- **4.1.** Consider the poset categories of integers (\mathbb{Z}, \leq) and real numbers (\mathbb{R}, \leq) and let $\iota : \mathbb{Z} \to \mathbb{R}$ be the inclusion functor. Prove that ι has both a left and a right adjoint functor. What does the RAPL theorem say in this case?
- **4.2.** Given $X, Y \in \mathsf{Set}$ we will write $Y^X := \mathsf{Hom}_{\mathsf{Set}}(X, Y)$ for the set of functions $X \to Y$.
 - (a) Given $X \in \mathsf{Set}$, prove that taking the Cartesian product with X defines a functor $(-) \times X : \mathsf{Set} \to \mathsf{Set}$.
 - (b) Prove that the functor $(-) \times X$ is left adjoint to the Hom functor $(-)^X : \mathsf{Set} \to \mathsf{Set}$.
 - (c) What does the RAPL theorem tell you in this case?
- **4.3.** Given abelian groups $A, B \in \mathsf{Ab}$, recall that the Hom set $\mathsf{Hom}_{\mathsf{Ab}}(A, B)$ has the structure of an abelian group with addition defined pointwise:

$$(\varphi_1 + \varphi_2)(a) := \varphi_1(a) + \varphi_2(a)$$
 for all $a \in A$.

- (a) Given $A \in \mathsf{Ab}$ prove that we have a Hom functor $H^A := \mathsf{Hom}_{\mathsf{Ab}}(A, -) : \mathsf{Ab} \to \mathsf{Ab}$.
- (b) Given $A \in \mathsf{Ab}$ prove that the direct sum with A defines a functor $(-) \oplus A : \mathsf{Ab} \to \mathsf{Ab}$, but this functor is **not** left adjoint to H^A . [Hint: It doesn't preserve colimits.]
- (c) Nevertheless, I claim that the functor H^A does have a left adjoint:

$$(-)\otimes A:\mathsf{Ab}\rightleftarrows\mathsf{Ab}:H^A.$$

Without knowing the definition of \otimes , use the general properties of adjunctions to learn as much as you can.