak{S}_a -module $\mathsf{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b -module $\mathsf{PF}(b, a)$ of dimension a^{b-1} .

• What is the relationship between PF(a, b) and PF(b, a)?

Note that hook multiplicities are the same:

 $\operatorname{Schr}(a, b; k) = \operatorname{Schr}(b, a; k + b - a).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

See Eugene Gorsky, Arc spaces and DAHA representations, 2011.

Given a, b coprime we have an \mathfrak{S}_a -module $\mathsf{PF}(a, b)$ of dimension b^{a-1} and an \mathfrak{S}_b -module $\mathsf{PF}(b, a)$ of dimension a^{b-1} .

▶ What is the relationship between PF(*a*, *b*) and PF(*b*, *a*)?

Note that hook multiplicities are the same:

 $\operatorname{Schr}(a, b; k) = \operatorname{Schr}(b, a; k + b - a).$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

▶ See Eugene Gorsky, Arc spaces and DAHA representations, 2011.

Summary of Catalan Refinements

► The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. (1 < k < a - 1)</p>

$Kirk(x;k) = \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1}$)	f-vector			
$\operatorname{Nar}(x;k) = \frac{1}{a} {a \choose k} {b-1 \choose k-1}$	}	<i>h</i> -vector			
$\operatorname{Schrö}(x;k) = \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a}$	J	"dual" <i>f</i> -vector			

► The Kreweras numbers are more refined. They contain parabolic information. (r ⊢ a)

$$\operatorname{Krew}(x;\mathbf{r}) = \frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix}$$

Summary of Catalan Refinements

► The Kirkman/Narayana/Schröder numbers are equivalent. They contain information about rank. (1 < k < a - 1)</p>

$$\begin{aligned} \operatorname{Kirk}(x;k) &= \frac{1}{a} \binom{a}{k} \binom{b+k-1}{k-1} \\ \operatorname{Nar}(x;k) &= \frac{1}{a} \binom{a}{k} \binom{b-1}{k-1} \\ \operatorname{Schr\"o}(x;k) &= \frac{1}{b} \binom{a-1}{k} \binom{b+k}{a} \end{aligned} \right\} \qquad \begin{array}{c} f \text{-vector} \\ h \text{-vector} \\ \text{``dual'' } f \text{-vector} \end{aligned}$$

► The Kreweras numbers are more refined. They contain parabolic information. (r ⊢ a)

$$\mathsf{Krew}(x;\mathbf{r}) = \frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix}$$

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{\mathsf{P}} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

F is a fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

• We require $PF_{1,1}(a, b) = PF(a, b)$.

Must define qstat, tstat, iDes for (a, b)-parking function P.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

F is a fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

• We require $PF_{1,1}(a, b) = PF(a, b)$.

Must define qstat, tstat, iDes for (a, b)-parking function P.

SQA

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

F is a fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

• We require $PF_{1,1}(a, b) = PF(a, b)$.

Must define qstat, tstat, iDes for (a, b)-parking function P.

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

- F is a fundamental (Gessel) quasisymmetric function.
 natural refinement of Schur functions
- We require $PF_{1,1}(a, b) = PF(a, b)$.
- Must define qstat, tstat, iDes for (a, b)-parking function P.

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

- F is a fundamental (Gessel) quasisymmetric function.
 natural refinement of Schur functions
- We require $PF_{1,1}(a, b) = PF(a, b)$.

Must define qstat, tstat, iDes for (a, b)-parking function P.

We want a "Shuffle Conjecture"

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(a,b) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

Sum over (a, b)-parking functions P.

- F is a fundamental (Gessel) quasisymmetric function.
 natural refinement of Schur functions
- We require $PF_{1,1}(a, b) = PF(a, b)$.
- Must define qstat, tstat, iDes for (a, b)-parking function P.

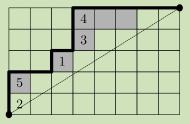
qstat is easy

Definition

- ▶ Let qstat := area := # boxes between the path and diagonal.
- ► Note: Maximum value of area is (a 1)(b 1)/2. (Frobenius) — see Beck and Robins, Chapter 1

Example

• This (5, 8)-parking function has area = 6.



▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Remember the "height"?

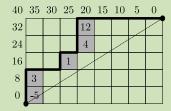
					15			
32	27	22	17	12	7	2	-3	-8
24	19	14	9	4	-1	-6	-11	-16
16	11	6	1	-4	-9	-14	-19	-24
8	3	-2	7مر	-12	-17	-22	-27	-32
0	-5-	-10	-15	-20	-25	-30	-35	-40

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Look at the heights of the vertical step boxes.

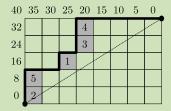


Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Remember the labels we had before.

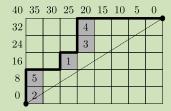


Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

• Read them by increasing height to get $\sigma = 2\overline{1}53\overline{4} \in \mathfrak{S}_5$.



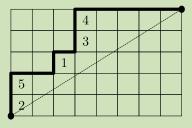
tstat is hard (as usual)

Definition

- ▶ "Blow up" the (*a*, *b*)-parking function.
- ► Compute "dinv" of the blowup.

Example

▶ Recall our favorite the (5,8)-parking function.



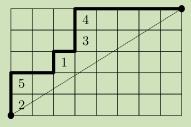
tstat is hard (as usual)

Definition

- ▶ "Blow up" the (*a*, *b*)-parking function.
- Compute "dinv" of the blowup.

Example

Since $2 \cdot 8 - 3 \cdot 5 = 1$ we "blow up" by 2 horiz. and 3 vert....

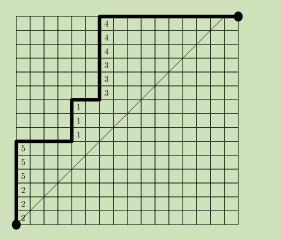


▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

tstat is hard (as usual)

Example

► To get this!

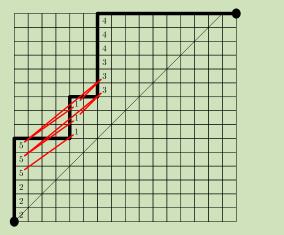


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

tstat is hard (as usual)

Example

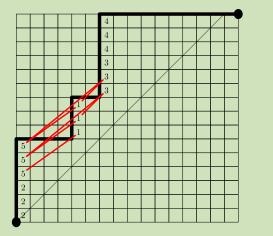
• To get this! Now compute dinv = 7.



tstat is hard (as usual)

Example

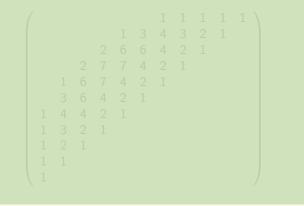
▶ (There's a scaling factor *depending on the path*, so tstat = 3.)



All Together

Example

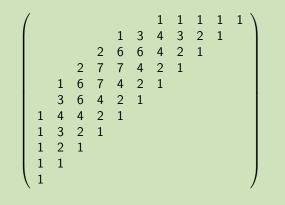
- So our favorite (5,8)-parking function contributes $q^6 t^3 F_{\{1,4\}}$.
- ▶ Proof of Concept: The coefficient of s[2,2,1] in $PF_{q,t}(5,8)$ is



All Together

Example

- So our favorite (5,8)-parking function contributes $q^6 t^3 F_{\{1,4\}}$.
- ▶ Proof of Concept: The coefficient of s[2, 2, 1] in $PF_{q,t}(5, 8)$ is



Facts

$\blacktriangleright \mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$

- PF_{q,t}(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
 via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1^{a-k-1}] is the q, t-Schröder number Schrö_{g,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö_{*q*, $\frac{1}{q}$ (*a*, *b*; *k*) = $\frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$ (centered)}

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

Facts

▶ $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$

- PF_{q,t}(a, b) is symmetric and Schur-positive with coeffs ∈ N[q, t].
 via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1^{a-k-1}] is the q, t-Schröder number Schrö_{g,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö_{*q*, $\frac{1}{q}$ (*a*, *b*; *k*) = $\frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$ (centered)}

Facts

- ▶ $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶ $\mathsf{PF}_{q,t}(a, b)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k+1,1^{a-k-1}] is the q, t-Schröder number Schrö_{q,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö_{q, $\frac{1}{q}$} $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$ (centere

▲□▶ ▲□▶ ▲目▶ ▲目▶ = 目 = のへの

Facts

- ▶ $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶ $\mathsf{PF}_{q,t}(a, b)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k+1,1^{a-k-1}] is the q, t-Schröder number Schrö_{q,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö<sub>q,
$$\frac{1}{q}$$</sub> $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$ (centered)

Facts

- ▶ $\mathsf{PF}_{1,1}(a,b) = \mathsf{PF}(a,b).$
- ▶ $\mathsf{PF}_{q,t}(a, b)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1^{a-k-1}] is the q, t-Schröder number Schrö_{q,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

Schrö_{q, $\frac{1}{q}$} $(a, b; k) = \frac{1}{[b]_q} \begin{bmatrix} a-1\\k \end{bmatrix}_q \begin{bmatrix} b+k\\a \end{bmatrix}_q$ (centered)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Facts

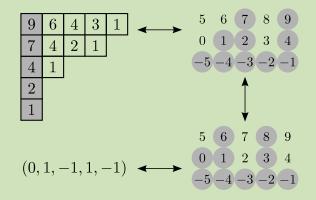
- ▶ $\mathsf{PF}_{1,1}(a, b) = \mathsf{PF}(a, b).$
- ▶ $\mathsf{PF}_{q,t}(a, b)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials (HHLRU Lemma 6.4.1)
- Experimentally: PF_{q,t}(a, b) = PF_{t,q}(a, b).
 this will be "impossible" to prove (see Loehr's Maxim)
- ▶ Definition: The coefficient of the hook s[k + 1, 1^{a-k-1}] is the q, t-Schröder number Schrö_{q,t}(a, b; k).
- **Experimentally:** Specialization t = 1/q gives

$$\operatorname{Schr}\ddot{o}_{q,\frac{1}{q}}(a,b;k) = \frac{1}{[b]_{q}} \begin{bmatrix} a-1\\k \end{bmatrix}_{q} \begin{bmatrix} b+k\\a \end{bmatrix}_{q} \quad (\operatorname{centered})$$

<ロト < 部 > < 目 > < 目 > < 目 > の < @</p>

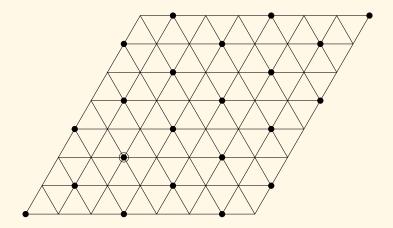
The James-Kerber Bijection

• between *a*-cores and the root lattice of the Weyl group \mathfrak{S}_a

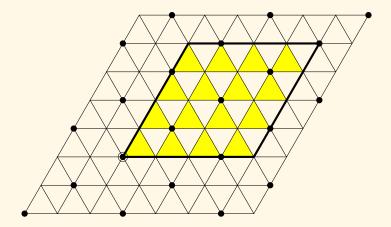


◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

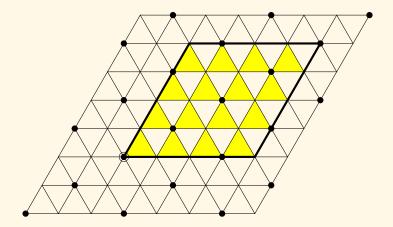
• These are the root and weight lattices $Q \subseteq \Lambda$ of \mathfrak{S}_a .



• Here is a fundamental parallelepiped for $\Lambda/b\Lambda$.

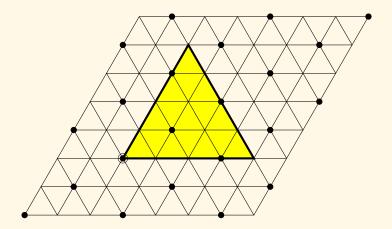


▶ It contains b^{a-1} elements (these are the "parking functions").

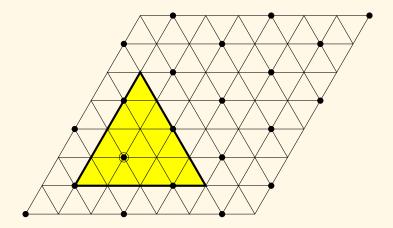


<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

▶ But they look better as a simplex...

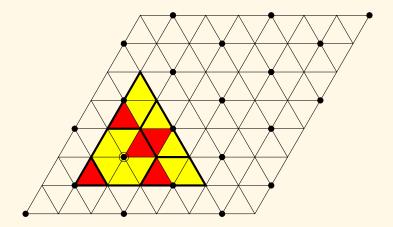


• ...which is congruent to a nicer simplex.



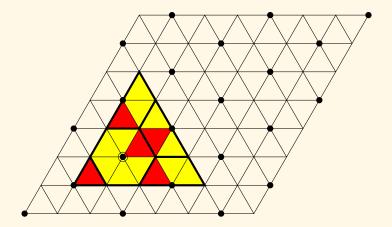
<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• There are $Cat(a, b) = \frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$ elements of the root lattice inside.



<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

► These are the (*a*, *b*)-Dyck paths (via Anderson, James-Kerber).



Other Weyl Groups?

Definition

Consider a Weyl group W with Coxeter number h and let $p \in \mathbb{N}$ be coprime to h. We define the **Catalan number**

$$\mathsf{Cat}_q(W, p) := \prod_j rac{[p+m_j]_q}{[1+m_j]_q}$$

where $e^{2\pi i m_j/h}$ are the eigenvalues of a Coxeter element.

Observation

$$\operatorname{Cat}_q(\mathfrak{S}_a, b) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q$$

Here's to a Productive Workshop

