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This talk will further advertise a definition.

Here is it.

Definition

Let 0 < a < b be coprime and consider x = a/(b − a) ∈ Q.
Then we define the Catalan number

Cat(x) :=
1

a + b

(
a + b

a, b

)
=

(a + b − 1)!

a!b!
.

!

Please note the a, b-symmetry.
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Special cases.

When b = 1 mod a . . .

I Eugène Charles Catalan (1814-1894)

(a < b) = (n < n + 1) gives the good old Catalan number

Cat(n) = Cat
(n

1

)
=

1

2n + 1

(
2n + 1

n

)
.

I Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the Fuss-Catalan number

Cat

(
n

(kn + 1)− n

)
=

1

(k + 1)n + 1

(
(k + 1)n + 1

n

)
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Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b − a) for 0 < a < b coprime.
Then we define the derived Catalan number

Cat′(x) :=
1

b

(
b

a

)
=

{
Cat(1/(x − 1)) if x > 1

Cat(x/(1− x)) if x < 1

This is a “categorification” of the Euclidean algorithm.

Remark

If we define Cat : Q \ [−1, 0]→ N by Cat(−x − 1) := Cat(x) then the
formula is simpler:

Cat′(x) = Cat(1/(x − 1)) = Cat(x/(1− x)).
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Catalan “Number Theory”?

Problem

Describe a recurrence for the Cat function, perhaps in terms of the
Calkin-Wilf sequence

1

1
7→ 1

2
7→ 2

1
7→ 1

3
7→ 3

2
7→ 2

3
7→ 3

1
7→ 1

4
7→ 4

3
7→ · · ·

which is defined by

x 7→ 1

2bxc+ 1− x
.

See Aigner and Ziegler: “Proofs from THE BOOK”, Chapter 17.
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The Prototype: Actuarial Science.

I Consider the “Dyck paths” in an a× b rectangle.

Example (a < b) = (5 < 8)
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The Prototype: Actuarial Science.

Theorem (Grossman, 1950, Bizley, 1954)

For a, b coprime, the number of Dyck paths is the Catalan number:

|D(x)| = Cat(x) =
1

a + b

(
a + b

a, b

)
.

I Claimed by Grossman (1950), “Fun with lattice points”.
(He wrote 8 articles with this name.)

I Proved by Bizley (1954), in Journal of the Institute of Actuaries.

I Proof: Break
(
a+b
a,b

)
lattice paths into cyclic orbits of size a + b.

Each orbit contains a unique Dyck path.
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The Prototype: Actuarial Science.

Theorem (Armstrong, 2010, Loehr, 2010)

I Consider the rectangle of height a and width b with 0 < a < b
coprime . The number of Dyck paths with i vertical runs equals

Nar(x , i) :=
1

a

(
a

i

)(
b − 1

i − 1

)
.

Call these the Narayana numbers.

I And the number with rj vertical runs of length j equals

Krew(x , r) :=
1

b

(
b

r0, r1, . . . , ra

)
=

b!

r0!r1! · · · ra!
.

Call these the Kreweras numbers.
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To create a noncrossing partition. . .

I Start with a Dyck path. (E.g. (a, b) = (5, 8).)



To create a noncrossing partition. . .

I Label the internal vertices by {1, 2, . . . , a + b − 1}.



To create a noncrossing partition. . .

I Shoot lasers from the bottom left.



To create a noncrossing partition. . .

I Who can see each other?



To create a noncrossing partition. . .

I There you go!



To create a noncrossing partition. . .

I We have created Cat(x) = 1
a

(
a+b
a,b

)
different noncrossing partitions of

the cycle [a + b − 1], and each of them has a blocks.



To rotate a noncrossing partition. . .

I Q: What does “rotation” of the partition correspond to?



To rotate a noncrossing partition. . .

I A: Think of the path as a maximal chain in a poset.



To rotate a noncrossing partition. . .

I Perform “promotion” on the chain.
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I Perform “promotion” on the chain.



To rotate a noncrossing partition. . .

I Think of it as a path again.



To rotate a noncrossing partition. . .

I Again with the lasers.



To rotate a noncrossing partition. . .

I And there you go!



To rotate a noncrossing partition. . .

I Psst . . . mention the case (a < b) = (n < n(k − 1) + 1).



What have we done?



What have we done?

Definition

For 0 < a < b coprime, consider the triangle poset

T (a, b) := {(x , y) ∈ Z2 : y ≤ a, x ≤ b, yb − xa ≥ 0}.

As you see here.



What have we done?

Theorem (with Nathan Williams)

I Promotion on T (a, b) has order a + b − 1.

I Furthermore, the number of orbits Orb with d dividing a+b−1
|Orb| is

(most likely) the coefficient of qd in

1

[a + b]q

[
a + b

a, b

]
q

mod (qa+b−1 − 1).

!

I T (n, n + 1) is a root poset.

I Credit: D.White, Panyushev, Striker-Williams, Me-Stump-Thomas.
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So now what?

Observation

We have some “rational NC partitions” but they don’t form a poset.
(They all have a blocks!)

Question

Can one define a poset of “rational NC partitions”?

Answer

Yes.
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To de-homogenize a noncrossing partition. . .

I Remember this thing?
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To de-homogenize a noncrossing partition. . .

I There you go!
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What have we done?

Definition (with Nathan Williams)

Consider x = a/(b − a) with 0 < a < b coprime. We have constructed a
poset of NC partitions called NC(x) = NC(a, b).

Facts (with Nathan Williams)

I NC(n, n + 1) = NC(n) is the good old noncrossing partitions.

I NC(n, (k − 1)n + 1) is the k-divisible noncrossing partitions.

I NC(a, b) is a (graded) order filter in NC(b − 1).

I NC(a, b) is ranked by the Narayana numbers 1
a

(
a
i

)(
b−1
i−1

)
.

I NC(x) has Cat(x) = 1
a+b

(
a+b
a,b

)
elements.

I NC(x) has Cat′(x) = 1
b

(
b
a

)
elements of minimum rank.
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Inversion = “Alexander Duality”?

I Note that x ↔ 1/x is the same as (a < b)↔ (b − a < b).



So now what?

Observation

The good old associahedron is a nice polytope with h-vector given by the
good old Narayana numbers.

Question

Can one define a “rational associahedron” with h-vector given by

Nar(x , i) =
1

a

(
a

i

)(
b − 1

i − 1

)
?

Answer

Yes.
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Can one define a “rational associahedron” with h-vector given by

Nar(x , i) =
1

a

(
a

i

)(
b − 1

i − 1

)
?

Answer

Yes.



To create a polygon dissection. . .

I Start with a Dyck path. (E.g. (a, b) = (5, 8).)



To create a polygon dissection. . .

I Label the columns by {1, 2, . . . , b + 1}.



To create a polygon dissection. . .

I Shoot some lasers from the bottom left.



To create a polygon dissection. . .

I Lift the lasers up.



To create a polygon dissection. . .

I There you go!



To create a polygon dissection. . .

I We have created Cat(x) = 1
a

(
a+b
a,b

)
different “triangulations” of the

cycle [b + 1], and each of them has a diagonals.



What have we done?



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



What have we done?

Definition (with N. Williams)

We have a simplicial complex Ass(x) = Ass(a, b).

Facts (with B. Rhoades and N. Williams)

I Ass(n, n + 1) = Ass(n) is the good old associahedron.

I Ass(n, (k − 1)n + 1) is the generalized cluster complex of
Athanasiadis-Tzanaki and Fomin-Reading.

I Ass(x) has Cat(x) facets and Euler characteristic Cat′(x).

I Ass(x) is shellable with h-vector Nar(x , i) = 1
a

(
a
i

)(
b−1
i−1

)
.

I Hence its f -vector is given by the Kirkman numbers

Kirk(x , i) :=
1

a

(
a

i

)(
b + i − 1

i − 1

)
.



Inversion = “Alexander Duality”?

I E.g. Ass(2/3) and Ass(3/2) are dual inside Ass(4).



The end.


