Math 761 Fall 2015
Midterm Exam Drew Armstrong

Problem 1. Categories. Let C be a category.

(a) Define what it means for two objects X,Y € C to be isomorphic.

We say that X,Y € C are isomorphic if there exist morphisms o : X — Y and
B:Y — X such that o f =idy and S o« =idy.

(b) Define initial objects in C.
We say that X € C is an initial object if for all objects Y € C we have |[Hom¢(X,Y)| = 1.
(c) Prove that any two initial objects X,Y € C are isomorphic.

Let X,Y € C be initial objects. By definition there exist (unique) morphisms o : X —
Y and §: Y — X. Now consider the morphism ao5: Y — Y. Since |Hom¢(Y,Y)| =1
we must have a o § = idy. Similarly, since |[Hom¢(X, X)| = 1 we have f o a = idy.
We conclude that X and Y are isomorphic.

Problem 2. Quotients. Let ~ be an equivalence relation on a set S.

(a) Define what it means for 7 : S — @ to be a ~-quotient map.

We say that a function 7 : S — @ is a ~-quotient map if
e For all z,y € S we have (z ~ y) = (7(z) = 7(y)).
e Given a function ¢ : S — T satisfying (z ~ y) = (p(z) = ¢(y)) for all z,y €
S, there exists a unique function ¢ : @ — T such that the following diagram
commutes:

S

/\

Q

(b) Prove that a ~-quotient map exists and say in what sense it is unique.

Given = € S we define the equivalence class [z] := {y € S : © ~ y}. Now consider
the set of equivalence classes S/~ := {[z] : € S}. Since (x ~ y) = ([z] = [y]), the
prescription 7(z) := [z] determines a well-defined function 7 : § — S/~ satisfying the
first property of a ~-quotient map.

To establish the second property, let ¢ : S — T be any function satisfying (x ~ y) =
(p(x) = ¢(y)). If there exists a function ¢ : S/~ — T satisfying the commutative
diagram it must satisfy the prescription @([z]) = ¢(z) for all x € S. Then since
([x] = [y])) = (z ~ y) = (¢(x) = ¢(y)), this prescription does define a function. ///



A quotient map is unique in the following sense: Let 1 : S — @1 and w2 : S — Q2 be
two ~-quotient maps. Then there exists a unique bijection ()1 «— ()2 such that the

following diagram commutes:

Q1 <=— Q2

The uniqueness follows from Problem 1(c).

Problem 3. First Isomorphism Theorem. Let N <G be a normal subgroup.

(a)

Define the universal property of a group quotient 7 : G — G/N and say in what sense
a quotient is unique.

If o : G — G is any group homomorphism such that N C ker, then there ex-
ists a unique group homomorphism @ : G/N — G’ such that the following diagram

commutes:

G/N ——¢

If p: G — @ is any other “N —quotlent” satisfying this universal property then there
exists a unique group isomorphism G//N <— @Q such that the following diagram com-

mutes:
G
v N

G/N <~ Q

Now let ¢ : G — G be a group homomorphism. Use the universal property from
part (a) to prove that G/kerp ~ imp. [Hint: You can assume that the quotient
m: G — G/ ker ¢ from part (a) exists.]

Since ker ¢ <G we have the standard quotient map 7 : G — G/ ker ¢. I claim that the
homomorphism ¢ : G — im ¢ is another “ker ¢-quotient” map. Indeed, if p : G — G’ is
any group homomorphism such that ker ¢ C ker p then any homomorphism p : im ¢ —

Q such that

1mg04>Q

must satisfy the prescription p(p(g)) = p(g) for all g € G. Certainly this p will be a
homomorphism if it is well-defined, and it is well-defined because for all g,h € G we
have

(p(9) = @(h)) = (gh™" € kerp) = (gh™" € kerp) = (p(g) = p(h)).

Now the isomorphism G/ ker ¢ ~ im ¢ follows from the uniqueness of quotients. ///



Problem 4. Group Products. Consider a group G with subgroups H, K C G.

(a) Prove that HK := {hk : h € H,k € K} is a subgroup of G if and only if HK = KH.

First assume that we have HK = K H. To show that H K is a subgroup consider any
two elements hikq, hoke € HK. Since klkglhz_l € KH C HK, there exist h € H and
k € K such that k‘lk;lhgl = hk. Then we have

(hik1)(hake) ™ = hy(kiky 'hy') = hihk € HK,

as desired.

Conversely, assume that HK C G is a subgroup. To prove that HK = KH, first
consider an element hk € HK. Since HK is a group there exists 'k’ € HK such that
hkh'k' = 1, hence hk = (k')~1(h/)~! € KH as desired. Next, consider any element
kh € KH. Since k = 1k € HK and h = hl € HK and since HK is a subgroup we
obtain kh € HK as desired. ///

(b) Prove that the multiplication map p : Hx K — HK is injective if and only if HNK = 1.

First assume that multiplication u : H x K — HK is injective and consider any
element g € H N K. Note that g € H and g~! € K so we can apply multiplication to
get 1u(g,971) = gg~! = 1. But we also have u(1,1) = 1, so injectivity of u implies that
(1,1) = (9,97 1), hence g = 1.

Conversely, assume that H N K = 1 and suppose that p(hi,k1) = p(he, k2) (ie.,
hiki = heoks) for some (hi, ky), (ha, ko) € H x K. Then we have

hiki = hoky == hy'hi =kek;' € HN K.
Since H N K = 1 this implies that hy'hy = kek; ' = 1, hence hy = hg and ky = ko. Tt
follows that (hi, k1) = (ha, k2) and we conclude that y is injective. ///

Problem 5. Short Exact Sequences. Let K be a field and consider the following short
exact sequence of groups:

1 —5 SLy(K) -5 GL,(K) 25 KX — 1.

(a) Find an explicit section of the determinant map GL,(K) — K* and conclude that
QL (K) ~ SLp(K) % K.

Given a € K* we will define the matrix

Note that for all o, f € K* we have s(a)s(8) = s(af) and det(s(a)) = «, so that
s: K* — GL,(K) is a section. We conclude from the splitting lemma on HW3 that

GLn(K) ~ SLy(K) x K*.



(b) Now assume that K = R and n is odd. In this case find an explicit retraction of the
inclusion map SL,,(R) — GL,(R) and conclude that GL,(R) ~ SL,(R) x R*. [Hint:
Since n is odd, every o € R* has an obvious n-th root.]

First note that since n is odd, every a € R* has a unique n-th root in R*. This
defines a function /- : R* — R*. Then since the product of n-th roots is an n-th
root, uniqueness implies that {/- is a group homomorphism. [For a general field K
and general n this is not possible.]

Now given an invertible matrix A € GL,(R) we will define
1

r(A) = m .

Since A is an n X n matrix we have

1
det(r(A)) = det (”det(A) . A)

1 n
— (n det(A)) det(A)

1
= Joray 4ot

:]‘7

hence r(A) € SL,(R). Since {/- is a function we obtain a function r : GL,(R) —
SL,(R). Then since {/- is a homomorphism we have

1 1
"ArB) = e Vamm)
1 1
T Y/det(4)  {/det(B) 4B
- 1 . AB
V/det(A)det(B)
S Y
V/det(AB)
=r(AB),

for all A, B € GL,(R), hence r is a homomorphism. Finally, since r(i(4)) = r(A) = A
for all A € SL,,(R) we conclude that r is a retraction of the inclusion map i : SL,(R) —
GL,(R). It follows from the splitting lemma proved in class that

GL,(R) ~ SL,(R) x R*.

[Remark: This is a pretty special isomorphism. | asked MathOverflow for a topological or
geometric interpretation but | didn't get one yet.]



