Rational Catalan Combinatorics 2

Drew Armstrong et al.

University of Miami
www.math.miami.edu/~armstrong
June 19, 2012

This talk will further advertise a definition.

This talk will further advertise a definition.

Here is it.

Definition

Let $0<a<b$ be coprime and consider $x=a /(b-a) \in \mathbb{Q}$.

This talk will further advertise a definition.

Here is it.

Definition

Let $0<a<b$ be coprime and consider $x=a /(b-a) \in \mathbb{Q}$.
Then we define the Catalan number

$$
\operatorname{Cat}(x):=\frac{1}{a+b}\binom{a+b}{a, b}=\frac{(a+b-1)!}{a!b!}
$$

Please note the a, b-symmetry.

Special cases.

When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894)
$(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}(n \cdot 1)
$$

Nicolaus Fuss (1755-1826)
$(a<b)=(n<k n+1)$ gives the Fuss-Catalan number

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

Special cases.

When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894) $(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)

Special cases.

When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894)
$(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)
$(a<b)=(n<k n+1)$ gives the Fuss-Catalan number

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

Euclidean Algorithm \& Symmetry.

Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime.
This is a "categorification" of the Euclidean algorithm.

Euclidean Algorithm \& Symmetry.

Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime.
Then we define the derived Catalan number

$$
\operatorname{Cat}^{\prime}(x):=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(1 /(x-1)) & \text { if } x>1 \\ \operatorname{Cat}(x /(1-x)) & \text { if } x<1\end{cases}
$$

This is a "categorification" of the Euclidean algorithm.

Euclidean Algorithm \& Symmetry.

Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime.
Then we define the derived Catalan number

$$
\operatorname{Cat}^{\prime}(x):=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(1 /(x-1)) & \text { if } x>1 \\ \operatorname{Cat}(x /(1-x)) & \text { if } x<1\end{cases}
$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \backslash[-1,0] \rightarrow \mathbb{N}$ by $\operatorname{Cat}(-x-1):=\operatorname{Cat}(x)$ then the formula is simpler:

$$
\operatorname{Cat}^{\prime}(x)=\operatorname{Cat}(1 /(x-1))=\operatorname{Cat}(x /(1-x))
$$

Catalan "Number Theory"?

Problem

Describe a recurrence for the Cat function, perhaps in terms of the Calkin-Wilf sequence

$$
\frac{1}{1} \mapsto \frac{1}{2} \mapsto \frac{2}{1} \mapsto \frac{1}{3} \mapsto \frac{3}{2} \mapsto \frac{2}{3} \mapsto \frac{3}{1} \mapsto \frac{1}{4} \mapsto \frac{4}{3} \mapsto \cdots
$$

which is defined by

$$
x \mapsto \frac{1}{2\lfloor x\rfloor+1-x}
$$

See Aigner and Ziegler: "Proofs from THE BOOK", Chapter 17.

Motivation?

Motivation 1: Core Partitions
Motivation 2: Parking Functions

Motivation?

Motivation 2: Parking Functions

Motivation?

Motivation 2: Parking Functions

Motivation?

Motivation 3: "Lie Theory'

Motivation?

Motivation 3: "Lie Theory"

Motivation?

Motivation?

Motivation 4: Noncrossing Partitions (with N.Williams)

Motivation?

Motivation 4: Noncrossing Partitions (with N.Williams)
Motivation 5: Associahedra (with B. Rhoades and N. Williams)

The Prototype: Actuarial Science.

- Consider the "Dyck paths" in an $a \times b$ rectangle.

Example $(a<b)=(5<8)$

The Prototype: Actuarial Science.

- Again let $x=a /(b-a)$ with $0<a<b$ coprime.

Example $(a<b)=(5<8)$

The Prototype: Actuarial Science.

- Let $\mathcal{D}(x)$ denote the set of Dyck paths.

Example $(a<b)=(5<8)$

The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)
For a, b coprime, the number of Dyck paths is the Catalan number:

- Claimed by Grossman (1950), (He wrote 8 articles with this na me.)

The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)

The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.

The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

$$
|\mathcal{D}(x)|=\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}
$$

- Claimed by Grossman (1950), "Fun with lattice points". (He wrote 8 articles with this name.)
- Proved by Bizley (1954), in Journal of the Institute of Actuaries.
- Proof: Break $\binom{a+b}{a, b}$ lattice paths into cyclic orbits of size $a+b$. Each orbit contains a unique Dyck path.

The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

- Consider the rectangle of height a and width b with $0<a<b$ coprime. The number of Dyck paths with i vertical runs equals

Call these the Narayana numbers.

- And the number with ri vertical runs of length jequals

Call these the Kreweras numbers.

The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

- Consider the rectangle of height a and width b with $0<a<b$ coprime. The number of Dyck paths with i vertical runs equals

$$
\operatorname{Nar}(x, i):=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1} .
$$

Call these the Narayana numbers.

Call these the Kreweras numbers.

The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

- Consider the rectangle of height a and width b with $0<a<b$ coprime. The number of Dyck paths with i vertical runs equals

$$
\operatorname{Nar}(x, i):=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1} .
$$

Call these the Narayana numbers.

- And the number with r_{j} vertical runs of length j equals

$$
\operatorname{Krew}(x, \mathbf{r}):=\frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}}=\frac{b!}{r_{0}!r_{1}!\cdots r_{a}!} .
$$

Call these the Kreweras numbers.

To create a noncrossing partition. . .

- Start with a Dyck path. (E.g. $(a, b)=(5,8)$)

To create a noncrossing partition. . .

- Label the internal vertices by $\{1,2, \ldots, a+b-1\}$.

To create a noncrossing partition. . .

- Shoot lasers from the bottom left.

To create a noncrossing partition. . .

- Who can see each other?

To create a noncrossing partition. . .

- There you go!

To create a noncrossing partition. . .

- We have created $\operatorname{Cat}(x)=\frac{1}{a}\binom{a+b}{a, b}$ different noncrossing partitions of the cycle $[a+b-1$], and each of them has a blocks.

To rotate a noncrossing partition...

- Q: What does "rotation" of the partition correspond to?

To rotate a noncrossing partition...

- A: Think of the path as a maximal chain in a poset.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition. . .

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition. . .

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Perform "promotion" on the chain.

To rotate a noncrossing partition...

- Think of it as a path again.

To rotate a noncrossing partition...

- Again with the lasers.

To rotate a noncrossing partition...

- And there you go!

To rotate a noncrossing partition...

- Psst \ldots mention the case $(a<b)=(n<n(k-1)+1)$.

What have we done?

What have we done?

Definition

For $0<a<b$ coprime, consider the triangle poset

$$
\mathcal{T}(a, b):=\left\{(x, y) \in \mathbb{Z}^{2}: y \leq a, x \leq b, y b-x a \geq 0\right\}
$$

As you see here.

What have we done?

Theorem (with Nathan Williams)

- Promotion on $T(a, b)$ has order $a+b-1$.
- Furthermore the number of orbite Orh infith dividing a-b is (most likely) the coefficient of q^{d} in $\bmod \left(q^{a+b-1}-1\right)$

What have we done?

Theorem (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order $a+b-1$.
(most likely) the coefficient of q^{d} in

What have we done?

Theorem (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order $a+b-1$.
- Furthermore, the number of orbits Orb with d dividing $\frac{a+b-1}{\mid \text { Orb| }}$ is (most likely) the coefficient of q^{d} in

$$
\frac{1}{[a+b]_{q}}\left[\begin{array}{c}
a+b \\
a, b
\end{array}\right]_{q} \bmod \left(q^{a+b-1}-1\right) .
$$

What have we done?

Theorem (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order $a+b-1$.
- Furthermore, the number of orbits Orb with d dividing $\frac{a+b-1}{|O r b|}$ is (most likely) the coefficient of q^{d} in

$$
\frac{1}{[a+b]_{q}}\left[\begin{array}{c}
a+b \\
a, b
\end{array}\right]_{q} \bmod \left(q^{a+b-1}-1\right)
$$

- $\mathcal{T}(n, n+1)$ is a root poset.

What have we done?

Theorem (with Nathan Williams)

- Promotion on $\mathcal{T}(a, b)$ has order $a+b-1$.
- Furthermore, the number of orbits Orb with d dividing $\frac{a+b-1}{|O r b|}$ is (most likely) the coefficient of q^{d} in

$$
\frac{1}{[a+b]_{q}}\left[\begin{array}{c}
a+b \\
a, b
\end{array}\right]_{q} \bmod \left(q^{a+b-1}-1\right)
$$

- $\mathcal{T}(n, n+1)$ is a root poset.
- Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.

So now what?

Observation
 We have some "rational NC partitions" but they don't form a poset (They all have a blocks!)

Question
Can one defini a poset of "rational NC partitions"?

So now what?

Observation

We have some "rational NC partitions" but they don't form a poset.
(They all have a blocks!)

So now what?

Observation

We have some "rational NC partitions" but they don't form a poset.
(They all have a blocks!)

Question

Can one define a poset of "rational NC partitions"?

So now what?

Observation

We have some "rational NC partitions" but they don't form a poset.
(They all have a blocks!)

Question

Can one define a poset of "rational NC partitions"?

Answer

Yes.

To de-homogenize a noncrossing partition. . .

- Remember this thing?

To de-homogenize a noncrossing partition. . .

- Now we label only the horizontal steps.

To de-homogenize a noncrossing partition. . .

- Now we label only the horizontal steps.

To de-homogenize a noncrossing partition. ..

- Now we shoot lasers only from the corners.

To de-homogenize a noncrossing partition. . .

- Now who can see each other?

To de-homogenize a noncrossing partition. . .

- There you go!

What have we done?

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

$$
\mathrm{NC}(n, n+1)=\mathrm{NC}(n) \text { is the good old noncrossing partitions. }
$$

- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.
- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.
- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.
- $\mathrm{NC}(a, b)$ is a (graded) order filter in $\mathrm{NC}(b-1)$.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.
- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.
- $\mathrm{NC}(a, b)$ is a (graded) order filter in $\mathrm{NC}(b-1)$.
- $\mathrm{NC}(a, b)$ is ranked by the Narayana numbers $\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1}$.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.
- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.
- $\mathrm{NC}(a, b)$ is a (graded) order filter in $\mathrm{NC}(b-1)$.
- $\mathrm{NC}(a, b)$ is ranked by the Narayana numbers $\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1}$.
- $N C(x)$ has $\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}$ elements.

What have we done?

Definition (with Nathan Williams)

Consider $x=a /(b-a)$ with $0<a<b$ coprime. We have constructed a poset of NC partitions called $\mathrm{NC}(x)=\mathrm{NC}(a, b)$.

Facts (with Nathan Williams)

- $\mathrm{NC}(n, n+1)=\mathrm{NC}(n)$ is the good old noncrossing partitions.
- $\mathrm{NC}(n,(k-1) n+1)$ is the k-divisible noncrossing partitions.
- $\mathrm{NC}(a, b)$ is a (graded) order filter in $\mathrm{NC}(b-1)$.
- $\mathrm{NC}(a, b)$ is ranked by the Narayana numbers $\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1}$.
- $N C(x)$ has $\operatorname{Cat}(x)=\frac{1}{a+b}\binom{a+b}{a, b}$ elements.
- $N C(x)$ has $\operatorname{Cat}^{\prime}(x)=\frac{1}{b}\binom{b}{a}$ elements of minimum rank.

Inversion = "Alexander Duality"?

- Note that $x \leftrightarrow 1 / x$ is the same as $(a<b) \leftrightarrow(b-a<b)$.

So now what?

Observation
 The anad ald ace ciahedron is a nice polytope with h-vector given by the good old Narayana numbers.

Question

Can one derne a rational associahedron" with h-vector given by

$$
\operatorname{Nar}(x, i)=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1} ?
$$

So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the good old Narayana numbers.

So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with h-vector given by

$$
\operatorname{Nar}(x, i)=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1} ?
$$

So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the good old Narayana numbers.

Question

Can one define a "rational associahedron" with h-vector given by

$$
\operatorname{Nar}(x, i)=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1} ?
$$

Answer

Yes.

To create a polygon dissection. . .

- Start with a Dyck path. (E.g. $(a, b)=(5,8)$.)

To create a polygon dissection. . .

- Label the columns by $\{1,2, \ldots, b+1\}$.

To create a polygon dissection. . .

- Shoot some lasers from the bottom left.

To create a polygon dissection. . .

- Lift the lasers up.

To create a polygon dissection. . .

- There you go!

To create a polygon dissection. . .

- We have created $\operatorname{Cat}(x)=\frac{1}{a}\binom{a+b}{a, b}$ different "triangulations" of the cycle $[b+1]$, and each of them has a diagonals.

What have we done?

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)=\operatorname{Ass}(n)$ is the good old associahedron.

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)=\operatorname{Ass}(n)$ is the good old associahedron.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)=\operatorname{Ass}(n)$ is the good old associahedron.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has $\operatorname{Cat}(x)$ facets and Euler characteristic $\operatorname{Cat}^{\prime}(x)$.

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)=\operatorname{Ass}(n)$ is the good old associahedron.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has Cat (x) facets and Euler characteristic $\operatorname{Cat}^{\prime}(x)$.
- $\operatorname{Ass}(x)$ is shellable with h-vector $\operatorname{Nar}(x, i)=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1}$.

What have we done?

Definition (with N. Williams)

We have a simplicial complex $\operatorname{Ass}(x)=\operatorname{Ass}(a, b)$.
Facts (with B. Rhoades and N. Williams)

- $\operatorname{Ass}(n, n+1)=\operatorname{Ass}(n)$ is the good old associahedron.
- Ass $(n,(k-1) n+1)$ is the generalized cluster complex of Athanasiadis-Tzanaki and Fomin-Reading.
- Ass (x) has Cat (x) facets and Euler characteristic $\operatorname{Cat}^{\prime}(x)$.
- $\operatorname{Ass}(x)$ is shellable with h-vector $\operatorname{Nar}(x, i)=\frac{1}{a}\binom{a}{i}\binom{b-1}{i-1}$.
- Hence its f-vector is given by the Kirkman numbers

$$
\operatorname{Kirk}(x, i):=\frac{1}{a}\binom{a}{i}\binom{b+i-1}{i-1} .
$$

Inversion = "Alexander Duality"?

- E.g. Ass(2/3) and $\operatorname{Ass}(3 / 2)$ are dual inside $\operatorname{Ass}(4)$.

The end.

