1.1. Let \mathcal{C} be a category. Prove that \mathcal{C} -isomorphism is an equivalence relation on $\mathsf{Obj}(\mathcal{C})$.

1.2. Explain how a poset is the same thing as a small category \mathcal{P} in which for all objects $x, y \in \mathcal{P}$ we have $|\mathsf{Hom}_{\mathcal{P}}(x, y)| \in \{0, 1\}$.

1.3. Let \mathcal{P} be a poset. Show that if \mathcal{P} contains arbitrary meets/joins, then it also contains arbitrary joins/meets.

1.4. Prove that a limit/colimit in a category is **unique**, in an appropriate sense.

1.5. Kernel/Cokernel. Let C be a category with a trivial object $0 \in C$, i.e., an object that is both initial and final. Then for all objects $x, y \in C$ we define the *trivial arrow* $0 : x \to y$ so the following diagram commutes:

$$x \xrightarrow[\exists!]{0} 0 \xrightarrow[\exists!]{0} y$$

Now let \mathcal{I} be the category with two objects $\{1, 2\}$ and four arrows as in the following picture:

$$\operatorname{id}_1 \bigcap 1 \underbrace{\overset{\alpha}{\underset{\beta}{\longrightarrow}}}_{\beta} 2 \overset{\prime}{\bigcirc} \operatorname{id}_2$$

For any arrow $\varphi : x \to y$ in \mathcal{C} consider the diagram $D : \mathcal{I} \to \mathcal{C}$ defined by D(1) := x, D(2) := y, $D(\alpha) = \varphi$, and $D(\beta) = 0$. If the limit of D exists then we call it the *kernel of* φ and if the colimit exists we call it the *cokernel of* φ .

- Draw a picture summarizing the universal property of the kernel.
- Do the same for the cokernel.
- Prove that kernels exist in the category of groups. [Hint: Let $\varphi : G \to H$ be a homomorphism of groups and consider the inclusion homomorphism $\iota : \ker \varphi \to G$ from the set-theoretic kernel.]
- Prove that cokernels exist in the category of **abelian** groups. [Hint: Let $\varphi : A \to B$ be a group homomorphism and consider the quotient homomorphism $\pi : H \to H/\text{im }\varphi$ by the set-theoretic image.]