Rational Catalan Combinatorics

Drew Armstrong et al.

University of Miami www.math.miami.edu/~armstrong

March 18, 2012

▲□▶ ▲□▶ ▲ 臣▶ ★ 臣▶ 三臣 - のへぐ

This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as x = a/(b-a) for $0 \le a \le b$ coprime. Then we define the **Catalan number**

$$Cat(x) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

111

Please note the a, b-symmetry.

This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as x = a/(b-a) for 0 < a < b coprime. Then we define the Catalan number

$$\operatorname{Cat}(x) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

....

Please note the a, b-symmetry.

This talk will advertise a definition.

Here is it.

Definition

Let x be a positive rational number written as x = a/(b-a) for 0 < a < b coprime. Then we define the **Catalan number**

$$\mathsf{Cat}(\mathsf{x}) := \frac{1}{a+b} \binom{a+b}{a,b} = \frac{(a+b-1)!}{a!b!}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

III

Please note the a, b-symmetry.

When $b = 1 \mod a \ldots$

Eugène Charles Catalan (1814-1894)

(a < b) = (n < n + 1) gives the good old Catalan number

$$\operatorname{Cat}(n) = \operatorname{Cat}\left(\frac{n}{1}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$$

Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the **Fuss-Catalan number**

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $b = 1 \mod a \ldots$

• Eugène Charles Catalan (1814-1894) (a < b) = (n < n + 1) gives the good old Catalan number $Cat(n) = Cat\left(\frac{n}{1}\right) = \frac{1}{2n+1}\binom{2n+1}{n}.$

Nicolaus Fuss (1755-1826)

(a < b) = (n < kn + 1) gives the Fuss-Catalan number

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

When $b = 1 \mod a \ldots$

- Eugène Charles Catalan (1814-1894) (a < b) = (n < n + 1) gives the good old Catalan number Cat(n) = Cat $\left(\frac{n}{1}\right) = \frac{1}{2n+1} \binom{2n+1}{n}$.
- Nicolaus Fuss (1755-1826)
 - (a < b) = (n < kn + 1) gives the Fuss-Catalan number

$$\operatorname{Cat}\left(\frac{n}{(kn+1)-n}\right) = \frac{1}{(k+1)n+1}\binom{(k+1)n+1}{n}$$

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b-a) for 0 < a < b coprime. Then we define the derived Catalan number

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by Cat(-x - 1) := Cat(x) then the formula is simpler:

$$Cat'(x) = Cat(1/(x-1)) = Cat(x/(1-x)).$$

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b-a) for 0 < a < b coprime. Then we define the **derived Catalan number**

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1, 0] \to \mathbb{N}$ by Cat(-x - 1) := Cat(x) then the formula is simpler:

$$Cat'(x) = Cat(1/(x-1)) = Cat(x/(1-x)).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Euclidean Algorithm & Symmetry.

Definition

Again let x = a/(b-a) for 0 < a < b coprime. Then we define the **derived Catalan number**

$$\operatorname{Cat}'(x) := \frac{1}{b} \binom{b}{a} = \begin{cases} \operatorname{Cat}(1/(x-1)) & \text{if } x > 1\\ \operatorname{Cat}(x/(1-x)) & \text{if } x < 1 \end{cases}$$

This is a "categorification" of the Euclidean algorithm.

Remark

If we define Cat : $\mathbb{Q} \setminus [-1,0] \to \mathbb{N}$ by Cat(-x-1) := Cat(x) then the formula is simpler:

$$\mathsf{Cat}'(x) = \mathsf{Cat}(1/(x-1)) = \mathsf{Cat}(x/(1-x)).$$

Problem

Describe a recurrence for the Cat function, perhaps in terms of the *Calkin-Wilf sequence*

$$\frac{1}{1} \mapsto \frac{1}{2} \mapsto \frac{2}{1} \mapsto \frac{1}{3} \mapsto \frac{3}{2} \mapsto \frac{2}{3} \mapsto \frac{3}{1} \mapsto \frac{1}{4} \mapsto \frac{4}{3} \mapsto \cdots$$

which is defined by

$$x\mapsto rac{1}{\lfloor x
floor+1-\{x\}}.$$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

See Aigner and Ziegler: "Proofs from THE BOOK", Chapter 17.

Well, that was fun. But perhaps untethered to reality...

Definition

- An integer partition λ = (λ₁ ≥ λ₂ ≥ ···) ⊢ n is called p-core if it has no cell with hook length p.
- Say $\lambda \vdash n$ is (a, b)-core if it has no cell with hook length a or b.

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is (5, 8)-core.

Definition

- An integer partition λ = (λ₁ ≥ λ₂ ≥ ···) ⊢ n is called p-core if it has no cell with hook length p.
- Say $\lambda \vdash n$ is (a, b)-core if it has no cell with hook length a or b.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is (5, 8)-core.

Motivation 1: Cores

Definition

- An integer partition λ = (λ₁ ≥ λ₂ ≥ ···) ⊢ n is called p-core if it has no cell with hook length p.
- Say $\lambda \vdash n$ is (a, b)-core if it has no cell with hook length a or b.

Example

The partition $(5, 4, 2, 1, 1) \vdash 13$ is (5, 8)-core.

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in which case the number is

$$\mathsf{Cat}\left(\frac{a}{b-a}\right) = \frac{1}{a+b}\binom{a+b}{a,b}.$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For a, b coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B

Problem

Study Young's lattice restricted to (*a*, *b*)-cores

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in which case the number is

$$\operatorname{Cat}\left(\frac{a}{b-a}\right) = \frac{1}{a+b}\binom{a+b}{a,b}.$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For a, b coprime \exists unique largest (a, b)-core of size $\frac{(a^{c}-1)(b^{c}-1)}{24}$, which contains all others as subdiagrams.

Problem

Study Young's lattice restricted to (a, b)-cores.

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in which case the number is

$$\operatorname{Cat}\left(rac{a}{b-a}
ight)=rac{1}{a+b}inom{a+b}{a,b}.$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For a, b coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Problem

Study Young's lattice restricted to (*a*, *b*)-cores.

Theorem (Anderson, 2002)

The number of (a, b)-cores is finite if and only if a, b are coprime, in which case the number is

$$\operatorname{Cat}\left(rac{a}{b-a}
ight)=rac{1}{a+b}inom{a+b}{a,b}.$$

Theorem (Olsson-Stanton, 2005, Vandehey, 2008)

For a, b coprime \exists unique largest (a, b)-core of size $\frac{(a^2-1)(b^2-1)}{24}$, which contains all others as subdiagrams.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Problem

Study Young's lattice restricted to (a, b)-cores.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{d}{2} \rfloor + \lfloor \frac{d}{2} \rfloor \\ \lfloor \frac{d}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{q=-1}$$

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

Theorem (Ford-Mai-Sze, 2009)

For a, b coprime, the number of self-conjugate (a, b)-cores is $\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix}$. Note: Beautiful bijective proof! (omitted)

Observation/Problem

$$\begin{pmatrix} \lfloor \frac{a}{2} \rfloor + \lfloor \frac{b}{2} \rfloor \\ \lfloor \frac{a}{2} \rfloor, \lfloor \frac{b}{2} \rfloor \end{pmatrix} = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q \Big|_{a=-1}$$

Conjecture (Armstrong, 2011)

The average size of an (a, b)-core and the average size of a self-conjugate (a, b)-core are **both equal** to $\frac{(a+b+1)(a-1)(b-1)}{24}$.

Step 1

▶ Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − つへ⊙

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)

9	6	4	3	1
7	4	2	1	
4	1			
2				
1				

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5, 8)-core from earlier.)

9	6	4	3	1
7	4	2	1	
4	1			
2				
1				

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (The (5,8)-core from earlier.)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 1

• Bijection: (a, b)-cores \leftrightarrow Dyck paths in $a \times b$ rectangle

Example (NB: Conjugation is weird, but...)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Step 2

- Theorem (Bizley, 1954): # Dyck paths is $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$.
- ► See Loehr's book: "Bijective Combinatorics", page 497.

Proof idea.

• The $\binom{a+b}{a,b}$ lattice paths break into cyclic orbits of size a + b.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

- Each orbit contains a unique Dyck path.
- Coprimality of a, b is necessary.

Step 2

- Theorem (Bizley, 1954): # Dyck paths is $\frac{1}{a+b} \begin{pmatrix} a+b \\ a,b \end{pmatrix}$.
- ► See Loehr's book: "Bijective Combinatorics", page 497.

Proof idea.

• The $\binom{a+b}{a,b}$ lattice paths break into cyclic orbits of size a + b.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Each orbit contains a unique Dyck path.
- Coprimality of a, b is necessary.

(with Haglund, Haiman, Loehr, Warrington et al.)

・ロト ・ 四 ト ・ 回 ト ・ 回 ト

Э

Sac

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let x = a/(b - a) with 0 < a < b coprime.

- An x-parking function is a "decorated" Dyck path in the a × b rectangle. (Decorate the vertical runs with the labels {1,2,...,a}.)
- ▶ Classical form: $(z_1, z_2, ..., z_a)$ where label *i* occurs in column z_i .
- ► Symmetric group G_a acts on classical forms by permutation. Let PF(x) denote the corresponding G_a-module.

・ロッ ・雪 ・ ・ 回 ・

3

Sac

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let x = a/(b - a) with 0 < a < b coprime.

- ► An x-parking function is a "decorated" Dyck path in the a × b rectangle. (Decorate the vertical runs with the labels {1,2,...,a}.)
- ▶ Classical form: $(z_1, z_2, ..., z_a)$ where label *i* occurs in column z_i .

► Symmetric group 𝔅_a acts on classical forms by permutation. Let PF(x) denote the corresponding 𝔅_a-module.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let x = a/(b - a) with 0 < a < b coprime.

- ► An x-parking function is a "decorated" Dyck path in the a × b rectangle. (Decorate the vertical runs with the labels {1,2,...,a}.)
- Classical form: (z_1, z_2, \ldots, z_a) where label *i* occurs in column z_i .

Symmetric group 𝔅_a acts on classical forms by permutation. Let PF(x) denote the corresponding 𝔅_a-module.

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Motivation 2: Parking Functions

(with Haglund, Haiman, Loehr, Warrington et al.)

Definition

Again let x = a/(b - a) with 0 < a < b coprime.

- ► An x-parking function is a "decorated" Dyck path in the a × b rectangle. (Decorate the vertical runs with the labels {1,2,...,a}.)
- Classical form: (z_1, z_2, \ldots, z_a) where label *i* occurs in column z_i .
- ► Symmetric group S_a acts on classical forms by permutation. Let PF(x) denote the corresponding S_a-module.

Motivation 2: Parking Functions

• Here's the 5/3-parking function with classical form (3, 1, 4, 4, 1).

▶ Here's the 5/3-parking function with classical form (3, 1, 1, 4, 4).

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Theorems

x-parking functions is b^{a-1}.

• # x-Dyck paths with r_i vertical runs of length i is $\frac{1}{b} \binom{b}{m, n, \dots, n}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r} \vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}}$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• # x-parking functions **fixed** by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$:

$$\mathsf{PF}(x) = \sum_{\mathsf{r}\vdash \mathsf{a}} b^{\ell(\mathsf{r})-1} \frac{p_\mathsf{r}}{z_\mathsf{r}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorems

- # x-parking functions is b^{a-1} .
- # x-Dyck paths with r_i vertical runs of length *i* is $\frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_n \end{pmatrix}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}}.$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• # x-parking functions fixed by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorems

• # x-parking functions is b^{a-1} .

• # x-Dyck paths with r_i vertical runs of length i is $\frac{1}{b} \begin{pmatrix} b \\ m_i r_1, \dots, r_n \end{pmatrix}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \begin{pmatrix} b \\ r_0, r_1, \dots, r_a \end{pmatrix} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• # x-parking functions **fixed** by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} b^{\ell(\mathbf{r})-1} \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorems

• # x-parking functions is b^{a-1} .

• # x-Dyck paths with r_i vertical runs of length i is $\frac{1}{b} \begin{pmatrix} b \\ m_i r_1, \dots, r_n \end{pmatrix}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} \frac{1}{b} \binom{b}{r_0, r_1, \dots, r_a} h_{\mathbf{r}},$$

where the sum is over $\mathbf{r} = 0^{r_0} 1^{r_1} \cdots a^{r_a} \vdash a$ with $\sum_i r_i = b$.

• # x-parking functions fixed by $\sigma \in \mathfrak{S}_a$ is $b^{\# \operatorname{cycles}(\sigma)-1}$:

$$\mathsf{PF}(x) = \sum_{\mathbf{r}\vdash a} \mathbf{b}^{\ell(\mathbf{r})-1} \, \frac{p_{\mathbf{r}}}{z_{\mathbf{r}}}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Define a quasisymmetric function with coefficients in $\mathbb{N}[q,t]$ by

$$\mathsf{PF}_{q,t}(x) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

・ロト ・ 一下・ ・ モト・

Э

Sac

Sum over x-parking functions P.

F is fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

Must define qstat, tstat, iDes for x-parking function P.

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(x) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Sum over x-parking functions P.

F is fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

Must define qstat, tstat, iDes for x-parking function P.

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(x) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Sum over *x*-parking functions *P*.

F is fundamental (Gessel) quasisymmetric function.
 — natural refinement of Schur functions

Must define qstat, tstat, iDes for x-parking function P.

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(x) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Sum over x-parking functions P.

- F is fundamental (Gessel) quasisymmetric function.
 natural refinement of Schur functions
- Must define qstat, tstat, iDes for x-parking function P.

Define a quasisymmetric function with coefficients in $\mathbb{N}[q, t]$ by

$$\mathsf{PF}_{q,t}(x) := \sum_{P} q^{\mathsf{qstat}(\mathsf{P})} t^{\mathsf{tstat}(\mathsf{P})} F_{\mathsf{iDes}(\mathsf{P})}.$$

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

Sum over x-parking functions P.

- F is fundamental (Gessel) quasisymmetric function.
 natural refinement of Schur functions
- Must define qstat, tstat, iDes for x-parking function P.

Definition

- Let qstat := area := # boxes between the path and diagonal.
- Note: Maximum value of area is (a − 1)(b − 1)/2. (Frobenius) — see Beck and Robins, Chapter 1

・ロト ・ 理 ト ・ ヨ ト ・

Э

Sac

Example

This 5/3-parking function has area = 6.

qstat is easy.

Definition

- ▶ Let qstat := area := # boxes between the path and diagonal.
- ► Note: Maximum value of area is (a 1)(b 1)/2. (Frobenius) — see Beck and Robins, Chapter 1

Example

▶ This 5/3-parking function has area = 6.

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$
- iDes := the descent set of σ^{-1} .

Example

This is a secret message.

Definition

- Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

This is a secret message.

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Remember the "height"?

40	35	30	25	20	15	10	5	0
32	27	22	17	12	7	2	-3/	~8
								-16
16	11	6	1	-4	-9	-14	-19	-24
8	3	-2	7مر	-12	-17	-22	-27	-32
0	-5-	-10	-15	-20	-25	-30	-35	-40

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Look at the heights of the vertical step boxes.

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

Remember the labels we had before.

▶ iDes =
$$\{1, 4\}$$
.

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

• Read them by increasing height to get $\sigma = 2\overline{1}53\overline{4} \in \mathfrak{S}_5$.

• iDes =
$$\{1, 4\}$$
.

Definition

- ▶ Read labels by increasing "height" to get permutation $\sigma \in \mathfrak{S}_a$.
- iDes := the descent set of σ^{-1} .

Example

• Read them by increasing height to get $\sigma = 2\overline{1}53\overline{4} \in \mathfrak{S}_5$.

Definition

"Blow up" the x-parking function.

・ロト ・四ト ・ヨト ・ヨト

Ð,

590

Compute "dinv" of the blowup.

Example

► What?

Definition

"Blow up" the x-parking function.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Compute "dinv" of the blowup.

Example

Definition

- ▶ "Blow up" the *x*-parking function.
- ► Compute "dinv" of the blowup.

Example

▶ Remember our friend the 5/3-parking function.

▲ロト ▲園 ト ▲ 国 ト ▲ 国 ト ● ④ ● ●

Definition

- "Blow up" the x-parking function.
- Compute "dinv" of the blowup.

Example

Since $2 \cdot 8 - 3 \cdot 5 = 1$ we "blow up" by 2 horiz. and 3 vert....

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example

► To get this!

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example

▶ To get this! Now compute "dinv". (Computation omitted.)

Things

$\blacktriangleright \mathsf{PF}_{1,1}(x) = \mathsf{PF}(x).$

PF_{q,t}(x) is symmetric and Schur-positive with coeffs ∈ N[q, t].
 — via LLT polynomials

SQA

• Probably $\mathsf{PF}_{q,t}(x) = \mathsf{PF}_{t,q}(x)$.

— this will be impossible to prove (see Loehr's Maxim)

The coefficient of sgn is some Cat_{q,t}(x)

▶ Probably $q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{a}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q$

- Does PF_{q,t}(x) occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.

PF_{q,t}(x) is symmetric and Schur-positive with coeffs ∈ N[q, t].
 — via LLT polynomials

・ロット (雪) (日) (日) (日)

SQA

- Probably $\mathsf{PF}_{q,t}(x) = \mathsf{PF}_{t,q}(x)$. — this will be impossible to prove (see Loch)
- The coefficient of sgn is some Cat_{a,t}(x).
- ▶ Probably $q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\ a,b \end{bmatrix}_q$

- Does PF_{q,t}(x) occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

- ▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.
- ▶ $\mathsf{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Probably PF_{q,t}(x) = PF_{t,q}(x). — this will be impossible to prove (see Loehr's Maxim
- The coefficient of **sgn** is some $Cat_{q,t}(x)$.
- ▶ Probably $q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\ a,b \end{bmatrix}_q$

- Does PF_{q,t}(x) occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

- ▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.
- ▶ $\mathsf{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Probably $PF_{q,t}(x) = PF_{t,q}(x)$.
 - this will be impossible to prove (see Loehr's Maxim)
- The coefficient of sgn is some Cat_{q,t}(x)
- ▶ Probably $q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\a,b \end{bmatrix}_q$

- Does PF_{q,t}(x) occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

- ▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.
- ▶ $\mathsf{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Probably PF_{q,t}(x) = PF_{t,q}(x).
 this will be impossible to prove (see Loehr's Maxim)
- The coefficient of **sgn** is some $Cat_{q,t}(x)$.
- Probably $q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{a}}(x) = \frac{1}{[a+b]_a} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q$

- Does $PF_{q,t}(x)$ occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

- ▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.
- ▶ $\mathsf{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ うへつ

- Probably PF_{q,t}(x) = PF_{t,q}(x).
 this will be impossible to prove (see Loehr's Maxim)
- The coefficient of **sgn** is some $Cat_{q,t}(x)$.

► Probably
$$q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b \\ a,b \end{bmatrix}_q$$

- Does $PF_{q,t}(x)$ occur "in nature"?
- How are $\mathsf{PF}_{q,t}(x)$ and $\mathsf{PF}_{q,t}(-x-1)$ related?

Things

- ▶ $\mathsf{PF}_{1,1}(x) = \mathsf{PF}(x)$.
- ▶ $\mathsf{PF}_{q,t}(x)$ is symmetric and Schur-positive with coeffs $\in \mathbb{N}[q, t]$. — via LLT polynomials

- Probably PF_{q,t}(x) = PF_{t,q}(x).
 this will be impossible to prove (see Loehr's Maxim)
- The coefficient of **sgn** is some $Cat_{q,t}(x)$.

► Probably
$$q^{(a-1)(b-1)/2} \operatorname{Cat}_{q,\frac{1}{q}}(x) = \frac{1}{[a+b]_q} \begin{bmatrix} a+b\\ a,b \end{bmatrix}_q$$

- Does PF_{q,t}(x) occur "in nature"?
- How are $PF_{q,t}(x)$ and $PF_{q,t}(-x-1)$ related?

Motivation 3: Lie Theory

(quoting from: Cellini-Papi, Haiman, Shi, Sommers et al.)

► Please disregard this.

◆□ > ◆□ > ◆臣 > ◆臣 > □臣 = のへで

• These are the weight and root lattices $\Lambda < Q$ of \mathfrak{S}_a .

• Here is a fundamental parallelepiped for $\Lambda/b\Lambda$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• It contains b^{a-1} elements (the "parking functions").

But they look better as a simplex...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

• ...which is congruent to a nicer simplex.

• There are $\frac{1}{a+b} {a+b \choose a,b}$ elements of the root lattice inside.

・ロト・日本・日本・日本・日本・日本

▶ These are called (*a*, *b*)-cores (or *x*-Dyck paths).

Definition

Consider a Weyl group W with Coxeter number h and let $p \in \mathbb{N}$ coprime to h. We define the **Catalan number**

$$\mathsf{Cat}_q(W,p) := \prod_j rac{[p+m_j]_q}{[1+m_j]_q}$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

where $e^{2\pi i m_j/h}$ are the eigenvalues of a Coxeter element.

...but I'm out of time.

