
The Yoneda Lemma Fall 2016
Universität des Saarlandes Drew Armstrong

The Yoneda Lemma. Given a category C, there is one easy functor and one hard functor
from the product category SetC × C into the category Set:

• Easy: Given a functor F ∈ SetC and an object c ∈ C, the assignment Eval(F, c) := F (c)
defines the evaluation functor

Eval : SetC × C → Set.

• Hard: Given an object c ∈ C recall that we have a functor Hc = HomC(c,−) ∈ SetC .
Then for any other functor F ∈ SetC we will use the notation Nat(Hc, F) for the set1

of natural transformations N c ⇒ F . The assignment Yon(F, c) := Nat(Hc, F) defines
the Yoneda functor

Yon : SetC × C → Set.

The Yoneda Lemma says that the family of functions ΞF,c : Yon(F, c)→ Eval(F, c) defined by
sending Φ ∈ Nat(Hc, F) to Φc(idc) ∈ F (c) is a natural isomorphism

Ξ : Yon ∼= Eval.

///

In summary, for each functor F : C → Set and object c ∈ C, the Yoneda Lemma says that

“natural transformations Hc ⇒ F are the same as elements of F (c).”

In particular, this implies that the collection Nat(Hc, F) is a set, which was not a priori
obvious. There is also a dual version of the Yoneda Lemma which says that, for each functor
F : Cop → Set and each object c ∈ C, the mapping Φ 7→ Φc(idc) defines a natural bijection
Nat(Hc, F) → F (c). To obtain a proof of the dual version, just “reverse all arrows” in the
following proof.

Because of the unifying power of the Yoneda Lemma, you should expect that there will be
a lot of details to check. Every mathematician should go through the details of this proof
exactly once in their life. (Typing up this proof was my one time.)

Proof of Yoneda: As with many theorems of category theory, the real difficulty is in keeping
track of the definitions. We will go very slowly.

(1) Define the Functors. We were only told how the functors Eval and Yon act on objects.
We need to examine how they act on arrows. Since each functor is defined on the product
category SetC × C, it must act separately on arrows in SetC and in C, and these two actions
must commute.

First we look at Eval. For each arrow ϕ : c1 → c2 in C and each functor F ∈ SetC , we
must find an arrow Eval(F,ϕ) : Eval(F, c1) → Eval(F, c2) — that is, a function Eval(F,ϕ) :
F (c1) → F (c2) — with the property that Eval(F,ϕ ◦ ψ) = Eval(F,ϕ) ◦ Eval(F,ψ). This
is easy; we just take Eval(F,ϕ) := F (ϕ) : F (c1) → F (c2), which exists because F is a

1It is not a priori obvious that this collection of natural transformations is a set. The fact that it is a set
will follow from the proof.

functor. Then for each object c ∈ C and each arrow F1 ⇒ F2 in SetC , we must find an
arrow Eval(Φ, c) : Eval(F1, c)→ Eval(F2, c) — that is, a function Eval(Φ, c) : F1(c)→ F2(c) —
with the property that Eval(Φ ◦Ψ, c) = Eval(Φ, c) ◦ Eval(Ψ, c). This is also easy; we just take
Eval(Φ, c) := Φc : F1(c)→ F2(c), which exists because Φ is a natural transformation. Finally,
the naturality of Φ says that the following square commutes:

F1(c2)
Φc2 // F2(c2)

F1(c1)

Eval(Φ,ϕ)

::

F1(ϕ)

OO

Φc1

// F2(c1)

F2(ϕ)

OO
Eval(F1, c2)

Eval(Φ,c2) // Eval(F2, c2)

Eval(F1, c1)

Eval(Φ,ϕ)

99

Eval(F1,ϕ)

OO

Eval(Φ,c1)
// Eval(F2, c1)

Eval(F2,ϕ)

OO

Thus we can define the function Eval(Φ, ϕ) : Eval(F1, c1) → Eval(F2, c2) by following either
path from the bottom left to the top right of the square. Explicitly, we have Eval(Φ, ϕ) :=
F2(ϕ) ◦ Φc1 = Φc2 ◦ F2(ϕ).

Next we look at Yon. For each arrow ϕ : c1 → c2 in C and each functor F ∈ SetC , we must find
an arrow Yon(F,ϕ) : Yon(F, c1)→ Yon(F, c2) — that is, a function Yon(F,ϕ) : Nat(Hc1 , F)→
Nat(Hc2 , F) — with the property that Yon(F,ϕ ◦ ψ) = Yon(F,ϕ) ◦ Yon(F,ψ). To define this,
let Λ ∈ Nat(Hc1 , F) be any natural transformation, so that for each arrow λ : d1 → d2 in C
the following diagram commutes:

HomC(c1, d2)
Λd2 // F (d2)

HomC(c1, d1)

λ◦(−)

OO

Λd1

// F (d1)

F (λ)

OO

We can extend this diagram on the left using by ϕ:

HomC(c2, d2)

Λd2
((−)◦ϕ)

(((−)◦ϕ // HomC(c1, d2)
Λd2 // F (d2)

HomC(c2, d1)

Λd1
((−)◦ϕ)

66(−)◦ϕ
//

λ◦(−)

OO

HomC(c1, d1)

λ◦(−)

OO

Λd2

// F (d1)

F (λ)

OO

The new diagram commutes because λ and ϕ are acting on opposite sides. Then for each object
d ∈ C we define the function Yon(F,ϕ)(Λ)d : Hc2(d)→ F (d) by Yon(F,ϕ)(Λ)d(−) := Λd((−) ◦
ϕ), and the above diagram says that these functions assemble into a natural transformation
Yon(F,ϕ)(Λ) ∈ Nat(Hc2 , F). The fact that Yon(F,ϕ ◦ ψ) = Yon(F,ϕ) ◦ Yon(F,ψ) follows by
extending the diagram twice on the left and then using the associativity of composition.

On the other hand, for each arrow Φ : F1 ⇒ F2 in SetC and each object c ∈ C, we must find
an arrow Yon(Φ, c) : Yon(F1, c) → Yon(F1, c) — that is, a function Yon(Φ, c) : Nat(Hc, F1) →
Nat(Hc, F2) — with the property that Yon(Φ ◦ Ψ, c) = Yon(Φ, c) ◦ Yon(Ψ, c). To define this,
let Λ ∈ Nat(Hc, F1) be any natural transformation, so that for each arrow λ : d1 → d2 in C

the following diagram commutes:

HomC(c, d2)
Λd2 // F1(d2)

HomC(c, d1)

λ◦(−)

OO

Λd2

// F1(d1)

F1(λ)

OO

We can extend this diagram on the right by using Φ:

HomC(c, d2)

Φd2
◦Λd2

''Λd2 // F1(d2)
Φd2 // F2(d2)

HomC(c, d1)

Φd1
◦Λd1

77

λ◦(−)

OO

Λd2

// F1(d1)

F1(λ)

OO

Φd1

// F2(d1)

F2(λ)

OO

The new diagram commutes because Φ is a natural transformation. Then for each object d ∈ C
we define the function Yon(Φ, c)(Λ)d : Hc → F2 by Yon(Φ, c)(Λ)d := Φd ◦ Λd, and the above
diagram says that these functions assemble into a natural transformation Yon(Φ, c)(Λ) ∈
Nat(Hc, F2). The fact that Yon(Φ ◦ Ψ, c) = Yon(Φ, c) ◦ Yon(Ψ, c) follows by extending the
diagram twice on the right and then using the associativity of composition. Finally, for each
arrow ϕ : c1 → c2 in C and each arrow Φ : F1 ⇒ F2 in SetC we observe that the following
diagram commutes:

HomC(c2, d2)

Φd2
(Λd2

((−)◦ϕ))

##

Λd2
((−)◦ϕ)

))(−)◦ϕ // HomC(c1, d2)

Φd2
◦Λd2

''Λd2 // F1(d2)
Φd2 // F2(d2)

HomC(c2, d1)

Φd1
(Λd1

((−)◦ϕ))

;;

Λd1
((−)◦ϕ)

55

λ◦(−)

OO

(−)◦ϕ
// HomC(c1, d1)

Φd1
◦Λd1

77

λ◦(−)

OO

Λd2

// F1(d1)

F1(λ)

OO

Φd1

// F2(d1)

F2(λ)

OO

Thus for each object d ∈ C and natural transformation Λ : Hc1 ⇒ F1 we define a function
Yon(Φ, ϕ)(Λ)d(−) : Φd(Λd((−)◦ϕ)), and the above diagram says that these functions assmem-
ble into a natural transformation Yon(Φ, ϕ)(Λ) : Hc2 ⇒ F2. In summary, we have obtained a

function Yon(Φ, ϕ) : Yon(F1, c1)→ Yon(F2, c2) such that the following diagram commutes:

Nat(Hc2 , F1)
Φ◦(−) // Nat(Hc2 , F2)

Nat(Hc1 , F1)

Yon(Φ,ϕ)

88

(−)((−)◦ϕ)

OO

Φ◦(−)
// Nat(Hc1 , F2)

(−)((−)◦ϕ)

OO
Yon(F1, c2)

Yon(Φ,c2) // Yon(F2, c2)

Yon(F1, c1)

Yon(Φ,ϕ)

99

Yon(F1,ϕ)

OO

Yon(Φ,c1)
// Yon(F2, c1)

Yon(F2,ϕ)

OO

Now at least we know what we are supposd to prove.

(2) Naturality of Ξ. For each functor F ∈ SetC and each object c ∈ C we haved defined the
function ΞF,c : Nat(Hc, F) → F (c) by sending each natural transformation Φ : Hc ⇒ F to
the element Φc(idc) ∈ F (c). We want to show that the functions ΞF,c assemble into a natural

transformation Ξ : Yon⇒ Eval. Since Yon,Eval : SetC×C → Set are “bifunctors”, this amounts
to proving two separate statements:

• For each fixed F ∈ SetC the functions ΞF,c assemble into a natural transformation

ΞF,− : Nat(H(−), F)⇒ F (−).

• For each fixed c ∈ C the functions ΞF,c assemble into a natural transformation

Ξ−,c : Nat(Hc,−)⇒ (−)(c).

To prove the first statement, let ϕ : c1 → c2 be any arrow in C. For each fixed F ∈ SetC we
need to show that the following square commutes:

Nat(Hc2 , F)
(−)c2 (idc2)

// F (c2)

Nat(Hc1 , F)

(−)((−)◦ϕ)

OO

(−)c1 (idc1)
// F (c1)

F (ϕ)

OO
Yon(F, c2)

ΞF,c2 // Eval(F, c2)

Yon(F, c1)

Yon(F,ϕ)

OO

ΞF,c1

// Eval(F, c1)

Eval(F,ϕ)

OO

To show this, consider any natural transformation Λ ∈ Nat(Hc1 , F) = Yon(F, c1). Then
following Λ around the bottom of the square gives

(Eval(F,ϕ) ◦ ΞF,c1)(Λ) = F (ϕ)(Λc1(idc1))

and following Λ around the top of the square gives

(ΞF,c2 ◦ Yon(F,ϕ))(Λ) = Λc2(idc1 ◦ ϕ) = Λc2(ϕ).

But since Λ : Hc1 ⇒ F is a natural transformation the following square must commute:

HomC(c1, c2)
Λc2 // F (c2)

HomC(c1, c1)

ϕ◦(−)

OO

Λc1

// F (c1)

F (ϕ)

OO

Finally, by following the element idc1 ∈ HomC(c1, c1) from the bottom left to the top right in
both ways, we obtain

(F (ϕ) ◦ Λc1(idc1)) = Λc2(ϕ ◦ idc1)

F (ϕ)(Λc1(idc1)) = Λc2(ϕ),

as desired.

To prove the second statement, let Φ : F1 ⇒ F2 be any arrow in SetC . For each fixed c ∈ C we
need to show that the following square commutes:

Nat(Hc, F2)
(−)c(idc) // F2(c)

Nat(Hc, F1)

Φ◦(−)

OO

(−)c(idc)
// F1(c)

Φc

OO
Yon(F2, c)

ΞF2,c // Eval(F2, c)

Yon(F1, c)

Yon(Φ,c)

OO

ΞF1,c

// Eval(F1, c)

Eval(Φ,c)

OO

To show this, consider any natural transformation Λ ∈ Nat(Hc, F1) = Yon(F1, c). Then
following Λ around the bottom of the square gives

(Eval(Φ, c) ◦ ΞF1,c)(Λ) = Φc(Λc(idc))

and following Λ around the top of the square gives

(ΞF2,c ◦ Yon(Φ, c))(Λ) = (Φ ◦ Λ)c(idc).

But recall that the composition of natural transformations is defined by (Φ ◦ Λ)c := Φc ◦ Λc
for all c ∈ C, and hence we have

(Φc ◦ Λc)(idc) = Φc(Λc(idc)),

as desired.

(3) Invertibility of Ξ. It remains to show that for each functor F ∈ SetC and each object
c ∈ C the function ΞF,c : Yon(F, c)→ Eval(F, c) is invertible, and hence that Ξ : Yon ∼= Eval is
a natural isomorphism of functors.

To define the inverse function Ξ−1
F,c : Eval(F, c) → Yon(F, c), we must send each set element

x ∈ F (c) = Eval(F, c) to a natural transformation Ξ−1
F,c(x) ∈ Nat(Hc, F) = Yon(F, c). And

since Hc and F are functors C → Set, this natural transformation Ξ−1
F,c(x) : Hc ⇒ F consists

of a family of functions Ξ−1
F,c(x)d : Hc(d)→ F (d), one for each object d ∈ C. That is, for each

arrow ϕ ∈ HomC(c, d) = Hc(d) we must define a set element Ξ−1
F,c(x)d(ϕ) ∈ F (d). Applying

the functor F to the arrow ϕ : c → d yields a function F (ϕ) : F (c) → F (d) and thus we can
make the following definition:

Ξ−1
F,c(x)d(ϕ) := F (ϕ)(x) ∈ F (d).

Now we need to check two things:

• The functions Ξ−1
F,c(x)d assemble into a natural transformation Ξ−1

F,c(x) : Hc ⇒ F , and

hence we obtain a function Ξ−1
F,c : Eval(F, c)→ Yon(F, c).

• The functions ΞF,c and Ξ−1
F,c are inverse.

To check the first statement, let λ : d1 → d2 be any arrow in C. We must show that the
following square commutes:

HomC(c, d2)
F (−)(x) // F (d2)

HomC(c, d1)

λ◦(−)

OO

F (−)(x)
// F (d1)

F (λ)

OO
Hc(d2)

Ξ−1
F,c(x)d2 // F (d2)

Hc(d1)

Hc(λ)

OO

Ξ−1
F,c(x)d1

// F (d1)

F (λ)

OO

And to see this, consider any arrow ϕ ∈ HomC(c, d1). Following ϕ around the bottom of the
square gives F (λ)(F (ϕ)(x)) and following ϕ around the top of the square gives F (λ ◦ ϕ)(x),
which equals

F (λ ◦ ϕ)(x) = (F (λ) ◦ F (ϕ))(x) = F (λ)(F (ϕ)(x)),

by the functoriality of F .

To check the second statement we will first show that ΞF,c ◦ Ξ−1
F,c is the identity function on

Eval(F, c). So consider any set element x ∈ F (c) = Eval(F, c). Then by the definitions of ΞF,c
and Ξ−1

F,c and by the functoriality of F we have

(ΞF,c ◦ Ξ−1
F,c)(x) = ΞF,c(Ξ

−1
F,c(x))

= Ξ−1
F,c(x)c(idc) definition of ΞF,c

= F (idc)(x) definition of Ξ−1
F,c

= idF (c)(x) functoriality of F

= x.

Finally, we will show that Ξ−1
F,c ◦ ΞF,c is the identity function on Yon(F, c). So consider any

natural transformation Φ ∈ Nat(Hc, F) = Yon(F, c). For any object d ∈ C we want to show
that Φd and (Ξ−1

F,c ◦ ΞF,c)(Φ)d define the same function Hc(d)→ F (d). So consider any arrow

ϕ ∈ HomC(c, d) = Hc(d). The naturality of Φ says that the following square commutes:

HomC(c, d)
Φd // F (d)

HomC(c, c)

ϕ◦(−)

OO

Φc

// F (c)

F (ϕ)

OO
Hc(d)

Φd // F (d)

Hc(c)

Hc(ϕ)

OO

Φc

// F (c)

F (ϕ)

OO

In particular, following the arrow idc from the bottom left to the top right in two ways gives

F (ϕ)(Φc(idc)) = Φd(ϕ ◦ idc) = Φd(ϕ).

Then by the definitions of ΞF,c and Ξ−1
F,c and by the naturality of Φ we have

(Ξ−1
F,c ◦ ΞF,c)(Φ)d(ϕ) = Ξ−1

F,c(ΞF,c(Φ))d(ϕ)

= Ξ−1
F,c(Φc(idc))d(ϕ) definition of ΞF,c

= F (ϕ)(Φc(idc)) definition of Ξ−1
F,c

= Φd(ϕ), naturality of Φ

as desired.

This completes the proof of Yoneda’s Lemma. ///

