The Yoneda Lemma. Given a category \mathcal{C}, there is one easy functor and one hard functor from the product category $\mathrm{Set}^{\mathcal{C}} \times \mathcal{C}$ into the category Set:

- Easy: Given a functor $F \in \operatorname{Set}^{\mathcal{C}}$ and an object $c \in \mathcal{C}$, the $\operatorname{assignment} \operatorname{Eval}(F, c):=F(c)$ defines the evaluation functor

$$
\text { Eval : Set }{ }^{\mathcal{C}} \times \mathcal{C} \rightarrow \text { Set. }
$$

- Hard: Given an object $c \in \mathcal{C}$ recall that we have a functor $H^{c}=\operatorname{Hom}_{\mathcal{C}}(c,-) \in \operatorname{Set}^{\mathcal{C}}$. Then for any other functor $F \in \operatorname{Set}^{\mathcal{C}}$ we will use the notation $\operatorname{Nat}\left(H^{c}, F\right)$ for the set ${ }^{1}$ of natural transformations $N^{c} \Rightarrow F$. The assignment $\operatorname{Yon}(F, c):=\operatorname{Nat}\left(H^{c}, F\right)$ defines the Yoneda functor

$$
\text { Yon }: \operatorname{Set}^{\mathcal{C}} \times \mathcal{C} \rightarrow \text { Set }
$$

The Yoneda Lemma says that the family of functions $\Xi_{F, c}$: $\operatorname{Yon}(F, c) \rightarrow \operatorname{Eval}(F, c)$ defined by sending $\Phi \in \operatorname{Nat}\left(H^{c}, F\right)$ to $\Phi_{c}\left(\mathrm{id}_{c}\right) \in F(c)$ is a natural isomorphism

$$
\Xi: \text { Yon } \cong \text { Eval. }
$$

In summary, for each functor $F: \mathcal{C} \rightarrow$ Set and object $c \in \mathcal{C}$, the Yoneda Lemma says that

$$
\text { "natural transformations } H^{c} \Rightarrow F \text { are the same as elements of } F(c) . "
$$

In particular, this implies that the collection $\operatorname{Nat}\left(H^{c}, F\right)$ is a set, which was not a priori obvious. There is also a dual version of the Yoneda Lemma which says that, for each functor $F: \mathcal{C}^{\text {op }} \rightarrow$ Set and each object $c \in \mathcal{C}$, the mapping $\Phi \mapsto \Phi_{c}\left(\mathrm{id}_{c}\right)$ defines a natural bijection $\operatorname{Nat}\left(H_{c}, F\right) \rightarrow F(c)$. To obtain a proof of the dual version, just "reverse all arrows" in the following proof.

Because of the unifying power of the Yoneda Lemma, you should expect that there will be a lot of details to check. Every mathematician should go through the details of this proof exactly once in their life. (Typing up this proof was my one time.)

Proof of Yoneda: As with many theorems of category theory, the real difficulty is in keeping track of the definitions. We will go very slowly.
(1) Define the Functors. We were only told how the functors Eval and Yon act on objects. We need to examine how they act on arrows. Since each functor is defined on the product category $\operatorname{Set}^{\mathcal{C}} \times \mathcal{C}$, it must act separately on arrows in $\operatorname{Set}^{\mathcal{C}}$ and in \mathcal{C}, and these two actions must commute.

First we look at Eval. For each arrow $\varphi: c_{1} \rightarrow c_{2}$ in \mathcal{C} and each functor $F \in \operatorname{Set}^{\mathcal{C}}$, we must find an arrow $\operatorname{Eval}(F, \varphi): \operatorname{Eval}\left(F, c_{1}\right) \rightarrow \operatorname{Eval}\left(F, c_{2}\right)-$ that is, a function $\operatorname{Eval}(F, \varphi):$ $F\left(c_{1}\right) \rightarrow F\left(c_{2}\right)$ - with the property that $\operatorname{Eval}(F, \varphi \circ \psi)=\operatorname{Eval}(F, \varphi) \circ \operatorname{Eval}(F, \psi)$. This is easy; we just take $\operatorname{Eval}(F, \varphi):=F(\varphi): F\left(c_{1}\right) \rightarrow F\left(c_{2}\right)$, which exists because F is a

[^0]functor. Then for each object $c \in \mathcal{C}$ and each arrow $F_{1} \Rightarrow F_{2}$ in Set ${ }^{\mathcal{L}}$, we must find an arrow $\operatorname{Eval}(\Phi, c): \operatorname{Eval}\left(F_{1}, c\right) \rightarrow \operatorname{Eval}\left(F_{2}, c\right)$ - that is, a function $\operatorname{Eval}(\Phi, c): F_{1}(c) \rightarrow F_{2}(c)$ with the property that $\operatorname{Eval}(\Phi \circ \Psi, c)=\operatorname{Eval}(\Phi, c) \circ \operatorname{Eval}(\Psi, c)$. This is also easy; we just take $\operatorname{Eval}(\Phi, c):=\Phi_{c}: F_{1}(c) \rightarrow F_{2}(c)$, which exists because Φ is a natural transformation. Finally, the naturality of Φ says that the following square commutes:

Thus we can define the function $\operatorname{Eval}(\Phi, \varphi): \operatorname{Eval}\left(F_{1}, c_{1}\right) \rightarrow \operatorname{Eval}\left(F_{2}, c_{2}\right)$ by following either path from the bottom left to the top right of the square. Explicitly, we have $\operatorname{Eval}(\Phi, \varphi):=$ $F_{2}(\varphi) \circ \Phi_{c_{1}}=\Phi_{c_{2}} \circ F_{2}(\varphi)$.
Next we look at Yon. For each arrow $\varphi: c_{1} \rightarrow c_{2}$ in \mathcal{C} and each functor $F \in \operatorname{Set}^{\mathcal{C}}$, we must find an arrow $\operatorname{Yon}(F, \varphi): \operatorname{Yon}\left(F, c_{1}\right) \rightarrow \operatorname{Yon}\left(F, c_{2}\right)$ - that is, a function $\operatorname{Yon}(F, \varphi): \operatorname{Nat}\left(H^{c_{1}}, F\right) \rightarrow$ $\operatorname{Nat}\left(H^{c_{2}}, F\right)$ - with the property that $\operatorname{Yon}(F, \varphi \circ \psi)=\operatorname{Yon}(F, \varphi) \circ \operatorname{Yon}(F, \psi)$. To define this, let $\Lambda \in \operatorname{Nat}\left(H^{c_{1}}, F\right)$ be any natural transformation, so that for each arrow $\lambda: d_{1} \rightarrow d_{2}$ in \mathcal{C} the following diagram commutes:

We can extend this diagram on the left using by φ :

The new diagram commutes because λ and φ are acting on opposite sides. Then for each object $d \in \mathcal{C}$ we define the function $\operatorname{Yon}(F, \varphi)(\Lambda)_{d}: H^{c_{2}}(d) \rightarrow F(d)$ by $\operatorname{Yon}(F, \varphi)(\Lambda)_{d}(-):=\Lambda_{d}((-) \circ$ $\varphi)$, and the above diagram says that these functions assemble into a natural transformation $\operatorname{Yon}(F, \varphi)(\Lambda) \in \operatorname{Nat}\left(H^{c_{2}}, F\right)$. The fact that $\operatorname{Yon}(F, \varphi \circ \psi)=\operatorname{Yon}(F, \varphi) \circ \operatorname{Yon}(F, \psi)$ follows by extending the diagram twice on the left and then using the associativity of composition.
On the other hand, for each arrow $\Phi: F_{1} \Rightarrow F_{2}$ in Set ${ }^{\mathcal{C}}$ and each object $c \in \mathcal{C}$, we must find an arrow $\operatorname{Yon}(\Phi, c): \operatorname{Yon}\left(F_{1}, c\right) \rightarrow \operatorname{Yon}\left(F_{1}, c\right)$ - that is, a function $\operatorname{Yon}(\Phi, c): \operatorname{Nat}\left(H^{c}, F_{1}\right) \rightarrow$ $\operatorname{Nat}\left(H^{c}, F_{2}\right)$ - with the property that $\operatorname{Yon}(\Phi \circ \Psi, c)=\operatorname{Yon}(\Phi, c) \circ \operatorname{Yon}(\Psi, c)$. To define this, let $\Lambda \in \operatorname{Nat}\left(H^{c}, F_{1}\right)$ be any natural transformation, so that for each arrow $\lambda: d_{1} \rightarrow d_{2}$ in \mathcal{C}
the following diagram commutes:

We can extend this diagram on the right by using Φ :

The new diagram commutes because Φ is a natural transformation. Then for each object $d \in \mathcal{C}$ we define the function $\operatorname{Yon}(\Phi, c)(\Lambda)_{d}: H^{c} \rightarrow F_{2}$ by $\operatorname{Yon}(\Phi, c)(\Lambda)_{d}:=\Phi_{d} \circ \Lambda_{d}$, and the above diagram says that these functions assemble into a natural transformation $\operatorname{Yon}(\Phi, c)(\Lambda) \in$ $\operatorname{Nat}\left(H^{c}, F_{2}\right)$. The fact that $\operatorname{Yon}(\Phi \circ \Psi, c)=\operatorname{Yon}(\Phi, c) \circ \operatorname{Yon}(\Psi, c)$ follows by extending the diagram twice on the right and then using the associativity of composition. Finally, for each arrow $\varphi: c_{1} \rightarrow c_{2}$ in \mathcal{C} and each arrow $\Phi: F_{1} \Rightarrow F_{2}$ in $\operatorname{Set}^{\mathcal{C}}$ we observe that the following diagram commutes:

Thus for each object $d \in \mathcal{C}$ and natural transformation $\Lambda: H^{c_{1}} \Rightarrow F_{1}$ we define a function $\operatorname{Yon}(\Phi, \varphi)(\Lambda)_{d}(-): \Phi_{d}\left(\Lambda_{d}((-) \circ \varphi)\right)$, and the above diagram says that these functions assmemble into a natural transformation $\operatorname{Yon}(\Phi, \varphi)(\Lambda): H^{c_{2}} \Rightarrow F_{2}$. In summary, we have obtained a
function $\operatorname{Yon}(\Phi, \varphi): \operatorname{Yon}\left(F_{1}, c_{1}\right) \rightarrow \operatorname{Yon}\left(F_{2}, c_{2}\right)$ such that the following diagram commutes:

Now at least we know what we are supposd to prove.
(2) Naturality of Ξ. For each functor $F \in \operatorname{Set}^{\mathcal{C}}$ and each object $c \in \mathcal{C}$ we haved defined the function $\Xi_{F, c}: \operatorname{Nat}\left(H^{c}, F\right) \rightarrow F(c)$ by sending each natural transformation $\Phi: H^{c} \Rightarrow F$ to the element $\Phi_{c}\left(\mathrm{id}_{c}\right) \in F(c)$. We want to show that the functions $\Xi_{F, c}$ assemble into a natural transformation $\Xi:$ Yon \Rightarrow Eval. Since Yon, Eval : Set ${ }^{\mathcal{C}} \times \mathcal{C} \rightarrow$ Set are "bifunctors", this amounts to proving two separate statements:

- For each fixed $F \in \operatorname{Set}^{\mathcal{C}}$ the functions $\Xi_{F, c}$ assemble into a natural transformation

$$
\Xi_{F,-}: \operatorname{Nat}\left(H^{(-)}, F\right) \Rightarrow F(-) .
$$

- For each fixed $c \in \mathcal{C}$ the functions $\Xi_{F, c}$ assemble into a natural transformation

$$
\Xi_{-, c}: \operatorname{Nat}\left(H^{c},-\right) \Rightarrow(-)(c) .
$$

To prove the first statement, let $\varphi: c_{1} \rightarrow c_{2}$ be any arrow in \mathcal{C}. For each fixed $F \in \operatorname{Set}^{\mathcal{C}}$ we need to show that the following square commutes:

To show this, consider any natural transformation $\Lambda \in \operatorname{Nat}\left(H^{c_{1}}, F\right)=\operatorname{Yon}\left(F, c_{1}\right)$. Then following Λ around the bottom of the square gives

$$
\left(\operatorname{Eval}(F, \varphi) \circ \Xi_{F, c_{1}}\right)(\Lambda)=F(\varphi)\left(\Lambda_{c_{1}}\left(\mathrm{id}_{c_{1}}\right)\right)
$$

and following Λ around the top of the square gives

$$
\left(\Xi_{F, c_{2}} \circ \operatorname{Yon}(F, \varphi)\right)(\Lambda)=\Lambda_{c_{2}}\left(\mathrm{id}_{c_{1}} \circ \varphi\right)=\Lambda_{c_{2}}(\varphi) .
$$

But since $\Lambda: H^{c_{1}} \Rightarrow F$ is a natural transformation the following square must commute:

Finally, by following the element $\mathrm{id}_{c_{1}} \in \operatorname{Hom}_{\mathcal{C}}\left(c_{1}, c_{1}\right)$ from the bottom left to the top right in both ways, we obtain

$$
\begin{aligned}
\left(F(\varphi) \circ \Lambda_{c_{1}}\left(\operatorname{id}_{c_{1}}\right)\right) & =\Lambda_{c_{2}}\left(\varphi \circ \mathrm{id}_{c_{1}}\right) \\
F(\varphi)\left(\Lambda_{c_{1}}\left(\operatorname{id}_{c_{1}}\right)\right) & =\Lambda_{c_{2}}(\varphi),
\end{aligned}
$$

as desired.
To prove the second statement, let $\Phi: F_{1} \Rightarrow F_{2}$ be any arrow in $\mathrm{Set}^{\mathcal{C}}$. For each fixed $c \in \mathcal{C}$ we need to show that the following square commutes:

To show this, consider any natural transformation $\Lambda \in \operatorname{Nat}\left(H^{c}, F_{1}\right)=\operatorname{Yon}\left(F_{1}, c\right)$. Then following Λ around the bottom of the square gives

$$
\left(\operatorname{Eval}(\Phi, c) \circ \Xi_{F_{1}, c}\right)(\Lambda)=\Phi_{c}\left(\Lambda_{c}\left(\mathrm{id}_{c}\right)\right)
$$

and following Λ around the top of the square gives

$$
\left(\Xi_{F_{2}, c} \circ \operatorname{Yon}(\Phi, c)\right)(\Lambda)=(\Phi \circ \Lambda)_{c}\left(\mathrm{id}_{c}\right) .
$$

But recall that the composition of natural transformations is defined by $(\Phi \circ \Lambda)_{c}:=\Phi_{c} \circ \Lambda_{c}$ for all $c \in \mathcal{C}$, and hence we have

$$
\left(\Phi_{c} \circ \Lambda_{c}\right)\left(\mathrm{id}_{c}\right)=\Phi_{c}\left(\Lambda_{c}\left(\mathrm{id}_{c}\right)\right),
$$

as desired.
(3) Invertibility of Ξ. It remains to show that for each functor $F \in \operatorname{Set}^{\mathcal{L}}$ and each object $c \in \mathcal{C}$ the function $\Xi_{F, c}: \operatorname{Yon}(F, c) \rightarrow \operatorname{Eval}(F, c)$ is invertible, and hence that $\Xi:$ Yon $\cong E v a l$ is a natural isomorphism of functors.
To define the inverse function $\Xi_{F, c}^{-1}: \operatorname{Eval}(F, c) \rightarrow \operatorname{Yon}(F, c)$, we must send each set element $x \in F(c)=\operatorname{Eval}(F, c)$ to a natural transformation $\Xi_{F, c}^{-1}(x) \in \operatorname{Nat}\left(H^{c}, F\right)=\operatorname{Yon}(F, c)$. And since H^{c} and F are functors $\mathcal{C} \rightarrow$ Set, this natural transformation $\Xi_{F, c}^{-1}(x): H^{c} \Rightarrow F$ consists of a family of functions $\Xi_{F, c}^{-1}(x)_{d}: H^{c}(d) \rightarrow F(d)$, one for each object $d \in \mathcal{C}$. That is, for each arrow $\varphi \in \operatorname{Hom}_{\mathcal{C}}(c, d)=H^{c}(d)$ we must define a set element $\Xi_{F, c}^{-1}(x)_{d}(\varphi) \in F(d)$. Applying the functor F to the arrow $\varphi: c \rightarrow d$ yields a function $F(\varphi): F(c) \rightarrow F(d)$ and thus we can make the following definition:

$$
\Xi_{F, c}^{-1}(x)_{d}(\varphi):=F(\varphi)(x) \in F(d) .
$$

Now we need to check two things:

- The functions $\Xi_{F, c}^{-1}(x)_{d}$ assemble into a natural transformation $\Xi_{F, c}^{-1}(x): H^{c} \Rightarrow F$, and hence we obtain a function $\Xi_{F, c}^{-1}: \operatorname{Eval}(F, c) \rightarrow \operatorname{Yon}(F, c)$.
- The functions $\Xi_{F, c}$ and $\Xi_{F, c}^{-1}$ are inverse.

To check the first statement, let $\lambda: d_{1} \rightarrow d_{2}$ be any arrow in \mathcal{C}. We must show that the following square commutes:

And to see this, consider any arrow $\varphi \in \operatorname{Hom}_{\mathcal{C}}\left(c, d_{1}\right)$. Following φ around the bottom of the square gives $F(\lambda)(F(\varphi)(x))$ and following φ around the top of the square gives $F(\lambda \circ \varphi)(x)$, which equals

$$
F(\lambda \circ \varphi)(x)=(F(\lambda) \circ F(\varphi))(x)=F(\lambda)(F(\varphi)(x)),
$$

by the functoriality of F.
To check the second statement we will first show that $\Xi_{F, c} \circ \Xi_{F, c}^{-1}$ is the identity function on $\operatorname{Eval}(F, c)$. So consider any set element $x \in F(c)=\operatorname{Eval}(F, c)$. Then by the definitions of $\Xi_{F, c}$ and $\Xi_{F, c}^{-1}$ and by the functoriality of F we have

$$
\begin{array}{rlrl}
\left(\Xi_{F, c} \circ \Xi_{F, c}^{-1}\right)(x) & =\Xi_{F, c}\left(\Xi_{F, c}^{-1}(x)\right) & \\
& =\Xi_{F, c}^{-1}(x)_{c}\left(\mathrm{id}_{c}\right) & & \text { definition of } \Xi_{F, c} \\
& =F\left(\mathrm{id}_{c}\right)(x) & & \text { definition of } \Xi_{F, c}^{-1} \\
& =\operatorname{id}_{F(c)}(x) & & \text { functoriality of } F \\
& =x . & &
\end{array}
$$

Finally, we will show that $\Xi_{F, c}^{-1} \circ \Xi_{F, c}$ is the identity function on $\operatorname{Yon}(F, c)$. So consider any natural transformation $\Phi \in \operatorname{Nat}\left(H^{c}, F\right)=\operatorname{Yon}(F, c)$. For any object $d \in \mathcal{C}$ we want to show that Φ_{d} and $\left(\Xi_{F, c}^{-1} \circ \Xi_{F, c}\right)(\Phi)_{d}$ define the same function $H^{c}(d) \rightarrow F(d)$. So consider any arrow $\varphi \in \operatorname{Hom}_{\mathcal{C}}(c, d)=H^{c}(d)$. The naturality of Φ says that the following square commutes:

In particular, following the arrow id_{c} from the bottom left to the top right in two ways gives

$$
F(\varphi)\left(\Phi_{c}\left(\mathrm{id}_{c}\right)\right)=\Phi_{d}\left(\varphi \circ \mathrm{id}_{c}\right)=\Phi_{d}(\varphi) .
$$

Then by the definitions of $\Xi_{F, c}$ and $\Xi_{F, c}^{-1}$ and by the naturality of Φ we have

$$
\begin{aligned}
\left(\Xi_{F, c}^{-1} \circ \Xi_{F, c}\right)(\Phi)_{d}(\varphi) & =\Xi_{F, c}^{-1}\left(\Xi_{F, c}(\Phi)\right)_{d}(\varphi) & & \\
& =\Xi_{F, c}^{-1}\left(\Phi_{c}\left(\mathrm{id}_{c}\right)\right)_{d}(\varphi) & & \text { definition of } \Xi_{F, c} \\
& =F(\varphi)\left(\Phi_{c}\left(\mathrm{id}_{c}\right)\right) & & \text { definition of } \Xi_{F, c}^{-1} \\
& =\Phi_{d}(\varphi), & & \text { naturality of } \Phi
\end{aligned}
$$

as desired.

This completes the proof of Yoneda's Lemma.

[^0]: ${ }^{1}$ It is not a priori obvious that this collection of natural transformations is a set. The fact that it is a set will follow from the proof.

