6.1. Let $\mathcal{B}, \mathcal{C}, \mathcal{D}$ be categories and consider three bifunctors

$$F_1, F_2, F_3: \mathcal{B} \times \mathcal{C} \to \mathcal{D}.$$

If $\Phi : F_1 \xrightarrow{\sim} F_2$ and $\Psi : F_2 \xrightarrow{\sim} F_3$ are natural isomorphisms of bifunctors, prove that the composition $\Psi \circ \Phi$ is a natural isomorphism $F_1 \cong F_3$.

6.2. Consider two functors $F_1, F_2 : \mathcal{C} \to \mathcal{D}$ and suppose that we have a natural transformation $\Phi: F_1 \Rightarrow F_2.$

If each of the arrows $\Phi_c: F_1(c) \to F_2(c)$ is invertible, prove that the inverses $\Phi_c^{-1}: F_2(c) \to F_1(c)$ assemble into a natural transformation $\Phi^{-1}: F_2 \Rightarrow F_1$, and hence we have a natural isomorphism $F_1 \cong F_2$.

6.3. Fix a small category \mathcal{I} and recall that for any object $c \in \mathcal{C}$ we have a *constant diagram* $c^{\mathcal{I}}: \mathcal{I} \to \mathcal{C}$ that sends each object in \mathcal{I} to c and each arrow in \mathcal{I} to id_c . Prove that:

- (a) For any category \mathcal{C} the mapping $c \mapsto c^{\mathcal{I}}$ defines a functor $(-)^{\mathcal{I}} : \mathcal{C} \to \mathcal{C}^{\mathcal{I}}$ which we call the *diagonal functor*.
- (b) For any functor $F : \mathcal{C} \to \mathcal{D}$ the mapping $D \mapsto F(D) := F \circ D$ defines a functor $F : \mathcal{C}^{\mathcal{I}} \to \mathcal{D}^{\mathcal{I}}$ with the property that $F(-)^{\mathcal{I}} = F((-)^{\mathcal{I}})$.
- (c) Prove that any adjunction $L: \mathcal{C} \rightleftharpoons \mathcal{D}: R$ determines a natural isomorphism

$$\operatorname{Hom}_{\mathcal{C}^{\mathcal{I}}}((-)^{\mathcal{I}}, R(-)) \cong \operatorname{Hom}_{\mathcal{D}^{\mathcal{I}}}(L((-)^{\mathcal{I}}), -)$$

of bifunctors $\mathcal{C}^{\mathsf{op}} \times \mathcal{C}^{\mathcal{I}} \to \mathsf{Set}$.