
Math 761 Fall 2015
Midterm Exam Drew Armstrong

Problem 1. Categories. Let C be a category.

(a) Define what it means for two objects X,Y ∈ C to be isomorphic.

We say that X,Y ∈ C are isomorphic if there exist morphisms α : X → Y and
β : Y → X such that α ◦ β = idY and β ◦ α = idX .

(b) Define initial objects in C.

We say thatX ∈ C is an initial object if for all objects Y ∈ C we have |HomC(X,Y )| = 1.

(c) Prove that any two initial objects X,Y ∈ C are isomorphic.

Let X,Y ∈ C be initial objects. By definition there exist (unique) morphisms α : X →
Y and β : Y → X. Now consider the morphism α◦β : Y → Y . Since |HomC(Y, Y )| = 1
we must have α ◦ β = idY . Similarly, since |HomC(X,X)| = 1 we have β ◦ α = idX .
We conclude that X and Y are isomorphic.

Problem 2. Quotients. Let ∼ be an equivalence relation on a set S.

(a) Define what it means for π : S → Q to be a ∼-quotient map.

We say that a function π : S → Q is a ∼-quotient map if
• For all x, y ∈ S we have (x ∼ y)⇒ (π(x) = π(y)).
• Given a function ϕ : S → T satisfying (x ∼ y) ⇒ (ϕ(x) = ϕ(y)) for all x, y ∈
S, there exists a unique function ϕ̄ : Q → T such that the following diagram
commutes:

S

π

��

ϕ

��
Q

ϕ̄
// T

(b) Prove that a ∼-quotient map exists and say in what sense it is unique.

Given x ∈ S we define the equivalence class [x] := {y ∈ S : x ∼ y}. Now consider
the set of equivalence classes S/∼ := {[x] : x ∈ S}. Since (x ∼ y) ⇒ ([x] = [y]), the
prescription π(x) := [x] determines a well-defined function π : S → S/∼ satisfying the
first property of a ∼-quotient map.

To establish the second property, let ϕ : S → T be any function satisfying (x ∼ y) ⇒
(ϕ(x) = ϕ(y)). If there exists a function ϕ̄ : S/∼ → T satisfying the commutative
diagram it must satisfy the prescription ϕ̄([x]) = ϕ(x) for all x ∈ S. Then since
([x] = [y])⇒ (x ∼ y)⇒ (ϕ(x) = ϕ(y)), this prescription does define a function. ///



A quotient map is unique in the following sense: Let π1 : S → Q1 and π2 : S → Q2 be
two ∼-quotient maps. Then there exists a unique bijection Q1 ←→ Q2 such that the
following diagram commutes:

S

π1

��

π2

��
Q1
oo // Q2

The uniqueness follows from Problem 1(c).

Problem 3. First Isomorphism Theorem. Let N EG be a normal subgroup.

(a) Define the universal property of a group quotient π : G→ G/N and say in what sense
a quotient is unique.

If ϕ : G → G′ is any group homomorphism such that N ⊆ kerϕ, then there ex-
ists a unique group homomorphism ϕ̄ : G/N → G′ such that the following diagram
commutes:

G

π

��

ϕ

��
G/N

ϕ̄
// G′

If p : G → Q is any other “N -quotient” satisfying this universal property then there
exists a unique group isomorphism G/N

∼←→ Q such that the following diagram com-
mutes:

G

π

��

p

��
G/N oo

∼ // Q

(b) Now let ϕ : G → G′ be a group homomorphism. Use the universal property from
part (a) to prove that G/ kerϕ ≈ imϕ. [Hint: You can assume that the quotient
π : G→ G/ kerϕ from part (a) exists.]

Since kerϕEG we have the standard quotient map π : G→ G/ kerϕ. I claim that the
homomorphism ϕ : G→ imϕ is another “kerϕ-quotient” map. Indeed, if p : G→ G′ is
any group homomorphism such that kerϕ ⊆ ker p then any homomorphism p̄ : imϕ→
Q such that

G
ϕ

��

p

��
imϕ

p̄
// Q

must satisfy the prescription p̄(ϕ(g)) = p(g) for all g ∈ G. Certainly this p̄ will be a
homomorphism if it is well-defined, and it is well-defined because for all g, h ∈ G we
have

(ϕ(g) = ϕ(h))⇒ (gh−1 ∈ kerϕ)⇒ (gh−1 ∈ ker p)⇒ (p(g) = p(h)).

Now the isomorphism G/ kerϕ ≈ imϕ follows from the uniqueness of quotients. ///



Problem 4. Group Products. Consider a group G with subgroups H,K ⊆ G.

(a) Prove that HK := {hk : h ∈ H, k ∈ K} is a subgroup of G if and only if HK = KH.

First assume that we have HK = KH. To show that HK is a subgroup consider any
two elements h1k1, h2k2 ∈ HK. Since k1k

−1
2 h−1

2 ∈ KH ⊆ HK, there exist h ∈ H and

k ∈ K such that k1k
−1
2 h−1

2 = hk. Then we have

(h1k1)(h2k2)−1 = h1(k1k
−1
2 h−1

2 ) = h1hk ∈ HK,

as desired.

Conversely, assume that HK ⊆ G is a subgroup. To prove that HK = KH, first
consider an element hk ∈ HK. Since HK is a group there exists h′k′ ∈ HK such that
hkh′k′ = 1, hence hk = (k′)−1(h′)−1 ∈ KH as desired. Next, consider any element
kh ∈ KH. Since k = 1k ∈ HK and h = h1 ∈ HK and since HK is a subgroup we
obtain kh ∈ HK as desired. ///

(b) Prove that the multiplication map µ : H×K → HK is injective if and only ifH∩K = 1.

First assume that multiplication µ : H × K → HK is injective and consider any
element g ∈ H ∩K. Note that g ∈ H and g−1 ∈ K so we can apply multiplication to
get µ(g, g−1) = gg−1 = 1. But we also have µ(1, 1) = 1, so injectivity of µ implies that
(1, 1) = (g, g−1), hence g = 1.

Conversely, assume that H ∩ K = 1 and suppose that µ(h1, k1) = µ(h2, k2) (i.e.,
h1k1 = h2k2) for some (h1, k1), (h2, k2) ∈ H ×K. Then we have

h1k1 = h2k2 =⇒ h−1
2 h1 = k2k

−1
1 ∈ H ∩K.

Since H ∩K = 1 this implies that h−1
2 h1 = k2k

−1
1 = 1, hence h1 = h2 and k1 = k2. It

follows that (h1, k1) = (h2, k2) and we conclude that µ is injective. ///

Problem 5. Short Exact Sequences. Let K be a field and consider the following short
exact sequence of groups:

1 −→ SLn(K)
i−→ GLn(K)

det−→ K× −→ 1.

(a) Find an explicit section of the determinant map GLn(K) → K× and conclude that
GLn(K) ≈ SLn(K) oK×.

Given α ∈ K× we will define the matrix

s(α) :=


α 0

1
. . .

0 1

 .

Note that for all α, β ∈ K× we have s(α)s(β) = s(αβ) and det(s(α)) = α, so that
s : K× → GLn(K) is a section. We conclude from the splitting lemma on HW3 that

GLn(K) ≈ SLn(K) oK×.



(b) Now assume that K = R and n is odd. In this case find an explicit retraction of the
inclusion map SLn(R) → GLn(R) and conclude that GLn(R) ≈ SLn(R) × R×. [Hint:
Since n is odd, every α ∈ R× has an obvious n-th root.]

First note that since n is odd, every α ∈ R× has a unique n-th root in R×. This
defines a function n

√
· : R× → R×. Then since the product of n-th roots is an n-th

root, uniqueness implies that n
√
· is a group homomorphism. [For a general field K

and general n this is not possible.]

Now given an invertible matrix A ∈ GLn(R) we will define

r(A) :=
1

n
√

det(A)
·A.

Since A is an n× n matrix we have

det(r(A)) = det

(
1

n
√

det(A)
·A

)

=

(
1

n
√

det(A)

)n
det(A)

=
1

det(A)
· det(A)

= 1,

hence r(A) ∈ SLn(R). Since n
√
· is a function we obtain a function r : GLn(R) →

SLn(R). Then since n
√
· is a homomorphism we have

r(A)r(B) =
1

n
√

det(A)
·A · 1

n
√

det(B)
·B

=
1

n
√

det(A)
· 1

n
√

det(B)
·AB

=
1

n
√

det(A)det(B)
·AB

=
1

n
√

det(AB)
·AB

= r(AB),

for all A,B ∈ GLn(R), hence r is a homomorphism. Finally, since r(i(A)) = r(A) = A
for all A ∈ SLn(R) we conclude that r is a retraction of the inclusion map i : SLn(R)→
GLn(R). It follows from the splitting lemma proved in class that

GLn(R) ≈ SLn(R)× R×.

[Remark: This is a pretty special isomorphism. I asked MathOverflow for a topological or
geometric interpretation but I didn’t get one yet.]


