Noncommutative Algebra Exercises 6

6.1. Let $\mathcal{B}, \mathcal{C}, \mathcal{D}$ be categories and consider three bifunctors

$$
F_{1}, F_{2}, F_{3}: \mathcal{B} \times \mathcal{C} \rightarrow \mathcal{D}
$$

If $\Phi: F_{1} \stackrel{\sim}{\Longrightarrow} F_{2}$ and $\Psi: F_{2} \xlongequal{\Longrightarrow} F_{3}$ are natural isomorphisms of bifunctors, prove that the composition $\Psi \circ \Phi$ is a natural isomorphism $F_{1} \cong F_{3}$.
6.2. Consider two functors $F_{1}, F_{2}: \mathcal{C} \rightarrow \mathcal{D}$ and suppose that we have a natural transformation

$$
\Phi: F_{1} \Rightarrow F_{2}
$$

If each of the arrows $\Phi_{c}: F_{1}(c) \rightarrow F_{2}(c)$ is invertible, prove that the inverses $\Phi_{c}^{-1}: F_{2}(c) \rightarrow$ $F_{1}(c)$ assemble into a natural transformation $\Phi^{-1}: F_{2} \Rightarrow F_{1}$, and hence we have a natural isomorphism $F_{1} \cong F_{2}$.
6.3. Fix a small category \mathcal{I} and recall that for any object $c \in \mathcal{C}$ we have a constant diagram $c^{\mathcal{I}}: \mathcal{I} \rightarrow \mathcal{C}$ that sends each object in \mathcal{I} to c and each arrow in \mathcal{I} to id ${ }_{c}$. Prove that:
(a) For any category \mathcal{C} the mapping $c \mapsto c^{\mathcal{I}}$ defines a functor $(-)^{\mathcal{I}}: \mathcal{C} \rightarrow \mathcal{C}^{\mathcal{I}}$ which we call the diagonal functor.
(b) For any functor $F: \mathcal{C} \rightarrow \mathcal{D}$ the mapping $D \mapsto F(D):=F \circ D$ defines a functor $F: \mathcal{C}^{\mathcal{I}} \rightarrow \mathcal{D}^{\mathcal{I}}$ with the property that $F(-)^{\mathcal{I}}=F\left((-)^{\mathcal{I}}\right)$.
(c) Prove that any adjunction $L: \mathcal{C} \rightleftarrows \mathcal{D}: R$ determines a natural isomorphism

$$
\operatorname{Hom}_{\mathcal{C}^{\mathcal{I}}}\left((-)^{\mathcal{I}}, R(-)\right) \cong \operatorname{Hom}_{\mathcal{D}^{\mathcal{I}}}\left(L\left((-)^{\mathcal{I}}\right),-\right)
$$

of bifunctors $\mathcal{C}^{\mathrm{op}} \times \mathcal{C}^{\mathcal{I}} \rightarrow$ Set.

