Rational Catalan Combinatorics 2

Drew Armstrong et al.

University of Miami www.math.miami.edu/~armstrong

June 19, 2012

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

This talk will *further* advertise a definition.

Here is it.

Definition

Let 0 < a < b be coprime and consider $x = a/(b - a) \in \mathbb{Q}$. Then we define the **Catalan number**

$$Cat(x) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Please note the a, b-symmetry.

This talk will *further* advertise a definition.

Here is it.

Definition

Let 0 < a < b be coprime and consider $x = a/(b-a) \in \mathbb{Q}$.

I hen we define the Catalan number

$$\mathsf{Cat}(x) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Please note the a, b-symmetry.

This talk will *further* advertise a definition.

Here is it.

Definition

Let 0 < a < b be coprime and consider $x = a/(b-a) \in \mathbb{Q}$. Then we define the **Catalan number**

$$\mathsf{Cat}(\mathsf{x}) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Please note the a, b-symmetry.

When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a < b) = (n < n + 1) gives the good old Catalan number

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{1}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the Fuss-Catalan number

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $b = 1 \mod a \ldots$

• Eugène Charles Catalan (1814-1894) (a < b) = (n < n + 1) gives the good old Catalan number $Cat(n) = Cat\left(\frac{n}{1}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$

Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the Fuss-Catalan number

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $b = 1 \mod a \ldots$

- Eugène Charles Catalan (1814-1894) (a < b) = (n < n + 1) gives the good old Catalan number Cat(n) = Cat $\left(\frac{n}{1}\right) = \frac{1}{2n+1} \binom{2n+1}{n}$.
- Nicolaus Fuss (1755-1826)
 - (a < b) = (n < kn + 1) gives the Fuss-Catalan number

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b - a) for 0 < a < b coprime.

Then we define the derived Catalan number

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by Cat(-x - 1) := Cat(x) then the formula is simpler:

$$Cat'(x) = Cat(1/(x-1)) = Cat(x/(1-x)).$$

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b - a) for 0 < a < b coprime. Then we define the **derived Catalan number**

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by Cat(-x - 1) := Cat(x) then the formula is simpler:

$$Cat'(x) = Cat(1/(x-1)) = Cat(x/(1-x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b - a) for 0 < a < b coprime. Then we define the **derived Catalan number**

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by Cat(-x - 1) := Cat(x) then the formula is simpler:

$$Cat'(x) = Cat(1/(x-1)) = Cat(x/(1-x)).$$

Problem

Describe a recurrence for the Cat function, perhaps in terms of the *Calkin-Wilf sequence*

$$\frac{1}{1} \mapsto \frac{1}{2} \mapsto \frac{2}{1} \mapsto \frac{1}{3} \mapsto \frac{3}{2} \mapsto \frac{2}{3} \mapsto \frac{3}{1} \mapsto \frac{1}{4} \mapsto \frac{4}{3} \mapsto \cdots$$

which is defined by

$$x\mapsto \frac{1}{2\lfloor x\rfloor+1-x}.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー のくぐ

See Aigner and Ziegler: "Proofs from THE BOOK", Chapter 17.

Motivation 1: Core Partitions

Motivation 2: Parking Functions Motivation 3: "Lie Theory" Motivation 4: Noncrossing Partitions Motivation 5: Associahedra

Motivation 1: \(\mathcal{A}\) \(\mathcal{A}\)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

・ロト・日本・モート モー うへで

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Motivation 1: \(\mathcal{A}\mathc

• Consider the "Dyck paths" in an $a \times b$ rectangle.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

• Again let x = a/(b-a) with 0 < a < b coprime.

Example (a < b) = (5 < 8)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ⊙

• Let $\mathcal{D}(x)$ denote the set of Dyck paths.

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \begin{pmatrix} a+b\\ a,b \end{pmatrix}.$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロット 小田 マ ト 小田 マ

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b.
 Each orbit contains a unique Dyck path.

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break ^(a+b)_{a,b} lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break ^(a+b)_{a,b} lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

For a, b coprime, the number of Dyck paths is the Catalan number:

$$|\mathcal{D}(x)| = \operatorname{Cat}(x) = \frac{1}{a+b} \binom{a+b}{a,b}.$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break (^{a+b}_{a,b}) lattice paths into cyclic orbits of size a + b. Each orbit contains a unique Dyck path.

Theorem (Armstrong, 2010, Loehr, 2010)

Consider the rectangle of height a and width b with 0 < a < b coprime. The number of Dyck paths with i vertical runs equals

$$\operatorname{Nar}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}.$$

Call these the Narayana numbers

And the number with r_i vertical runs of length j equals

$$\mathsf{Krew}(x,\mathbf{r}) := \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} = \frac{b!}{r_0! r_1! \cdots r_a!}$$

・ 日 > ・ 一 戸 > ・ 日 > ・

Э

Sac

Call these the Kreweras numbers.

Theorem (Armstrong, 2010, Loehr, 2010)

 Consider the rectangle of height a and width b with 0 < a < b coprime. The number of Dyck paths with i vertical runs equals

$$\mathsf{Nar}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}$$

Call these the Narayana numbers.

And the number with r_i vertical runs of length j equals

Krew
$$(x, \mathbf{r}) := \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} = \frac{b!}{r_0! r_1! \cdots r_a!}$$

200

Call these the Kreweras numbers.

Theorem (Armstrong, 2010, Loehr, 2010)

 Consider the rectangle of height a and width b with 0 < a < b coprime. The number of Dyck paths with i vertical runs equals

$$\operatorname{Nar}(x,i) := \frac{1}{a} {a \choose i} {b-1 \choose i-1}$$

Call these the Narayana numbers.

And the number with r_i vertical runs of length j equals

$$\mathsf{Krew}(x,\mathbf{r}) := \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} = \frac{b!}{r_0! r_1! \cdots r_a!}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Call these the Kreweras numbers.

• Start with a Dyck path. (E.g. (a, b) = (5, 8).)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへで

• Label the internal vertices by $\{1, 2, \ldots, a + b - 1\}$.

Shoot lasers from the bottom left.

Who can see each other?

► There you go!

We have created Cat(x) = ¹/_a (^{a+b}/_{a,b}) different noncrossing partitions of the cycle [a + b − 1], and each of them has a blocks.

▶ Q: What does "rotation" of the partition correspond to?

• A: Think of the path as a maximal chain in a poset.

▶ Perform "promotion" on the chain.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

▶ Perform "promotion" on the chain.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

► Think of it as a path again.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

► Again with the lasers.

► And there you go!

• Psst ... mention the case (a < b) = (n < n(k - 1) + 1).

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへで

Definition

For 0 < a < b coprime, consider the **triangle poset**

$$\mathcal{T}(a,b):=\{(x,y)\in\mathbb{Z}^2:y\leq a,\ x\leq b,\ yb-xa\geq 0\}.$$

Theorem (with Nathan Williams)

• Promotion on T(a, b) has order a + b - 1.

 Furthermore, the number of orbits Orb with d dividing ^{a+b-1}/_{|Orb|} is (most likely) the coefficient of q^d in

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \mod (q^{a+b-1}-1).$$

• $\mathcal{T}(n, n+1)$ is a root poset.

Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas

Sac

Theorem (with Nathan Williams)

• Promotion on T(a, b) has order a + b - 1.

► Furthermore, the number of orbits Orb with d dividing ^{a+b-1}/_{|Orb|} is (most likely) the coefficient of q^d in

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \mod (q^{a+b-1}-1).$$

▶ T(n, n+1) is a root poset

Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas

<□> <@> < 注> < 注> = 注

SQA

Theorem (with Nathan Williams)

- Promotion on T(a, b) has order a + b 1.
- Furthermore, the number of orbits Orb with d dividing ^{a+b-1}/_{|Orb|} is (most likely) the coefficient of q^d in

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \mod (q^{a+b-1}-1).$$

▶ T(n, n+1) is a root poset

Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (with Nathan Williams)

- Promotion on T(a, b) has order a + b 1.
- Furthermore, the number of orbits Orb with d dividing ^{a+b-1}/_{|Orb|} is (most likely) the coefficient of q^d in

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \mod (q^{a+b-1}-1).$$

• T(n, n+1) is a root poset.

Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Theorem (with Nathan Williams)

- Promotion on T(a, b) has order a + b 1.
- Furthermore, the number of orbits Orb with d dividing ^{a+b-1}/_{|Orb|} is (most likely) the coefficient of q^d in

$$\frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q \mod (q^{a+b-1}-1).$$

- $\mathcal{T}(n, n+1)$ is a root poset.
- Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

We have some "rational NC partitions" but they don't form a poset. (They all have *a* blocks!)

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

Э

Sac

Question

Can one define a **poset** of "rational NC partitions"?

Answer

We have some "rational NC partitions" but they don't form a poset. (They all have *a* blocks!)

200

Question

Can one define a **poset** of "rational NC partitions"?

Answer

We have some "rational NC partitions" but they don't form a poset. (They all have *a* blocks!)

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Question

Can one define a **poset** of "rational NC partitions"?

Answer

We have some "rational NC partitions" but they don't form a poset. (They all have *a* blocks!)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Question

Can one define a **poset** of "rational NC partitions"?

Answer

To de-homogenize a noncrossing partition...

Remember this thing?

To de-homogenize a noncrossing partition...

► Now we label only the horizontal steps.

Now we label only the horizontal steps.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Now we shoot lasers only from the corners.

Now who can see each other?

► There you go!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- ▶ NC(n, n+1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the *k*-divisible noncrossing partitions.
- ▶ NC(a, b) is a (graded) order filter in NC(b-1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements.
- ► NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.
- ▶ NC(a, b) is a (graded) order filter in NC(b-1)
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the *k*-divisible noncrossing partitions.
- ▶ NC(a, b) is a (graded) order filter in NC(b-1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a,b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.
- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a+b \choose a,b}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- NC(n, (k-1)n+1) is the k-divisible noncrossing partitions.
- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$ elements.
- NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

- NC(n, n+1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the *k*-divisible noncrossing partitions.

- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$ elements.

▶ NC(x) has Cat'(x) = $\frac{1}{b} {b \choose a}$ elements of minimum rank.

Definition (with Nathan Williams)

Consider x = a/(b - a) with 0 < a < b coprime. We have constructed a poset of NC partitions called NC(x) = NC(a, b).

- NC(n, n + 1) = NC(n) is the good old noncrossing partitions.
- ▶ NC(n, (k-1)n+1) is the *k*-divisible noncrossing partitions.
- ► NC(a, b) is a (graded) order filter in NC(b − 1).
- ▶ NC(a, b) is ranked by the Narayana numbers $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- NC(x) has Cat(x) = $\frac{1}{a+b} {a+b \choose a,b}$ elements.
- NC(x) has $Cat'(x) = \frac{1}{b} {b \choose a}$ elements of minimum rank.

Inversion = "Alexander Duality"?

• Note that $x \leftrightarrow 1/x$ is the same as $(a < b) \leftrightarrow (b - a < b)$.

(ロ)、

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with *h*-vector given by

$$\operatorname{Nar}(x,i) = \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}?$$

Answer

Yes.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ●

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with *h*-vector given by

$$\operatorname{Nar}(x,i) = \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}?$$

◆ロト ◆聞ト ◆注ト ◆注ト

I

Sac

Answei

Yes.

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with *h*-vector given by

$$Nar(x,i) = \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}?$$

Sac

Answer

Yes.

The good old associahedron is a nice polytope with *h*-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with *h*-vector given by

$$Nar(x,i) = \frac{1}{a} \binom{a}{i} \binom{b-1}{i-1}?$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Answer

Yes.

• Start with a Dyck path. (E.g. (a, b) = (5, 8).)

• Label the columns by $\{1, 2, \ldots, b+1\}$.

・ロット ●間マ ●用マ ●用マ ●目マ

Shoot some lasers from the bottom left.

► Lift the lasers up.

◆□ ▶ ◆ □ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

► There you go!

We have created Cat(x) = ¹/_a (^{a+b}/_{a,b}) different "triangulations" of the cycle [b + 1], and each of them has a diagonals.

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) facets and Euler characteristic Cat'(x)
- Ass(x) is shellable with *h*-vector Nar $(x, i) = \frac{1}{a} {a \choose i} {b-1 \choose i-1}$
- Hence its f-vector is given by the Kirkman numbers

$$\operatorname{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) facets and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x, i) = $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$
- Hence its f-vector is given by the Kirkman numbers

$$\operatorname{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass(x) has Cat(x) facets and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x, i) = $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- ▶ Hence its *f*-vector is given by the Kirkman numbers

$$\operatorname{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x, i) = $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- Hence its f-vector is given by the Kirkman numbers

$$\operatorname{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x, i) = $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- Hence its *f*-vector is given by the Kirkman numbers

$$\operatorname{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

- Ass(n, n + 1) = Ass(n) is the good old associahedron.
- ► Ass(n, (k 1)n + 1) is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- ► Ass(x) has Cat(x) facets and Euler characteristic Cat'(x).
- Ass(x) is shellable with *h*-vector Nar(x, i) = $\frac{1}{a} {a \choose i} {b-1 \choose i-1}$.
- Hence its *f*-vector is given by the Kirkman numbers

$$\mathsf{Kirk}(x,i) := \frac{1}{a} \binom{a}{i} \binom{b+i-1}{i-1}.$$

Inversion = "Alexander Duality"?

► E.g. Ass(2/3) and Ass(3/2) are dual inside Ass(4).

The end.

