**The Yoneda Lemma.** Given a category C, there is one easy functor and one hard functor from the product category  $Set^{C} \times C$  into the category Set:

• Easy: Given a functor  $F \in \mathsf{Set}^{\mathcal{C}}$  and an object  $c \in \mathcal{C}$ , the assignment  $\mathsf{Eval}(F, c) := F(c)$  defines the *evaluation functor* 

$$\mathsf{Eval}:\mathsf{Set}^{\mathcal{C}}\times\mathcal{C}\to\mathsf{Set}.$$

• Hard: Given an object  $c \in C$  recall that we have a functor  $H^c = \operatorname{Hom}_{\mathcal{C}}(c, -) \in \operatorname{Set}^{\mathcal{C}}$ . Then for any other functor  $F \in \operatorname{Set}^{\mathcal{C}}$  we will use the notation  $\operatorname{Nat}(H^c, F)$  for the set<sup>1</sup> of natural transformations  $N^c \Rightarrow F$ . The assignment  $\operatorname{Yon}(F, c) := \operatorname{Nat}(H^c, F)$  defines the Yoneda functor

$$\mathsf{Yon}:\mathsf{Set}^\mathcal{C} imes\mathcal{C} o\mathsf{Set}.$$

The Yoneda Lemma says that the family of functions  $\Xi_{F,c}$ : Yon $(F,c) \rightarrow \text{Eval}(F,c)$  defined by sending  $\Phi \in \text{Nat}(H^c, F)$  to  $\Phi_c(\text{id}_c) \in F(c)$  is a **natural isomorphism** 

: Yon 
$$\cong$$
 Eval. ///

In summary, for each functor  $F: \mathcal{C} \to \mathsf{Set}$  and object  $c \in \mathcal{C}$ , the Yoneda Lemma says that

Ξ

"natural transformations  $H^c \Rightarrow F$  are the same as elements of F(c)."

In particular, this implies that the collection  $\mathsf{Nat}(H^c, F)$  is a **set**, which was not a priori obvious. There is also a dual version of the Yoneda Lemma which says that, for each functor  $F: \mathcal{C}^{\mathsf{op}} \to \mathsf{Set}$  and each object  $c \in \mathcal{C}$ , the mapping  $\Phi \mapsto \Phi_c(\mathsf{id}_c)$  defines a natural bijection  $\mathsf{Nat}(H_c, F) \to F(c)$ . To obtain a proof of the dual version, just "reverse all arrows" in the following proof.

Because of the unifying power of the Yoneda Lemma, you should expect that there will be a lot of details to check. Every mathematician should go through the details of this proof **exactly once** in their life. (Typing up this proof was my one time.)

**Proof of Yoneda:** As with many theorems of category theory, the real difficulty is in keeping track of the definitions. We will go very slowly.

(1) **Define the Functors.** We were only told how the functors Eval and Yon act on objects. We need to examine how they act on arrows. Since each functor is defined on the product category  $\mathsf{Set}^{\mathcal{C}} \times \mathcal{C}$ , it must act separately on arrows in  $\mathsf{Set}^{\mathcal{C}}$  and in  $\mathcal{C}$ , and these two actions must commute.

First we look at Eval. For each arrow  $\varphi : c_1 \to c_2$  in  $\mathcal{C}$  and each functor  $F \in \mathsf{Set}^{\mathcal{C}}$ , we must find an arrow  $\mathsf{Eval}(F,\varphi) : \mathsf{Eval}(F,c_1) \to \mathsf{Eval}(F,c_2)$  — that is, a function  $\mathsf{Eval}(F,\varphi) : F(c_1) \to F(c_2)$  — with the property that  $\mathsf{Eval}(F,\varphi \circ \psi) = \mathsf{Eval}(F,\varphi) \circ \mathsf{Eval}(F,\psi)$ . This is easy; we just take  $\mathsf{Eval}(F,\varphi) := F(\varphi) : F(c_1) \to F(c_2)$ , which exists because F is a

<sup>&</sup>lt;sup>1</sup>It is not a priori obvious that this collection of natural transformations is a set. The fact that it is a set will follow from the proof.

functor. Then for each object  $c \in C$  and each arrow  $F_1 \Rightarrow F_2$  in  $\mathsf{Set}^{\mathcal{C}}$ , we must find an arrow  $\mathsf{Eval}(\Phi, c) : \mathsf{Eval}(F_1, c) \to \mathsf{Eval}(F_2, c)$  — that is, a function  $\mathsf{Eval}(\Phi, c) : F_1(c) \to F_2(c)$  — with the property that  $\mathsf{Eval}(\Phi \circ \Psi, c) = \mathsf{Eval}(\Phi, c) \circ \mathsf{Eval}(\Psi, c)$ . This is also easy; we just take  $\mathsf{Eval}(\Phi, c) := \Phi_c : F_1(c) \to F_2(c)$ , which exists because  $\Phi$  is a natural transformation. Finally, the naturality of  $\Phi$  says that the following square commutes:



Thus we can define the function  $\mathsf{Eval}(\Phi,\varphi) : \mathsf{Eval}(F_1,c_1) \to \mathsf{Eval}(F_2,c_2)$  by following either path from the bottom left to the top right of the square. Explicitly, we have  $\mathsf{Eval}(\Phi,\varphi) := F_2(\varphi) \circ \Phi_{c_1} = \Phi_{c_2} \circ F_2(\varphi)$ .

Next we look at Yon. For each arrow  $\varphi : c_1 \to c_2$  in  $\mathcal{C}$  and each functor  $F \in \mathsf{Set}^{\mathcal{C}}$ , we must find an arrow  $\mathsf{Yon}(F, \varphi) : \mathsf{Yon}(F, c_1) \to \mathsf{Yon}(F, c_2)$  — that is, a function  $\mathsf{Yon}(F, \varphi) : \mathsf{Nat}(H^{c_1}, F) \to \mathsf{Nat}(H^{c_2}, F)$  — with the property that  $\mathsf{Yon}(F, \varphi \circ \psi) = \mathsf{Yon}(F, \varphi) \circ \mathsf{Yon}(F, \psi)$ . To define this, let  $\Lambda \in \mathsf{Nat}(H^{c_1}, F)$  be any natural transformation, so that for each arrow  $\lambda : d_1 \to d_2$  in  $\mathcal{C}$ the following diagram commutes:

$$\begin{array}{c|c} \operatorname{Hom}_{\mathcal{C}}(c_{1}, d_{2}) \xrightarrow{\Lambda_{d_{2}}} F(d_{2}) \\ & & & & \uparrow F(d_{2}) \\ & & & & \uparrow F(\lambda) \\ \operatorname{Hom}_{\mathcal{C}}(c_{1}, d_{1}) \xrightarrow{\Lambda_{d_{1}}} F(d_{1}) \end{array}$$

We can extend this diagram on the left using by  $\varphi$ :



The new diagram commutes because  $\lambda$  and  $\varphi$  are acting on opposite sides. Then for each object  $d \in \mathcal{C}$  we define the function  $\operatorname{Yon}(F,\varphi)(\Lambda)_d : H^{c_2}(d) \to F(d)$  by  $\operatorname{Yon}(F,\varphi)(\Lambda)_d(-) := \Lambda_d((-) \circ \varphi)$ , and the above diagram says that these functions assemble into a natural transformation  $\operatorname{Yon}(F,\varphi)(\Lambda) \in \operatorname{Nat}(H^{c_2},F)$ . The fact that  $\operatorname{Yon}(F,\varphi \circ \psi) = \operatorname{Yon}(F,\varphi) \circ \operatorname{Yon}(F,\psi)$  follows by extending the diagram twice on the left and then using the associativity of composition.

On the other hand, for each arrow  $\Phi: F_1 \Rightarrow F_2$  in  $\mathsf{Set}^{\mathcal{C}}$  and each object  $c \in \mathcal{C}$ , we must find an arrow  $\mathsf{Yon}(\Phi, c): \mathsf{Yon}(F_1, c) \to \mathsf{Yon}(F_1, c)$  — that is, a function  $\mathsf{Yon}(\Phi, c): \mathsf{Nat}(H^c, F_1) \to \mathsf{Nat}(H^c, F_2)$  — with the property that  $\mathsf{Yon}(\Phi \circ \Psi, c) = \mathsf{Yon}(\Phi, c) \circ \mathsf{Yon}(\Psi, c)$ . To define this, let  $\Lambda \in \mathsf{Nat}(H^c, F_1)$  be any natural transformation, so that for each arrow  $\lambda: d_1 \to d_2$  in  $\mathcal{C}$  the following diagram commutes:

$$\begin{array}{c} \operatorname{Hom}_{\mathcal{C}}(c, d_{2}) \xrightarrow{\Lambda_{d_{2}}} F_{1}(d_{2}) \\ \xrightarrow{\lambda \circ (-)} & \uparrow F_{1}(\lambda) \\ \operatorname{Hom}_{\mathcal{C}}(c, d_{1}) \xrightarrow{\Lambda_{d_{2}}} F_{1}(d_{1}) \end{array}$$

We can extend this diagram on the right by using  $\Phi$ :

$$\begin{array}{c} & \stackrel{\Phi_{d_2} \circ \Lambda_{d_2}}{\longrightarrow} F_1(d_2) \xrightarrow{\Phi_{d_2}} F_2(d_2) \\ & \stackrel{}{\longrightarrow} F_1(\lambda) & \stackrel{}{\uparrow} F_2(\lambda) \\ & \stackrel{}{\longrightarrow} F_1(\lambda) & \stackrel{}{\uparrow} F_2(\lambda) \\ & \stackrel{}{\longrightarrow} F_1(d_1) \xrightarrow{\Phi_{d_1}} F_2(d_1) \\ & \stackrel{}{\longrightarrow} F_2(d_1) \end{array}$$

The new diagram commutes because  $\Phi$  is a natural transformation. Then for each object  $d \in \mathcal{C}$  we define the function  $\operatorname{Yon}(\Phi, c)(\Lambda)_d : H^c \to F_2$  by  $\operatorname{Yon}(\Phi, c)(\Lambda)_d := \Phi_d \circ \Lambda_d$ , and the above diagram says that these functions assemble into a natural transformation  $\operatorname{Yon}(\Phi, c)(\Lambda) \in \operatorname{Nat}(H^c, F_2)$ . The fact that  $\operatorname{Yon}(\Phi \circ \Psi, c) = \operatorname{Yon}(\Phi, c) \circ \operatorname{Yon}(\Psi, c)$  follows by extending the diagram twice on the right and then using the associativity of composition. Finally, for each arrow  $\varphi : c_1 \to c_2$  in  $\mathcal{C}$  and each arrow  $\Phi : F_1 \Rightarrow F_2$  in  $\operatorname{Set}^{\mathcal{C}}$  we observe that the following diagram commutes:



Thus for each object  $d \in C$  and natural transformation  $\Lambda : H^{c_1} \Rightarrow F_1$  we define a function  $\operatorname{Yon}(\Phi, \varphi)(\Lambda)_d(-) : \Phi_d(\Lambda_d((-) \circ \varphi))$ , and the above diagram says that these functions assmemble into a natural transformation  $\operatorname{Yon}(\Phi, \varphi)(\Lambda) : H^{c_2} \Rightarrow F_2$ . In summary, we have obtained a

function  $\operatorname{Yon}(\Phi,\varphi): \operatorname{Yon}(F_1,c_1) \to \operatorname{Yon}(F_2,c_2)$  such that the following diagram commutes:



Now at least we know what we are supposd to prove.

(2) Naturality of  $\Xi$ . For each functor  $F \in \mathsf{Set}^{\mathcal{C}}$  and each object  $c \in \mathcal{C}$  we haved defined the function  $\Xi_{F,c} : \mathsf{Nat}(H^c, F) \to F(c)$  by sending each natural transformation  $\Phi : H^c \Rightarrow F$  to the element  $\Phi_c(\mathsf{id}_c) \in F(c)$ . We want to show that the functions  $\Xi_{F,c}$  assemble into a natural transformation  $\Xi : \mathsf{Yon} \Rightarrow \mathsf{Eval}$ . Since  $\mathsf{Yon}, \mathsf{Eval} : \mathsf{Set}^{\mathcal{C}} \times \mathcal{C} \to \mathsf{Set}$  are "bifunctors", this amounts to proving two separate statements:

• For each fixed  $F \in \mathsf{Set}^{\mathcal{C}}$  the functions  $\Xi_{F,c}$  assemble into a natural transformation

$$\Xi_{F,-}$$
: Nat $(H^{(-)},F) \Rightarrow F(-).$ 

• For each fixed  $c \in C$  the functions  $\Xi_{F,c}$  assemble into a natural transformation

$$\Xi_{-,c}: \mathsf{Nat}(H^c, -) \Rightarrow (-)(c).$$

To prove the first statement, let  $\varphi : c_1 \to c_2$  be any arrow in  $\mathcal{C}$ . For each fixed  $F \in \mathsf{Set}^{\mathcal{C}}$  we need to show that the following square commutes:

$$\begin{split} & \operatorname{Nat}(H^{c_2},F) \xrightarrow{(-)_{c_2}(\operatorname{id}_{c_2})} F(c_2) & \operatorname{Yon}(F,c_2) \xrightarrow{\Xi_{F,c_2}} \operatorname{Eval}(F,c_2) \\ & (-)((-)\circ\varphi) & & \uparrow F(\varphi) & \operatorname{Yon}(F,\varphi) & & \uparrow E\operatorname{Val}(F,\varphi) \\ & \operatorname{Nat}(H^{c_1},F) \xrightarrow{(-)_{c_1}(\operatorname{id}_{c_1})} F(c_1) & & \operatorname{Yon}(F,c_1) \xrightarrow{\Xi_{F,c_1}} \operatorname{Eval}(F,c_1) \end{split}$$

To show this, consider any natural transformation  $\Lambda \in \mathsf{Nat}(H^{c_1}, F) = \mathsf{Yon}(F, c_1)$ . Then following  $\Lambda$  around the bottom of the square gives

$$(\mathsf{Eval}(F,\varphi)\circ\Xi_{F,c_1})(\Lambda)=F(\varphi)(\Lambda_{c_1}(\mathsf{id}_{c_1}))$$

and following  $\Lambda$  around the top of the square gives

$$(\Xi_{F,c_2} \circ \mathsf{Yon}(F,\varphi))(\Lambda) = \Lambda_{c_2}(\mathsf{id}_{c_1} \circ \varphi) = \Lambda_{c_2}(\varphi).$$

But since  $\Lambda: H^{c_1} \Rightarrow F$  is a natural transformation the following square must commute:

$$\begin{array}{c|c} \operatorname{Hom}_{\mathcal{C}}(c_{1},c_{2}) \xrightarrow{\Lambda_{c_{2}}} F(c_{2}) \\ & \varphi \circ (-) & \uparrow F(\varphi) \\ \operatorname{Hom}_{\mathcal{C}}(c_{1},c_{1}) \xrightarrow{\Lambda_{c_{1}}} F(c_{1}) \end{array}$$

Finally, by following the element  $\mathsf{id}_{c_1} \in \mathsf{Hom}_{\mathcal{C}}(c_1, c_1)$  from the bottom left to the top right in both ways, we obtain

$$(F(\varphi) \circ \Lambda_{c_1}(\mathsf{id}_{c_1})) = \Lambda_{c_2}(\varphi \circ \mathsf{id}_{c_1})$$
$$F(\varphi)(\Lambda_{c_1}(\mathsf{id}_{c_1})) = \Lambda_{c_2}(\varphi),$$

as desired.

To prove the second statement, let  $\Phi: F_1 \Rightarrow F_2$  be any arrow in Set<sup>C</sup>. For each fixed  $c \in C$  we need to show that the following square commutes:

$$\begin{split} \operatorname{Nat}(H^c,F_2) &\xrightarrow{(-)_c(\operatorname{id}_c)} F_2(c) & \operatorname{Yon}(F_2,c) &\xrightarrow{\Xi_{F_2,c}} \operatorname{Eval}(F_2,c) \\ & \Phi \circ (-) & & \uparrow \Phi_c & \operatorname{Yon}(\Phi,c) & & \uparrow \operatorname{Eval}(\Phi,c) \\ \operatorname{Nat}(H^c,F_1) &\xrightarrow{(-)_c(\operatorname{id}_c)} F_1(c) & & \operatorname{Yon}(F_1,c) &\xrightarrow{\Xi_{F_1,c}} \operatorname{Eval}(F_1,c) \end{split}$$

To show this, consider any natural transformation  $\Lambda \in Nat(H^c, F_1) = Yon(F_1, c)$ . Then following  $\Lambda$  around the bottom of the square gives

$$(\mathsf{Eval}(\Phi, c) \circ \Xi_{F_1,c})(\Lambda) = \Phi_c(\Lambda_c(\mathsf{id}_c))$$

and following  $\Lambda$  around the top of the square gives

$$(\Xi_{F_2,c} \circ \mathsf{Yon}(\Phi,c))(\Lambda) = (\Phi \circ \Lambda)_c(\mathsf{id}_c).$$

But recall that the composition of natural transformations is defined by  $(\Phi \circ \Lambda)_c := \Phi_c \circ \Lambda_c$ for all  $c \in \mathcal{C}$ , and hence we have

$$(\Phi_c \circ \Lambda_c)(\mathsf{id}_c) = \Phi_c(\Lambda_c(\mathsf{id}_c)),$$

as desired.

(3) **Invertibility of**  $\Xi$ . It remains to show that for each functor  $F \in \mathsf{Set}^{\mathcal{C}}$  and each object  $c \in \mathcal{C}$  the function  $\Xi_{F,c} : \mathsf{Yon}(F,c) \to \mathsf{Eval}(F,c)$  is invertible, and hence that  $\Xi : \mathsf{Yon} \cong \mathsf{Eval}$  is a natural isomorphism of functors.

To define the inverse function  $\Xi_{F,c}^{-1}$ :  $\operatorname{Eval}(F,c) \to \operatorname{Yon}(F,c)$ , we must send each set element  $x \in F(c) = \operatorname{Eval}(F,c)$  to a natural transformation  $\Xi_{F,c}^{-1}(x) \in \operatorname{Nat}(H^c,F) = \operatorname{Yon}(F,c)$ . And since  $H^c$  and F are functors  $\mathcal{C} \to \operatorname{Set}$ , this natural transformation  $\Xi_{F,c}^{-1}(x) : H^c \Rightarrow F$  consists of a family of functions  $\Xi_{F,c}^{-1}(x)_d : H^c(d) \to F(d)$ , one for each object  $d \in \mathcal{C}$ . That is, for each arrow  $\varphi \in \operatorname{Hom}_{\mathcal{C}}(c,d) = H^c(d)$  we must define a set element  $\Xi_{F,c}^{-1}(x)_d(\varphi) \in F(d)$ . Applying the functor F to the arrow  $\varphi : c \to d$  yields a function  $F(\varphi) : F(c) \to F(d)$  and thus we can make the following definition:

$$\Xi_{F,c}^{-1}(x)_d(\varphi) := F(\varphi)(x) \in F(d).$$

Now we need to check two things:

- The functions  $\Xi_{F,c}^{-1}(x)_d$  assemble into a natural transformation  $\Xi_{F,c}^{-1}(x): H^c \Rightarrow F$ , and hence we obtain a function  $\Xi_{F,c}^{-1}: \mathsf{Eval}(F,c) \to \mathsf{Yon}(F,c).$
- The functions  $\Xi_{F,c}$  and  $\Xi_{F,c}^{-1}$  are inverse.

To check the first statement, let  $\lambda : d_1 \to d_2$  be any arrow in C. We must show that the following square commutes:

$$\begin{array}{ll} \operatorname{Hom}_{\mathcal{C}}(c,d_{2}) \xrightarrow{F(-)(x)} & F(d_{2}) & H^{c}(d_{2}) \xrightarrow{\Xi_{F,c}^{-1}(x)d_{2}} & F(d_{2}) \\ & & & & \uparrow \\ & & & \uparrow \\ \operatorname{Hom}_{\mathcal{C}}(c,d_{1}) \xrightarrow{F(-)(x)} & F(d_{1}) & H^{c}(d_{1}) \xrightarrow{\Xi_{F,c}^{-1}(x)d_{1}} & F(d_{1}) \end{array}$$

And to see this, consider any arrow  $\varphi \in \text{Hom}_{\mathcal{C}}(c, d_1)$ . Following  $\varphi$  around the bottom of the square gives  $F(\lambda)(F(\varphi)(x))$  and following  $\varphi$  around the top of the square gives  $F(\lambda \circ \varphi)(x)$ , which equals

$$F(\lambda \circ \varphi)(x) = (F(\lambda) \circ F(\varphi))(x) = F(\lambda)(F(\varphi)(x)),$$

by the functoriality of F.

To check the second statement we will first show that  $\Xi_{F,c} \circ \Xi_{F,c}^{-1}$  is the identity function on  $\mathsf{Eval}(F,c)$ . So consider any set element  $x \in F(c) = \mathsf{Eval}(F,c)$ . Then by the definitions of  $\Xi_{F,c}$  and  $\Xi_{F,c}^{-1}$  and by the functoriality of F we have

$$\begin{aligned} (\Xi_{F,c} \circ \Xi_{F,c}^{-1})(x) &= \Xi_{F,c}(\Xi_{F,c}^{-1}(x)) \\ &= \Xi_{F,c}^{-1}(x)_c(\mathrm{id}_c) & \text{definition of } \Xi_{F,c} \\ &= F(\mathrm{id}_c)(x) & \text{definition of } \Xi_{F,c}^{-1} \\ &= \mathrm{id}_{F(c)}(x) & \text{functoriality of } F \\ &= x. \end{aligned}$$

Finally, we will show that  $\Xi_{F,c}^{-1} \circ \Xi_{F,c}$  is the identity function on  $\operatorname{Yon}(F,c)$ . So consider any natural transformation  $\Phi \in \operatorname{Nat}(H^c, F) = \operatorname{Yon}(F,c)$ . For any object  $d \in \mathcal{C}$  we want to show that  $\Phi_d$  and  $(\Xi_{F,c}^{-1} \circ \Xi_{F,c})(\Phi)_d$  define the same function  $H^c(d) \to F(d)$ . So consider any arrow  $\varphi \in \operatorname{Hom}_{\mathcal{C}}(c,d) = H^c(d)$ . The naturality of  $\Phi$  says that the following square commutes:

$$\begin{array}{ccc} \operatorname{Hom}_{\mathcal{C}}(c,d) & \stackrel{\Phi_d}{\longrightarrow} F(d) & H^c(d) & \stackrel{\Phi_d}{\longrightarrow} F(d) \\ \varphi \circ (-) & & \uparrow F(\varphi) & H^c(\varphi) & & \uparrow F(\varphi) \\ \operatorname{Hom}_{\mathcal{C}}(c,c) & \stackrel{\Phi_c}{\longrightarrow} F(c) & H^c(c) & \stackrel{\Phi_c}{\longrightarrow} F(c) \end{array}$$

In particular, following the arrow  $id_c$  from the bottom left to the top right in two ways gives

$$F(\varphi)(\Phi_c(\mathsf{id}_c)) = \Phi_d(\varphi \circ \mathsf{id}_c) = \Phi_d(\varphi).$$

Then by the definitions of  $\Xi_{F,c}$  and  $\Xi_{F,c}^{-1}$  and by the naturality of  $\Phi$  we have

$$\begin{aligned} (\Xi_{F,c}^{-1} \circ \Xi_{F,c})(\Phi)_d(\varphi) &= \Xi_{F,c}^{-1}(\Xi_{F,c}(\Phi))_d(\varphi) \\ &= \Xi_{F,c}^{-1}(\Phi_c(\mathsf{id}_c))_d(\varphi) & \text{definition of } \Xi_{F,c} \\ &= F(\varphi)(\Phi_c(\mathsf{id}_c)) & \text{definition of } \Xi_{F,c}^{-1} \\ &= \Phi_d(\varphi), & \text{naturality of } \Phi \end{aligned}$$

as desired.

This completes the proof of Yoneda's Lemma.

///