## Rational Catalan Combinatorics

## Drew Armstrong et al.

University of Miami
www.math.miami.edu/~armstrong

March 18, 2012

## This talk will advertise a definition.



Please note the $a, b$-symmetry.

## This talk will advertise a definition.

Here is it.

## Definition

Let $x$ be a positive rational number written as $x=a /(b-a)$ for $0<a<b$ coprime.

## This talk will advertise a definition.

Here is it.

## Definition

Let $x$ be a positive rational number written as $x=a /(b-a)$ for $0<a<b$ coprime. Then we define the Catalan number

$$
\operatorname{Cat}(x):=\frac{1}{a+b}\binom{a+b}{a, b}=\frac{(a+b-1)!}{a!b!} .
$$

## !!!

Please note the $a, b$-symmetry.

## Special cases.

## When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894)
$(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}(n \cdot 1)
$$

Nicolaus Fuss (1755-1826)
$(a<b)=(n<k n+1)$ gives the Fuss-Catalan number

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

## Special cases.

## When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894) $(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)


## Special cases.

## When $b=1 \bmod a \ldots$

- Eugène Charles Catalan (1814-1894)
$(a<b)=(n<n+1)$ gives the good old Catalan number

$$
\operatorname{Cat}(n)=\operatorname{Cat}\left(\frac{n}{1}\right)=\frac{1}{2 n+1}\binom{2 n+1}{n} .
$$

- Nicolaus Fuss (1755-1826)
$(a<b)=(n<k n+1)$ gives the Fuss-Catalan number

$$
\operatorname{Cat}\left(\frac{n}{(k n+1)-n}\right)=\frac{1}{(k+1) n+1}\binom{(k+1) n+1}{n} .
$$

## Euclidean Algorithm \& Symmetry.

## Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime. derived Catalan number

## Euclidean Algorithm \& Symmetry.

## Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime. Then we define the derived Catalan number

$$
\operatorname{Cat}^{\prime}(x):=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(1 /(x-1)) & \text { if } x>1 \\ \operatorname{Cat}(x /(1-x)) & \text { if } x<1\end{cases}
$$

This is a "categorification" of the Euclidean algorithm.

## Euclidean Algorithm \& Symmetry.

## Definition

Again let $x=a /(b-a)$ for $0<a<b$ coprime. Then we define the derived Catalan number

$$
\operatorname{Cat}^{\prime}(x):=\frac{1}{b}\binom{b}{a}= \begin{cases}\operatorname{Cat}(1 /(x-1)) & \text { if } x>1 \\ \operatorname{Cat}(x /(1-x)) & \text { if } x<1\end{cases}
$$

This is a "categorification" of the Euclidean algorithm.

## Remark

If we define Cat : $\mathbb{Q} \backslash[-1,0] \rightarrow \mathbb{N}$ by $\operatorname{Cat}(-x-1):=\operatorname{Cat}(x)$ then the formula is simpler:

$$
\operatorname{Cat}^{\prime}(x)=\operatorname{Cat}(1 /(x-1))=\operatorname{Cat}(x /(1-x))
$$

## Catalan "Number Theory"?

## Problem

Describe a recurrence for the Cat function, perhaps in terms of the Calkin-Wilf sequence

$$
\frac{1}{1} \mapsto \frac{1}{2} \mapsto \frac{2}{1} \mapsto \frac{1}{3} \mapsto \frac{3}{2} \mapsto \frac{2}{3} \mapsto \frac{3}{1} \mapsto \frac{1}{4} \mapsto \frac{4}{3} \mapsto \cdots
$$

which is defined by

$$
x \mapsto \frac{1}{\lfloor x\rfloor+1-\{x\}} .
$$

See Aigner and Ziegler: "Proofs from THE BOOK", Chapter 17.

## What?

Well, that was fun. But perhaps untethered to reality. . .

## Motivation 1: Cores

## Definition <br> - An integer partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right) \vdash n$ is called $p$-core if it has no cell with hook length $p$. <br> - Say $\lambda \vdash n$ is $(a, b)$-core if it has no cell with hook length $a$ or $b$.

The partition $(5,4,2,1,1) \vdash 13$ is $(5,8)$-core.

## Motivation 1: Cores

## Definition

- An integer partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right) \vdash n$ is called $p$-core if it has no cell with hook length $p$.
- Say $\lambda \vdash n$ is $(a, b)$-core if it has no cell with hook length $a$ or $b$.


## Motivation 1: Cores

## Definition

- An integer partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right) \vdash n$ is called $p$-core if it has no cell with hook length $p$.
- Say $\lambda \vdash n$ is $(a, b)$-core if it has no cell with hook length $a$ or $b$.


## Example

The partition $(5,4,2,1,1) \vdash 13$ is $(5,8)$-core.

| 9 | 6 | 4 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | 2 | 1 |  |
| 4 | 1 |  |  |  |
| 2 |  |  |  |  |
| 1 |  |  |  |  |

A few facts.

## Theorem (Anderson, 2002)

The number of $(a h)$-cores is finite if and only if $a, b$ are coprime, in which case the number is

$$
\operatorname{Cat}\left(\frac{a}{b-a}\right)=\frac{1}{a+b}\binom{a+b}{a, b} .
$$

[^0]
## A few facts.

Theorem (Anderson, 2002)
The number of $(a, b)$-cores is finite if and only if $a, b$ are coprime, in which case the number is

$$
\operatorname{Cat}\left(\frac{a}{b-a}\right)=\frac{1}{a+b}\binom{a+b}{a, b} .
$$

## A few facts.

Theorem (Anderson, 2002)
The number of $(a, b)$-cores is finite if and only if $a, b$ are coprime, in which case the number is

$$
\operatorname{Cat}\left(\frac{a}{b-a}\right)=\frac{1}{a+b}\binom{a+b}{a, b} \text {. }
$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)
For $a, b$ coprime $\exists$ unique largest $(a, b)$-core of size $\frac{\left(a^{2}-1\right)\left(b^{2}-1\right)}{24}$, which contains all others as subdiagrams.

## A few facts.

## Theorem (Anderson, 2002)

The number of $(a, b)$-cores is finite if and only if $a, b$ are coprime, in which case the number is

$$
\operatorname{Cat}\left(\frac{a}{b-a}\right)=\frac{1}{a+b}\binom{a+b}{a, b} \text {. }
$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)
For $a, b$ coprime $\exists$ unique largest $(a, b)$-core of size $\frac{\left(a^{2}-1\right)\left(b^{2}-1\right)}{24}$, which contains all others as subdiagrams.

## Problem

Study Young's lattice restricted to ( $a, b$ )-cores.

## A few facts.

Example (The poset of (3,4)-cores.)


## A few facts.

Theorem (Ford-Mai-Sze, 2009)
For $a, b$ coprime, the number of self-conjugate $(a, b)$-cores is $\left(\begin{array}{c}\left\lfloor\frac{2}{2}\right\rfloor+\left\lfloor\frac{b}{2}\right\rfloor \\ \left\lfloor\frac{0}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\end{array}\right]$. Note: Beautiful bijective proof! (omitted)

## A few facts.

## Theorem (Ford-Mai-Sze, 2009)

For $a, b$ coprime, the number of self-conjugate $(a, b)$-cores is $\binom{\left.\left\lfloor\frac{3}{2}\right\rfloor\right\rfloor\left\lfloor\left\lfloor\frac{b}{2}\right\rfloor\right.}{\left\lfloor\frac{b}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor}$.
Note: Beautiful bijective proof! (omitted)

## Observation/Problem

$$
\binom{\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{b}{2}\right\rfloor}{\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor}=\left.\frac{1}{[a+b]_{q}}\left[\begin{array}{c}
a+b \\
a, b
\end{array}\right]_{q}\right|_{q=-1}
$$

## A few facts.

## Theorem (Ford-Mai-Sze, 2009)

For $a, b$ coprime, the number of self-conjugate $(a, b)$-cores is $\left(\begin{array}{c}\left\lfloor\frac{2}{2}\right\rfloor+\left\lfloor\frac{b}{2}\right\rfloor \\ \left\lfloor\frac{b}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor\end{array}\right]$.
Note: Beautiful bijective proof! (omitted)

## Observation/Problem

$$
\binom{\left\lfloor\frac{a}{2}\right\rfloor+\left\lfloor\frac{b}{2}\right\rfloor}{\left\lfloor\frac{a}{2}\right\rfloor,\left\lfloor\frac{b}{2}\right\rfloor}=\frac{1}{[a+b]_{q}}\left[\left.\left.\begin{array}{c}
a+b \\
a, b
\end{array}\right|_{q}\right|_{q=-1}\right.
$$

Conjecture (Armstrong, 2011)
The average size of an $(a, b)$-core and the average size of a self-conjugate $(a, b)$-core are both equal to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle


## Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle


## Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle


## Example (The (5, 8)-core from earlier.)



|  | 35 | 30 | 25 | 20 | 15 | 10 | 50 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 |  |  |  |  |  |  | , |
| 24 |  |  |  |  |  |  |  |
|  |  |  |  |  |  | - |  |
| 16 |  |  |  |  |  |  |  |
| 8 |  |  | - |  |  |  |  |
| 0 |  |  |  |  |  |  |  |

## Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)


|  | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 27 | 22 | 17 | 12 | 7 | 2 |  |  |
| 24 | 19 | 14 | 9 | 4 |  | - |  |  |
| 16 | 11 | 6 | 1 |  |  |  |  |  |
| 8 | 3 |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |

Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle


## Example (The (5, 8)-core from earlier.)

| 9 | 6 | 4 |  | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | 2 |  | 1 |  |
| 4 | 1 |  |  |  |  |
| 2 |  |  |  |  |  |
| 1 |  |  |  |  |  |


| 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 27 | 22 | 17 | 12 | 7 | 2 |  |  |  |
| 24 | 19 | 14 | 9 | 4 |  |  |  |  |  |
| 16 | 11 | 6 | 1 |  |  |  |  |  |  |
| 8 | 3 |  |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle


## Example (The (5, 8)-core from earlier.)

| 9 | 6 | 4 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | 2 | 1 |  |
| 4 | 1 |  |  |  |
| 2 |  |  |  |  |
| 1 |  |  |  |  |



Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 1

- Bijection: $(a, b)$-cores $\leftrightarrow$ Dyck paths in $a \times b$ rectangle

Example (NB: Conjugation is weird, but...)

| 9 | 6 | 4 | 3 | 1 |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 4 | 2 | 1 |  |
| 4 | 1 |  |  |  |
| 2 |  |  |  |  |
| 1 |  |  |  |  |


| 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 32 | 27 | 22 | 17 | 12 | 7 | 2 |  |  |
| 24 | 19 | 14 | 9 | 4 |  |  |  |  |
| 16 | 11 | 6 | 1 |  |  |  |  |  |
| 8 | 3 |  |  |  |  |  |  |  |
| 0 |  |  |  |  |  |  |  |  |

## Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 2

- Theorem (Bizley, 1954): \# Dyck paths is $\frac{1}{a+b}\binom{a+b}{a, b}$.
- See Loehr's book: "Bijective Combinatorics", page 497.


## Anderson's beautiful proof of $\frac{1}{a+b}\binom{a+b}{a, b}$.

## Step 2

- Theorem (Bizley, 1954): \# Dyck paths is $\frac{1}{a+b}\binom{a+b}{a, b}$.
- See Loehr's book: "Bijective Combinatorics", page 497.


## Proof idea.

- The $\binom{a+b}{a, b}$ lattice paths break into cyclic orbits of size $a+b$.
- Each orbit contains a unique Dyck path.
- Coprimality of $a, b$ is necessary.


## Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

## Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

## Definition

Again let $x=a /(b-a)$ with $0<a<b$ coprime.

## Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

## Definition

Again let $x=a /(b-a)$ with $0<a<b$ coprime.

- An $x$-parking function is a "decorated" Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels $\{1,2, \ldots, a\}$.)


## Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

## Definition

Again let $x=a /(b-a)$ with $0<a<b$ coprime.

- An $x$-parking function is a "decorated" Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels $\{1,2, \ldots, a\}$.)
- Classical form: $\left(z_{1}, z_{2}, \ldots, z_{a}\right)$ where label $i$ occurs in column $z_{i}$.


## Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

## Definition

Again let $x=a /(b-a)$ with $0<a<b$ coprime.

- An x-parking function is a "decorated" Dyck path in the $a \times b$ rectangle. (Decorate the vertical runs with the labels $\{1,2, \ldots, a\}$.)
- Classical form: $\left(z_{1}, z_{2}, \ldots, z_{a}\right)$ where label $i$ occurs in column $z_{i}$.
- Symmetric group $\mathfrak{S}_{a}$ acts on classical forms by permutation. Let $\operatorname{PF}(x)$ denote the corresponding $\mathfrak{S}_{\mathrm{a}}$-module.


## Motivation 2: Parking Functions

Examples for $x=5 /(8-5) .(\operatorname{Cat}(x)=99$.

- Here's the $5 / 3$-parking function with classical form ( $3,1,4,4,1$ ).

- Here's the $5 / 3$-parking function with classical form ( $3,1,1,4,4$ ).



## A few facts.

Theorems

- \# x-parking functions is $b^{a-1}$


where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{2}} \vdash a$ with $\sum_{i} r_{i}=b$.


## A few facts.

## Theorems

- \#x-parking functions is $b^{a-1}$.
- \# x-Dyck paths with $r_{i}$ vertical runs of length

where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}}$
- \# x-parking functions fixed by



## A few facts.

## Theorems

- \# x-parking functions is $b^{a-1}$.
- \# x-Dyck paths with $r_{i}$ vertical runs of length $i$ is $\frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}}$ :

$$
\operatorname{PF}(x)=\sum_{\mathbf{r} \vdash a} \frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}} h_{\mathbf{r}}
$$

where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{a}} \vdash a$ with $\sum_{i} r_{i}=b$.

## A few facts.

## Theorems

- \# x-parking functions is $b^{a-1}$.
- \#x-Dyck paths with $r_{i}$ vertical runs of length $i$ is $\frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}}$ :

$$
\operatorname{PF}(x)=\sum_{\mathbf{r} \vdash a} \frac{1}{b}\binom{b}{r_{0}, r_{1}, \ldots, r_{a}} h_{\mathbf{r}}
$$

where the sum is over $\mathbf{r}=0^{r_{0}} 1^{r_{1}} \cdots a^{r_{a}} \vdash a$ with $\sum_{i} r_{i}=b$.

- \#x-parking functions fixed by $\sigma \in \mathfrak{S}_{a}$ is $b^{\# \operatorname{cycles}(\sigma)-1}$ :

$$
\operatorname{PF}(x)=\sum_{\mathbf{r} \vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}
$$

## $\exists q$ and $t ?$

## Idea

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$
\mathrm{PF} F_{q, t}(x):=\sum_{P} q^{\text {qstat }(P)} t^{\text {tstat }(P)} F_{i \operatorname{Des}(P)}
$$

## - Sum over $x$-parking functions $P$.

## $F$ is fundamental (Gessel) quasisymmetric function. - natural refinement of Schur functions

## $\exists q$ and $t ?$

## Idea

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$
\mathrm{PF}_{q, t}(x):=\sum_{P} q^{q \operatorname{stat}(\mathrm{P})} t^{\mathrm{tstat}(\mathrm{P})} F_{i \operatorname{Des}(\mathrm{P})} .
$$

- Sum over $x$-parking functions $P$.
- $F$ is fundamental (Gessel) quasisymmetric function. - natural refinement of Schur functions


## $\exists q$ and $t ?$

## Idea

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$
\mathrm{PF}_{q, t}(x):=\sum_{P} q^{\operatorname{qstat}(\mathrm{P})} t^{\mathrm{tstat}(\mathrm{P})} F_{\mathrm{iDes}(\mathrm{P})} .
$$

- Sum over $x$-parking functions $P$.


## - $F$ is fundamental (Gessel) quasisymmetric function. - natural refinement of Schur functions

- Must define qstat, tstat, iDes for $x$-parking function $P$


## $\exists q$ and $t ?$

## Idea

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$
\mathrm{PF}_{q, t}(x):=\sum_{P} q^{q \operatorname{stat}(\mathrm{P})} t^{\mathrm{tstat}(\mathrm{P})} F_{i \operatorname{Des}(\mathrm{P})} .
$$

- Sum over $x$-parking functions $P$.
- $F$ is fundamental (Gessel) quasisymmetric function.
- natural refinement of Schur functions
- Must define qstat, tstat, iDes for $x$-parking function $P$


## $\exists q$ and $t$ ?

## Idea

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$
\mathrm{PF}_{q, t}(x):=\sum_{P} q^{q \operatorname{stat}(\mathrm{P})} t^{\mathrm{tstat}(\mathrm{P})} F_{\text {iDes }(\mathrm{P})} .
$$

- Sum over $x$-parking functions $P$.
- $F$ is fundamental (Gessel) quasisymmetric function.
- natural refinement of Schur functions
- Must define qstat, tstat, iDes for $x$-parking function $P$.


## qstat is easy.

```
Definition
* Let qstat:= area := # boxes between the path and diagonal.
- Note: Maximum value of area is (a-1)(b-1)/2. (Frobenius)
    - see Beck and Robins, Chapter 1
```

    - This 5/3-parking function has area \(=6\).
    
## qstat is easy.

## Definition

- Let qstat $:=$ area $:=$ \# boxes between the path and diagonal.
- Note: Maximum value of area is $(a-1)(b-1) / 2$. (Frobenius)
- see Beck and Robins, Chapter 1


## Example

- This $5 / 3$-parking function has area $=6$.

iDes is reasonable.


## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathscr{S}_{a}$. - iDes $:=$ the descent set of $\sigma^{-1}$
- This is a secret message.


## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes := the descent set of $\sigma^{-1}$.


## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes := the descent set of $\sigma^{-1}$.


## Example

- Remember the "height"?

| 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 27 | 22 | 17 | 12 | 7 | 2 | -3 | -8 |
| 24 | 19 | 14 | 9 | 4 | -1 | -6 | -11 | -16 |
| 16 | 11 | 6 | 1 | -4 | -9 | -14 | -19 | -24 |
| 8 | 3 | -2 | -7 | -12 | -17 | -22 | -27 | -32 |
| 0 | -5 | -10 | -15 | -20 | -25 | -30 | -35 | -40 |
|  |  |  |  |  |  |  |  |  |

## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes := the descent set of $\sigma^{-1}$.


## Example

- Look at the heights of the vertical step boxes.



## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes $:=$ the descent set of $\sigma^{-1}$.


## Example

- Remember the labels we had before.



## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes := the descent set of $\sigma^{-1}$.


## Example

- Read them by increasing height to get $\sigma=2 \overline{1} 53 \overline{4} \in \mathfrak{S}_{5}$.

| 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 |  |  |  | 4 |  |  |  | 7 |
| 24 |  |  |  | 3 |  | - |  |  |
| 16 |  |  | 1 |  | 万 |  |  |  |
| 8 | 5 |  | - |  |  |  |  |  |
| 0 | 2 |  |  |  |  |  |  |  |

## iDes is reasonable.

## Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_{a}$.
- iDes := the descent set of $\sigma^{-1}$.


## Example

- Read them by increasing height to get $\sigma=2 \overline{1} 53 \overline{4} \in \mathfrak{S}_{5}$.

- $\operatorname{iDes}=\{1,4\}$.
tstat is bizarre (as usual).


## Definition

*"Blow up" the x-parking function.

- Compute "dinv" of the blowup.
- What?


## tstat is bizarre (as usual).

## Definition

- "Blow up" the $x$-parking function.
- Compute "dinv" of the blowup.


## tstat is bizarre (as usual).

## Definition

- "Blow up" the $x$-parking function.
- Compute "dinv" of the blowup.


## Example

- Remember our friend the $5 / 3$-parking function.



## tstat is bizarre (as usual).

## Definition

- "Blow up" the $x$-parking function.
- Compute "dinv" of the blowup.


## Example

- Since $2 \cdot 8-3 \cdot 5=1$ we "blow up" by 2 horiz. and 3 vert....



## tstat is bizarre (as usual).

## Example

- To get this!

|  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 | 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## tstat is bizarre (as usual).

## Example

- To get this! Now compute "dinv". (Computation omitted.)

|  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  | 4 |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 3 |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  | 1 |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 5 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 2 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Some things．

Things

```
- \(\mathrm{PF}_{1,1}(x)=\mathrm{PF}(x)\)
- \(\mathrm{PF}_{q+}(x)\) is svmmetric and Schur-positive with coeffs \(\in \mathbb{N}[q, t]\)
- via LLT polynomials
```


## Some things.

Things

- $\operatorname{PF}_{1,1}(x)=\operatorname{PF}(x)$.
- via LLT polynomials
- Drohahly DE $(\cdots)$ - DE $\quad(x)$.
- this will be impossible to prove (see Loehr's Maxim)


## Some things.

## Things

- $\mathrm{PF}_{1,1}(x)=\operatorname{PF}(x)$.
- $\mathrm{PF}_{q, t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
- via LLT polynomials


## Some things.

## Things

- $\mathrm{PF}_{1,1}(x)=\operatorname{PF}(x)$.
- $\mathrm{PF}_{q, t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
- via LLT polynomials
- Probably $\mathrm{PF}_{q, t}(x)=\mathrm{PF}_{t, q}(x)$.
- this will be impossible to prove (see Loehr's Maxim)


## Some things.

## Things

- $\mathrm{PF}_{1,1}(x)=\operatorname{PF}(x)$.
- $\mathrm{PF}_{q, t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
- via LLT polynomials
- Probably $\mathrm{PF}_{q, t}(x)=\mathrm{PF}_{t, q}(x)$.
- this will be impossible to prove (see Loehr's Maxim)
- The coefficient of sgn is some Cat $_{q, t}(x)$.


## Some things.

## Things

- $\operatorname{PF}_{1,1}(x)=\operatorname{PF}(x)$.
- $\mathrm{PF}_{q, t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
- via LLT polynomials
- Probably $\mathrm{PF}_{q, t}(x)=\mathrm{PF}_{t, q}(x)$.
- this will be impossible to prove (see Loehr's Maxim)
- The coefficient of $\mathbf{s g n}$ is some $\mathrm{Cat}_{q, t}(x)$.
- Probably $q^{(a-1)(b-1) / 2} \operatorname{Cat}_{q, \frac{1}{q}}(x)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a, b\end{array}\right]_{q}$.


## Some things.

## Things

- $\mathrm{PF}_{1,1}(x)=\mathrm{PF}(x)$.
- $\mathrm{PF}_{q, t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$.
- via LLT polynomials
- Probably $\mathrm{PF}_{q, t}(x)=\mathrm{PF}_{t, q}(x)$.
- this will be impossible to prove (see Loehr's Maxim)
- The coefficient of $\mathbf{s g n}$ is some Cat ${ }_{q, t}(x)$.
- Probably $q^{(a-1)(b-1) / 2} \operatorname{Cat}_{q, \frac{1}{q}}(x)=\frac{1}{[a+b]_{q}}\left[\begin{array}{c}a+b \\ a, b\end{array}\right]_{q}$.


## Problems

- Does $\mathrm{PF}_{q, t}(x)$ occur "in nature"?
- How are $\operatorname{PF}_{q, t}(x)$ and $\operatorname{PF}_{q, t}(-x-1)$ related?


## Motivation 3: Lie Theory

(quoting from: Cellini-Papi, Haiman, Shi, Sommers et al.)

## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime .

- Please disregard this.


## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime.

- These are the weight and root lattices $\Lambda<Q$ of $\mathfrak{S}_{a}$.



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime.

- Here is a fundamental parallelepiped for $\Lambda / b \Lambda$.



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime.

- It contains $b^{a-1}$ elements (the "parking functions").



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime .

- But they look better as a simplex...



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime .

- ... which is congruent to a nicer simplex.



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime .

- There are $\frac{1}{a+b}\binom{a+b}{a, b}$ elements of the root lattice inside.



## Consider Weyl group $\mathfrak{S}_{a}$ with $a, b$ coprime .

- These are called $(a, b)$-cores (or $x$-Dyck paths).



## "The same" works for all Weyl groups...

## Definition

Consider a Weyl group $W$ with Coxeter number $h$ and let $p \in \mathbb{N}$ coprime to $h$. We define the Catalan number

$$
\operatorname{Cat}_{q}(W, p):=\prod_{j} \frac{\left[p+m_{j}\right]_{q}}{\left[1+m_{j}\right]_{q}}
$$

where $e^{2 \pi i m_{j} / h}$ are the eigenvalues of a Coxeter element.

## ...but I'm out of time.




[^0]:    Theorem (Olsson-Stanton, 2005, Vandehey, 2008)
    For a $h$ conrime 7 uniaue laroest (a h)-core of size $\frac{\left(a^{2}-1\right)\left(b^{2}-1\right.}{}$, which contains all others as subdiagrams.

