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From Set-Categories to Ab-Categories

If C is a category, recall that for each ordered pair of objects x, y P C we have a set of arrows

HomCpx, yq

and for each ordered triple of objectx x, y, z P C we have a composition function

˝ : HomCpy, zq ˆ HomCpx, yq Ñ HomCpx, zq.

In this chapter we will consider categories in which the Hom sets and the composition function
have extra structure. The prototype for this behavior is the category of abelian groups.

First consider the category Grp of all groups and homomorphisms. Given G,H P Grp we define
their direct product GˆH P Grp as the Cartesian product set together with the componentwise
group operation:

pg1, h1qpg2, h2q :“ pg1g2, h1h2q.

The group G ˆ H together with the canonical projections πGpg, hq :“ g and πHpg, hq :“ h
satisfies the universal property of the categorical product in Grp:

G

K

ϕG
//

ϕH //

D! // GˆH

πG

;;

πH ##
H

That is, given a group K P Grp and two homomorphisms ϕG : K Ñ G and ϕH : K Ñ H,
there exists a unique homomorphism K Ñ GˆH making the diagram commute.

Exercise: Check this.

Now let Ab Ď Grp denote the subcategory of abelian groups. This is a full subcategory in the
sense that for all abelian groups A,B P Ab we have

HomAbpA,Bq “ HomGrppA,Bq.

[That is, there is no such thing as an “abelian homomorphism” between abelian groups; we
just use the regular group homomorphisms.] Since the direct product of abelian groups is
again abelian, we conclude that the direct product also satisfies the universal property of the
categorical product in Ab. But now we give it a new name.



Definition of Direct Sum. Given abelian groups A,B P Ab we define their direct sum
A ‘ B P Ab as the Cartesian product set together with the componentwise group operation,
which we denote as addition:

pa1, b1q ` pa2, b2q :“ pa1 ` a2, b1 ` b2q.

///

This is the “abstract” or the “external” direct sum. It is related to the usual “internal” direct
sum as follows. Consider an abelian group A P Ab and two subgroups B1, B2 Ď A. Then we
have a group homomorphism

σ : B1 ‘B2 Ñ A

defined by σpb1, b2q :“ b1 ` b2. This homomorphism is an isomorphism if and only if it is
surjective (i.e., A “ B1 `B2) and injective (i.e., B1 XB2 “ t0Au).

Normally it would be sacrilegious to use an additive notation for the categorical product, but
the following theorem says that this is okay in the category of abelian groups.

The Coproduct in Ab. Consider two abelian groups A,B P Ab. Then the direct sum
A‘ B P Ab together with the canonical injections ιApaq :“ pa, 0Bq and ιB :“ p0A, bq satisfies
the universal property of the categorical coproduct in Ab. That is, given an abelian group
C P Ab and two homomorphisms ϕA : A Ñ A ‘ B and ϕB : B Ñ A ‘ B, there exists a
unique homomorphism A‘B Ñ C making the following diagram commute:

A ϕA

!!

ιA

##
A‘B

D! // C

B ϕB

>>

ιB

;;

Proof: Let ϕ̄ : A‘B Ñ C be some homomorphism making the diagram commute. Then for
all a P A and b P B we must have

ϕ̄pa, bq “ ϕ̄ppa, 0Bq ` p0A, bqq

“ ϕ̄pιApaq ` ιBpbqq

“ ϕ̄pιApaqq ` ϕ̄pιBpbqq

“ ϕApaq ` ϕBpbq.

Thus, ϕ̄pa, bq :“ ϕApaq ` ϕBpbq is the unique function making the diagram commute. The
only questions is whether this function ϕ̄ : A‘B Ñ C is a group homomorphism, and for this
we need the fact that C is abelian. For all pa1, b1q and pa2, b2q in A‘B we have

ϕ̄ppa1, b1q ` pa2, b2qq “ ϕ̄pa1 ` a2, b1 ` b2q

“ ϕApa1 ` a2q ` ϕBpb1 ` b2q

“ pϕApa1q ` ϕApa2qq ` pϕBpb1q ` ϕBpb2qq

!
“ pϕApa1q ` ϕBpb1qq ` pϕApa2q ` ϕBpb2qq

“ ϕ̄pa1, b1q ` ϕ̄pa2, b2q.

The commutativity of C was used in step “!”. ///



Now recall that the trivial group 0 P Ab is a zero object in the sense that for each group
A P Ab there exists a unique homomorphism AÑ 0 and a unique homomorphism 0 Ñ A. By
composing these homomorphisms for each pair of groups A,B P Ab we obtain a unique zero
homomorphism:

A

0AB

''
D!
// 0

D!
// B

Finally, one can check that the canonical projections πA : A‘ B Ñ A, πB : A‘ B Ñ B and
the canonical injections ιA : A Ñ A ‘ B, ιB : B Ñ A ‘ B satisfy the following commutative
diagram:

A

0AB

��

ιA

##

idA // A

A‘B

πB{{

πA

;;

B B
idB

oo
ιB

cc 0BA

OO

We summarize all this by saying that the direct sum is a categorical biproduct in Ab.

Addition of Homomorphisms in Ab. Let A,B P Ab and consider any two homomorphisms
ϕ1, ϕ2 : A Ñ B. We define the function ϕ1 ` ϕ2 : A Ñ B by “pointwise addition”: for all
a P A we set

pϕ1 ` ϕ2qpaq :“ ϕ1paq ` ϕ2paq.

The fact that B is an abelian group guarantees that this function ϕ1`ϕ2 : AÑ B is actually
a group homomorphism. ///

So what? Well, this tells us that the “Hom set” HomAbpA,Bq is more than just a set; it’s an
abelian group. The group operation is pointwise addition and the identity element is the zero
homomorphism 0AB P HomAbpA,Bq.

Exercise: Check this.

And not only are the Hom sets abelian groups, but the composition functions respect this
structure.

Biadditivity of Composition in Ab. Let A,B,C P Ab and consider four homomorphisms:
ϕ1, ϕ2 P HomAbpB,Cq and ϕ3, ϕ4 P HomAbpA,Bq. Then we have

‚ ϕ1 ˝ pϕ3 ` ϕ4q “ pϕ1 ˝ ϕ3q ` pϕ1 ˝ ϕ4q

‚ pϕ1 ` ϕ2q ˝ ϕ3 “ pϕ1 ˝ ϕ3q ` pϕ2 ˝ ϕ3q



Proof: We will just prove the first statement. For all a P A we have

pϕ1 ˝ pϕ3 ` ϕ4qqpaq “ ϕ1ppϕ3 ` ϕ4qpaqq

“ ϕ1pϕ3paq ` ϕ4paqq

“ ϕ1pϕ3paqq ` ϕ1pϕ4paqq

“ pϕ1 ˝ ϕ3qpaq ` pϕ1 ˝ ϕ4qpaq

“ rpϕ1 ˝ ϕ3q ` pϕ1 ˝ ϕ4qspaq.

///

We will capture these two theorems with a definition.

Definition of Ab-Category. Let C be a category. We will call this an Ab-category (also
known as an Ab-enriched category) if for each pair of objects x, y P C the Hom set HomCpx, yq
is an abelian group, and for each triple of objects x, y, z P C the composition function

˝ : HomCpy, zq ˆ HomCpx, yq Ñ HomCpx, yq

is biadditive, i.e., if its restriction to each factor is a group homomorphism. ///

Technical Remark: Observe that a biadditive function of abelian groups AˆB Ñ C is
not the same as a group homomorphism A ‘ B Ñ C. For example, the multiplication
function Zˆ ZÑ Z is biadditive because pa` bqc “ ac` bc and apb` cq “ ab` ac, but it is
not a homomorphism because pa` bqpc` dq ‰ ac` bd ! However, we will see later that there
does exist a (necessarily unique) abelian group AbB P Ab with the property that biadditive
functions Aˆ B Ñ C are “the same as” homomorphisms Ab B Ñ C. For this reason, most
sources define Ab-categories by requiring that composition is a group homomorphim:

˝ : HomCpy, zq b HomCpx, yq Ñ HomCpx, zq.

More generally, one can define V-categories (in which the Hom sets are objects in V) as long
as the category V has a suitable operation b : V ˆ V Ñ V. In this language, our usual
“categories” become “Set-categories”, with b given by the Cartesian product of sets. ///

Just as Set is the prototypical Set-category, Ab is the prototypical Ab-category.

A Ringoid With One Object

In this brief section we examine an important and surprising special case of Ab-categories.

Given any category C and any object x P C we define the set of endomorphisms of x:

EndCpxq :“ HomCpx, xq.

Note that we can think of EndCpxq Ď C as the full subcategory induced by the single ob-
ject x. But recall that a category with one object is called a monoid. We conclude that
pEndCpxq, ˝, idxq is a monoid with the associative operation ˝ and the identity element idx.

Now if A P Ab is an abelian group then the set of endomorphisms EndAbpAq has two different
algebraic structures. As in any category, this set is a monoid:

pEndAbpAq, ˝, idAq.



Since Ab is an Ab-category there is also an abelian group structure:

pEndAbpAq,`, 0Aq.

Furthermore, the “biaddivity of composition” says precisely that the operation “˝” distributes
over the operation “`”. In other words, we have a ring of endomorphisms:

pEndAbpAq,`, ˝, 0A, idAq.

But this is surprising because we never officially defined rings! Somehow the “ring” concept
just emerged naturally from the category of abelian groups. Let me emphasize this:

The Endomorphisms of an Abelian Group Form a Ring.

In fact we will take this as the motivating example of a ring. And if you look carefully you
will see that the abstract definition of rings is hiding above in plain sight.

Definition of Ringoid/Ring.

‚ A ringoid is a small Ab-category.

‚ A ring is a ringoid with one object.

///

Exercise: Verify that this definition of ring is equivalent to the one you know.

I’m not trying to be funny here; I actually think that this is the correct definition of rings. In
the next section we will compare the abstract definition of a ring (a ringoid with one object)
to the motivating example of a ring (endomorphisms of an abelian group).

From M-Sets to R-Modules

Now that we have defined rings, we want to define modules. The correct way to do this is to
begin with the concept of a monoid acting on a group.

Recall that we can think of any abstract monoid pM, ˝, idq as a category with one object. To
be formal we will denote this category by BM and refer to its single object as “˚”. Thus we
have ObjpBMq “ t˚u and ArrpBMq “ EndBM p˚q “ M . Now consider any functor from BM
into the category of sets:

F : BM Ñ Set.

This functor consists of a family of functions:

‚ A function on objects, which assigns to the object ˚ P BM a set F p˚q P Set,

‚ A function on arrows, which sends endomorphisms of ˚ to endomorphisms of F p˚q:

F : EndBM p˚q Ñ EndSetpF p˚qq.

If we define X :“ F p˚q then this is just a function F : M Ñ EndSetpXq, which must satisfy
the two axioms for functors:

(i) Identity: F pidq “ F pid˚q “ idF p˚q “ idX ,

(ii) Composition: For all α, β PM we have F pα ˝ βq “ F pαq ˝ F pβq.



If we abuse notation by writing the function F pαq : X Ñ X simply as α : X Ñ X then you
will recognize these two axioms as the definition of a monoid acting on a set M ýX:

(i) For id PM and all x P X we have idpxq “ x,

(ii) For all α, β PM and all x P X we have pα ˝ βqpxq “ αpβpxqq.

In summary, if M is a monoid then a functor F : BM Ñ Set is equivalent to a specific set
X P Set carrying a specific action M ýX. We refer to the pair M ýX as an M -set and we
refer to the functor category M -Set :“ SetBM as the category of M -sets.

Recall that the arrows in SetBM are the natural transformations. Given two functors F1, F2 :
BM Ñ Set corresponding to monoid actions M ýX1 and M ýX2, one can check that
a natural transformation Φ : F1 ñ F2 is the same as set function Φ : X1 Ñ X2 with the
property that for all α PM we have a commutative square:

X1
Φ // X2

X1

α

OO

Φ
// X2

α

OO

Exercise: Check this.

In other words, a homomorphism of M -sets is a function Φ satisfying Φα “ αΦ for all α PM .
Physicists usually refer to such functions Φ as intertwiners.

Recall that a small category in which all arrows are isomorphisms is called a groupoid. If
G is a group (thought of as a monoid) then the category BG is the corresponding groupoid
with one object. At this point some people will joke that categories should really be called
“monoid-oids”.

Now let pR,`, ˝, 0, idq be abstract ring. That is, suppose that pR, ˝, idq is a monoid, pR,`, 0q is
an abelian group, and “˝” distributes over “`”. As above, we can encode the monoid pR, ˝, idq
as a category BR with one object. Then to incorporate the abelian group structure we must
give BR the structure of Ab-category (or ringoid). The map R ÞÑ BR thus assigns to each
abstract ring R the corresponding ringoid BR with one object.

In this case, functors F : BRÑ Set correspond to actions of the underlying monoid pR, ˝, idq;
they do not see the full ring structure of R. To capture the full structure of R we should
instead consider “Ab-functors” from BR into some Ab-category.

Definition of Ab-Functors. Let C and D be Ab-categories and let F : C Ñ D be a functor.
We say that F is an Ab-functor if for each pair of objects c1, c2 P C the function

F : HomCpc1, c2q Ñ HomDpF pc1q, F pc2qq

is a group homomorphism. ///

[Remark: The old functors can be called Set-functors.]



Now we are ready to define modules.

Definition of R-Modules. Let R be an abstract ring and let BR be the corresponding
Ab-category (ringoid) with one object. We think of the opposite category BRop as the ring R
with the “order of multiplication” reversed. Now we define a left R-module as an Ab-functor

F : BRÑ Ab,

and we define a right R-module as an Ab-functor

F : BRop Ñ Ab.

We let R-Mod Ď AbBR and Mod-R Ď AbBR
op

denote the full subcategories whose objects are
Ab-functors and whose arrows are (usual) natural transformations. ///

[Remark: We don’t need to define “Ab-natural transformations” today because the categories
BR and BRop have only one object.]

Exercise: Verify that this definition is equivalent to the one you know.

Thus R-modules are just the “Ab-version” of groups/monoids acting on sets. Let’s discuss
some philosophy.

The Philosophy of Representation Theory. IfG is a group/monoid, then we should study
it by considering various Set-functors F : BGÑ C into various Set-categories C. Such a functor
is called a representation of G in C. The prototype is the category of sets C “ Set. Analogously,
if R is a ring, then we should study it by considering various Ab-functors F : BR Ñ A into
various Ab-categories A. Such a functor is called a representation of R in A. The prototype
is the category of abelian groups A “ Ab.

Later we will define “representations of algebras”, which simultaneously generalizes these two
points of view.

Monic and Epic Arrows

If we want to study a ring R through its categories of representations then we need to know
what kind of categories these are. It is a general phenomenon that the functor category DC

shares many properties with its target category D. Thus, the category of G-sets SetBG is
similar to the category of sets Set (both are examples of “toposes”, which we will not define in

this class). Analogously, the category of R-modules R-Mod Ď AbBR is similar to the category
of abelian groups Ab. Both R-Mod and Ab are examples of “abelian categories”; our next goal
is to define this concept.

Of course, we already know that Ab is an Ab-category. But this is a weak structure that
does not capture Ab very well. It turns out that the other key properties of Ab have to do
with “monic” and “epic” arrows. These are the categorical generalizations of “injective” and
“surjective” functions.



Definition of Monic and Epic Arrows. Let C be a category. We say that an arrow
ι P ArrpCq is monic if it is left cancellable. That is, if for all α, β P ArrpCq such that ι ˝ α
and ι ˝ β are defined we have

ι ˝ α “ ι ˝ β ðñ α “ β.

More specifically we say that ι P ArrpCq is split monic if it has a left inverse σ P ArrpCq such
that σ ˝ ι “ id.

Dually, we say that π P ArrpCq is epic if it is right cancellable. That is, if for all α, β P ArrpCq
such that α ˝ π and β ˝ π are defined we have

α ˝ π “ β ˝ π ðñ α “ β.

More specifically we say that π P ArrpCq is split epic if it has a right inverse ρ P ArrpCq such
that π ˝ ρ “ id. ///

[A guide to notation: The letters ι, σ, π and ρ stand for “injection”, “section”, “projection”
and “retraction”, respectively.]

Motivating Example. Let ϕ : X Ñ Y be an arrow in the category of sets. Then

ϕ is monic ðñ ϕ is an injective function,

ϕ is epic ðñ ϕ is a surjective function.

Proof: Consider two sets X,Y P Set and let ι : X Ñ Y be an injective function. To show that
ι is monic consider any two functions α, β : Z Ñ X such that ι ˝α “ ι ˝ β. Then for all x P X
we have ιpαpxqq “ ιpβpxqq, which since ι is injective implies that αpxq “ βpxq. Since this is
true for all x P X we conclude that α “ β. Conversely, let ι : X Ñ Y be a monic function.
To show that ι is injective consider any elements x1, x2 P X such that ιpx1q “ ιpx2q. Now let
t˚u be a set with one element and define the functions α1, α2 : t˚u Ñ X by α1p˚q :“ x1 and
α2p˚q :“ x2. Then we have ι ˝ α1 “ ι ˝ α2, which since ι is monic implies that α1 “ α2. We
conclude that x1 “ α1p˚q “ α2p˚q “ x2.

Now consider two sets X,Y P Set and let π : X Ñ Y be a surjective function. To show that
π is epic consider any functions α, β : Y Ñ Z such that α ˝ π “ β ˝ π. Then for any element
y P Y , surjectivity of π implies that there exists an element with πpxq “ y and hence

αpyq “ αpπpxqq “ pα ˝ πqpxq “ pβ ˝ πqpxq “ βpπpxqq “ βpyq.

Since this is true for all y P Y we conclude that α “ β. Conversely, let π : X Ñ Y be an epic
function. To prove that π is surjective consider a set Ω “ t0, 1u with two elements. Now let
α1 : Y Ñ Ω be the constant function defined by α1pyq :“ 1 for all y P Y , and let α2 : Y Ñ Ω
be the “characteristic function of the image”:

α2pyq :“

#

1 if y P imπ

0 if y R imπ
.

We clearly have α1pπpxqq “ 1 “ α2pπpxqq for all x P X and hence α1 ˝ π “ α2 ˝ π. Then since
π is epic this implies that α1 “ α2 and hence imπ “ Y . We conclude that π is surjective. ///

[Remark: In the category of sets, every monic arrow ι : X Ñ Y splits. To see this, define a
section σ : Y Ñ X by sending each y P im ι to its unique preimage and sending each y R im ι



to some arbitrary element of X (assume that X ‰ H). The statement that “every epic arrow
in Set splits” is equivalent to the Axiom of Choice.]

The situation is not so straightforward in other concrete categories.

Exercise: Let C Ď Set be a concrete category and consider any arrow ϕ : X Ñ Y in C.

(a) Copy the proof from above to show that

ϕ is monic ùñ ϕ is injective,

ϕ is epic ùñ ϕ is surjective.

(b) Let U : C Ñ Set be the “forgetful functor” that assigns to each object X P C its
underlying set UpXq P Set, and assume that U has a left adjoint “free functor” F :
SetÑ C. Use the “free object” F pt˚uq P C to prove that

ϕ is injective ùñ ϕ is monic.

(c) It is quite common for epic arrows to be non-surjective. For example, prove that the
inclusion ring homomorphism ι : ZÑ Q is epic even though it is clearly not surjective.
The proof above fails because the category of rings doesn’t have a “subobject classifier”
such as Ω “ t0, 1u.

///

In categories (such as the category of rings) where epic arrows are not just surjective functions,
we are forced to conclude that the concept of “surjective function” is not so natural.

My reason for introducing monic and epic arrows at this time is to discuss their relationship to
kernels and cokernels in the category of abelian groups. The concepts of kernel and cokernel
require a zero object, but they have a slight generalization that can be defined in any category.

Definition of Equalizer/Coequalizer. Let C be any category and consider two parallel
arrows α, β : xÑ y. Let I be a category with two objects ObjpIq “ t1, 2u and two non-identity
arrows HomIp1, 2q “ tδ, εu, and define a (non-commutative) diagram D : I Ñ C by

Dp1q “ x, Dp2q “ y, ,Dpδq “ α, Dpεq “ β.

The limit of D, if it exists, is called the equalizer of α and β and the colimit of D, if it exists,
is called the coequalizer of α and β.

More explicitly, the equalizer is a pair peqpα, βq, ιq consisting of an object eqpα, βq P C and an
arrow ι : eqpα, βq Ñ x satisfying α˝ ι “ β ˝ ι. Furthermore, if µ : z Ñ x is any arrow satisfying
α ˝ µ “ β ˝ µ then there exists a unique arrow z Ñ eqpα, βq making the following diagram
commute:

x
α

""
z

D! //

µ //

µ //

eqpα, βq

ι

99

ι
%%

y

x
β

<<



Dually, the cokernel is a pair pcokerpα, βq, πq making the following diagram commute:

y

π

&&

µ

%%
x

α

<<

β
""

coeqpα, βq
D! // z

y

π

88

µ

99

///

Motivating Example. Let α, β : X Ñ Y be functions between sets, and consider the subset
of X on which α and β agree:

E :“ tx P X : αpxq “ βpxqu Ď X.

I claim that the inclusion function ι : E Ñ X is the category-theoretic equalizer. Indeed, if
µ : Z Ñ X is any function satisfying α ˝ µ “ β ˝ µ then we want to show that there exists a
unique function µ̄ : Z Ñ E making the following diagram commute:

X
α

  
Z

µ̄ //

µ //

µ //

E

ι
>>

ι   

Y

X
β

>>

That is, for each z P Z we want to show that there exists a unique element µ̄pzq P E with the
property that ιpµ̄pzqq “ µpzq. And this is certainly true because ι is injective.

The set-theoretic coequalizer is harder to construct. Here’s a sketch: Equivalence relations
on the set Y are the same as partitions. Let ΠpY q be the collection of all partitions of Y .
One can show that this is a complete lattice with ^ given by the coarsest common refinement
and _ given by the finest common coarsening. Now let „Ď Y ˆ Y be the coarsest common
refinement of all partitions on Y with the property that αpxq „ βpxq for all x P X. Then the
category-theoretic coequalizer is given by the quotient function π : Y Ñ pY {„q sending each
element y P Y to its equivalence class rys P pY {„q. (Details omitted.) ///

In the above example we see that every equalizer in Set is injective and every coequalizer in
Set is surjective. This phenomenon generalizes to arbitrary categories as follows.

Equalizers are Monic, Coequalizers are Epic. Consider two parallel arrows α, β : xÑ y
in a category C. Then the equalizer ι : eqpα, βq Ñ x, if it exists, is a monic arrow. Dually, the
coequalizer π : y Ñ coeqpα, βq, if it exists, is an epic arrow.

Proof: Let ι : eqpα, βq Ñ x be the equalizer of the arrows α, β : xÑ y in C. To prove that ι
is monic, suppose that we have ι ˝ ϕ “ ι ˝ ψ for some arrows ϕ,ψ : z Ñ eqpα, βq. In this case
we want to show that ϕ “ ψ.



So let µ : z Ñ x be defined as the common arrow µ :“ ι ˝ ϕ “ ι ˝ ψ so that the following
diagram commutes:

x
α

��
z

ϕ
''

ψ

77
//

µ
**

µ
44

eqpα, βq

ι

;;

ι
##

y

x
β

@@

Finally, from the uniqueness of the dotted arrow (which is the definition of the equalizer) we
conclude that ϕ “ ψ. The proof for coequalizers is similar. ///

Another name for the equalizer/coequalizer is the difference kernel/cokernel. Why?

Definition of Kernel/Cokernel. Let C be a category with a zero object 0 P C, so that
between any ordered pair of objects x, y P C there is a zero arrow 0xy : x Ñ y. Let I be a
category with two objects ObjpIq “ t1, 2u and two non-identity arrows HomIp1, 2q “ tδ, εu.
Finally, let ϕ : xÑ y be any arrow in C and consider the diagram D : I Ñ C defined by

Dp1q “ x, Dp2q “ y, ,Dpδq “ ϕ, Dpεq “ 0xy.

The limit of D, if it exists, is called the kernel of ϕ and the colimit of D, if it exists, is called
the cokernel of ϕ.

More explicitly, the kernel of ϕ is a pair pkerϕ, ιq where ι : kerϕ Ñ x is an arrow satisfying
ϕ ˝ ι “ 0kerϕ,y, and if µ : z Ñ x is any arrow in C satisfying ϕ ˝ µ “ 0zy then there exists a
unique arrow z Ñ kerϕ making the following diagram commute:

z

D!

��

µ

""

0zy

��
x

ϕ // y

kerϕ

ι

==

0kerϕ,y

AA

Dually, the cokernel of ϕ is a pair pcokerϕ, πq making the following diagram commute:

cokerϕ

D!

��

x
ϕ //

0x,cokerϕ 11

0xz //

y

π
;;

µ
##
z

///

Consider two groups G,H P Grp and a group homomorphism ϕ : G Ñ H. You verified
on a previous exercise that the kernel of ϕ exists in Grp and it is given by the inclusion
homomorphism from the set-theoretic kernel ι : kerϕÑ G. If H is abelian then you verified
that the cokernel of ϕ also exists and is given by the quotient homomorphism π : H Ñ H{imϕ,



where imϕ Ď H is the set-theoretic image. If H is not abelian then the image imϕ Ď H might
not be a normal subgroup. In this case the cokernel is the quotient by the “normal closure”
of the image, π : H Ñ H{ximϕy (i.e., the smallest normal subgroup containing imϕ).

Note that the inclusion homomorphism ι : kerϕÑ G is injective and the quotient homomor-
phism π : H Ñ H{ximϕy is surjective. This phenomenon generalizes to arbitrary categories.

Kernels are Monic, Cokernels are Epic. Let C be any category with a zero object 0 P C
and let ϕ : x Ñ y be any arrow in C. Then the kernel ι : kerϕ Ñ x, if it exists, is a monic
arrow and the cokernel π : y Ñ cokerϕ, if it exists, is an epic arrow.

Proof: Let ι : kerϕÑ x be the kernel and consider any two arrows α, β : z Ñ kerϕ such that
µ :“ ι ˝ α “ ι ˝ β. Since ϕ ˝ ι “ 0kerϕ,y we find that

ϕ ˝ µ “ ϕ ˝ pι ˝ αq “ pϕ ˝ ιq ˝ α “ 0kerϕ,y ˝ α.

Then it follows from the commutative diagram

z

D!
&&

0kerϕ,y˝α

%%α // kerϕ

D!
��

0kerϕ,y // y

0
D!
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that ϕ ˝ µ “ 0kerϕ,y ˝ α “ 0zy. Putting all of this together produces a commutative diagram:

z

��

α

��

β

��

µ

""

0zy

��
x

ϕ // y

kerϕ

ι

==

0kerϕ,y

AA

Finally, from the uniqueness of the dotted arrow (which is the definition of the kernel) we
conclude that α “ β, hence ι is monic. The proof for cokernels is similar. ///
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