
Math 761 Fall 2015
Homework 4 Drew Armstrong

Problem 1. Burnside’s Lemma. Let X be a G-set and for all g ∈ G define the set

Fix(g) := {x ∈ X : g(x) = x} ⊆ X.

(a) If G and X are finite, prove that∑
g∈G
|Fix(g)| =

∑
x∈X
|Stab(x)|.

(b) Let X/G be the set of orbits. Use part (a) to prove that

|X/G| = 1

|G|
∑
g∈G
|Fix(g)|.

Proof. For part (a), consider the set S := {(g, x) ∈ G×X : g(x) = x}. By counting the pairs
(g, x) ∈ S in two ways we obtain∑

g∈G
|Fix(g)| = |S| =

∑
x∈X
|Stab(x)|.

Choosing g first gives the first equation and choosing x first gives the second equation.
For part (b), let O1, O2, . . . , On be the set of orbits, so that n = |X/G|. Then from part (a)

and the orbit-stabilizer theorem we have∑
g∈G
|Fix(g)| =

∑
x∈X
|Stab(x)|

=
∑
x∈X

|G)|
|Orb(x)|

=

n∑
i=1

∑
x∈Oi

|G|
|Orb(x)|

=
n∑
i=1

∑
x∈Oi

|G|
|Oi|

=

n∑
i=1

|Oi|
|G|
|Oi|

=

n∑
i=1

|G|

= n · |G|
= |X/G| · |G|.

�

[Remark: Burnside’s Lemma appears in Burnside’s “Theory of groups of finite order” (1911), where
he attributes it to Frobenius. It was also known to Cauchy in 1845. This is another example of a
mathematical concept being named for the last person to discover it.]



Problem 2. The Dodecahedron. Let D be the group of rotational symmetries of a regular
dodecahedron.

(a) Describe the conjugacy classes of D and use this to prove that D is simple. [Hint: Any
normal subgroup is a union of conjugacy classes.]

(b) Compute the number of distinguishable ways to color the faces of a dodecahedron with
k colors. [Hint: Let X be the set of all colorings, so that |X| = k12. Many of these
colorings are indistinguishable after rotation so we really want to know the number of
orbits |X/D|. Use part (a) and Burnside’s Lemma.]

(c) Prove that D is isomorphic to the alternating group A5. [Hint: There are five cubes
that can be inscribed in a dodecahedron. The action of D defines a nontrivial homo-
morphism ϕ : D → S5. Composing this with the “sign” homomorphism σ : S5 → {±1}
gives a homomorphism σϕ : D → {±1}. Since D is simple the first homomorphism
must be injective and the second must be trivial.]

Proof. For part (a), we will think of D as a subgroup of SO(3). Note that two elements of D
are conjugate in GL3(R) if and only if they represent the same linear transformation in two
different bases. If, moreover, they are conjugate in SO(3) then they represent the same linear
transformation after a rotation, and if they are conjugate in D then they represent the same
linear transformation after a rotational symmetry of the dodecahedron.

Using this idea we can describe the conjugacy classes as follows:

Name of Class Size of Class Geometric Description
C1 1 identity element
C2 20 rotate by ±2π/3 around vertex
C3 15 rotate by π around edge
C4 12 rotate by ±2π/5 around face
C5 12 rotate by ±4π/5 around face

To count the elements we note that a rotation must be shared by an opposite pair of ver-
tices/edges/faces. Clearly the five classes described are inequivalent because symmetries of
the dodecahedron must take vertices/edges/faces to vertices/edges/faces, respectively. The
only possible issue is to explain why rotation by ±2π/5 around a face is not conjugate to
rotation by ±4π/5 around a face. To see this, note that the trace of a rotation by angle θ is
1 + 2 cos θ. Since conjugation preserves trace, and since 1 + 2 cos(2π/5) 6= 1 + 2 cos(4π/5), we
conclude that the rotations are not conjugate.

To prove that D is simple, note that any normal subgroup N E D must be a union of
conjugacy classes (including the identity class). Thus |N | is a sum of 1 together with a subset
of the numbers

20, 15, 12, 12.

But by Lagrange’s Theorem we also know that |N | divides |D| = 60. One can check that
these two conditions imply that |N | = 1 (i.e. N = 1) or |N | = 60 (i.e. N = D).

For part (b), let X be the set of colorings of the faces of a fixed dodecahedron using k colors.
Since there are 12 faces we have |X| = k12. But many of these colorings are indistinguishable
after rotation, so we are really interested in the number of orbits |X/D|. By Burnside’s Lemma
we only need to count the number of colorings fixed by each conjugacy class of D. We can
think of each element g ∈ D as a permutation of the 12 faces and for x ∈ X we have g(x) = x
if and only if the coloring x is constant on each cycle of g.

• For g ∈ C1 there are 12 cycles of faces, hence |Fix(g)| = k12.
• For g ∈ C2 there are 4 cycles of faces, hence |Fix(g)| = k4.



• For g ∈ C3 there are 6 cycles of faces, hence |Fix(g)| = k6.
• For g ∈ C4 there are 4 cycles of faces, hence |Fix(g)| = k4.
• For g ∈ C5 there are 4 cycles of faces, hence |Fix(g)| = k4.

(It helps to have dodecahedron to play with.) Then from Burnside’s Lemma we conclude that

|X/D| = 1

|D|
∑
g∈G
|Fix(g)|

=
1

60

(
1 · k12 + 20 · k4 + 15 · k6 + 12 · k4 + 12 · k4

)
=

1

60
k4(k8 + 15k2 + 44).

For example, there are 96 = 1
6024(28 + 15 · 22 + 44) different black and white dodecahedra.

For part (c), consider the five cubes inscribed in a dodecahedron. Here is one of them:

The action of D on the set of cubes induces a homomorphism ϕ : D → S5. Since D is simple
we must have either kerϕ = D or kerϕ = 1. We know that the homomorphism is not trivial
(the cubes do get permuted) so we conclude that ϕ is injective. Composing with the sign
map σ : S5 → {±1} gives another homomorphism σϕ : D → {±1}. Again, since D is simple
we must have ker(σϕ) = 1 or ker(σϕ) = D. Since D is bigger than {±1} the map can not be
injective, so we must have ker(σϕ) = D. Putting these two facts together gives

D ≈ imϕ ⊆ kerσ = A5.

Finally, since |D| = |A5| we must have D ≈ A5. �

[Remark: I really like this proof for the simplicity of A5. Unfortunately, I don’t know a similarly
nice proof for the simplicity of An when n ≥ 6. We have no choice but to fiddle with 3-cycles.]

Problem 3. Affine Space. What is space? In general it is possible to “subtract points” to
obtain a vector, but it is not possible to “add points” unless we fix an arbitrary basepoint.
Let V be a vector space. We say that A is an affine space over V if there exists a “subtraction
function” [−,−] : A×A→ V satisfying the following two properties:

• [p,−] : A→ V is a bijection for all p ∈ A,
• [p, q] + [q, r] = [p, r] for all p, q, r ∈ A.

(a) We say that a group action is free if all stabilizers are trivial and we say it is transitive
if every orbit is the full set. We say that an action is regular if it is free and transitive.
Prove that an affine space over a vector space V is the same thing as a regular V -set
(thinking of V as an abelian group).



(b) Let A be an affine space over V and denote the induced regular action of V on A by
v(p) = “p + v”. We say that a function f : A → A is affine if there exists a linear
function df : V → V such that for all points p ∈ A and vectors v ∈ V we have

f(p+ v) = f(p) + df(v).

In this case show that df([p, q]) = [f(p), f(q)] for all p, q ∈ A, so that df is uniquely
determined by f (we call it the differential of f). Prove that f is invertible if and only
if df is invertible, in which case we have d(f−1) = (df)−1.

(c) Let GA(V ) be the group of invertible affine functions A→ A (called the general affine
group of V ). Prove that we have an isomorphism

GA(V ) ≈ V o GL(V )

where GL(V ) acts on V in the obvious way. [Hint: Show that the differential map
d : GA(V ) → GL(V ) is a group homomorphism with kernel isomorphic to V . Show
that “choosing an origin” o ∈ A defines a section s : GL(V )→ GA(V ).]

Proof. For part (a), let [−,−] : A× A→ V be a valid subtraction function. Note that for all
points p ∈ A we have [p, p] = [p, p] + [p, p] = 2[p, p] and hence [p, p] = 0. Then for all points
p, q ∈ A we have [p, q] + [q, p] = [p, p] = 0 and hence [p, q] = −[q, p].

Now consider a point p ∈ A and a vector v ∈ V . Since [p,−] : A → V is a bijection, there
exists a unique point, say v(p) ∈ A, satisfying the equation

[p, v(p)] = v.

We want to show that the function V × A → A defined by (v, p) 7→ v(p) is a regular action.
First we’ll show that it’s an action:

• For all points p ∈ A we have [p, 0(p)] = 0 by definition. But we also have [p, p] = 0, so
the injectivity of [p,−] implies that 0(p) = p.
• For all points p ∈ A and vectors u, v ∈ V we have [p, v(p)] = v and [v(p), u(v(p))] = u

by definition. It follows that

[p, u(v(p))] = [p, v(p)] + [v(p), u(v(p))] = v + u,

and hence u(v(p)) = (v + u)(p).

Next we’ll show that the action is regular. Given a point p ∈ A we define

OrbV (p) := {v(p) ∈ A : v ∈ V },
StabV (p) := {v ∈ V : v(p) = p}.

Since [p,−] is surjective we know that for all q ∈ A there exists v ∈ V such that [p, q] = v and
hence q = v(p). We conclude that OrbV (p) = A. Now let v ∈ StabV (p). Since v(p) = p we
have v = [p, v(p)] = [p, p] = 0 and hence StabV (p) = 0.

Conversely, let (v, p) 7→ v(p) be a regular action of V on A and consider any two points
p, q ∈ A. Since q ∈ A = OrbV (p) there exists a vector v ∈ V such that v(p) = q. If u ∈ V is
any other vector such that u(p) = q then since u(p) = v(p) we have (u− v)(p) = (v − v)(p) =
0(p) = p and hence u − v ∈ StabV (p). Since StabV (p) = 0 this implies that u = v. We have
shown that for any two points p, q ∈ A there exists a unique vector, say vpq ∈ V , such that
vpq(p) = q. We will use this to define a function [−,−] : A×A→ V by

[p, q] := vpq.

We want to show that this is a valid subtraction function. To show that the function [p,−] :
A→ V is surjective consider any vector v ∈ A and define q := v(p). By uniqueness this means
that v = vpq so we must have [p, q] = vpq = v. To show that [p,−] is injective, consider any



two points q, r ∈ A with vpq = [p, q] = [p, r] = vpr. Then we have q = vpq(p) = vpr(p) = r.
Finally, for any points p, q, r ∈ A we have (vpq + vqr)(p) = vqr(vpq(p)) = vqr(q) = r, and hence

[p, q] + [p, r] = vpq + vqr = vpr = [p, r],

as desired.
In summary, let A be a set and let V be a vector space. We have shown that a regular

V -action V × A → A and a subtraction function A × A → V are equivalent structures. The
equivalence is given by

[p, q] = v ⇐⇒ v(p) = q.

For part (b), let A be an affine space over V with subtraction function (p, q) → [p, q] and
action (v, p) 7→ v(p). From now on we will use the more suggestive notation v(p) = “p + v”.
This notation is reasonable since for all points p ∈ A and vectors u, v ∈ V we have

(p+ v) + u = u(v(p)) = (v + u)(p) = p+ (v + u).

(We will be careful not to take the notation too literally.) For posterity let me record the fact
that for all p, q ∈ A and v ∈ V we have

(1) [p, q] = v ⇐⇒ p+ v = q.

In particular, we have p+ [p, q] = q. Now we say that f : A→ A is an affine function if there
exists a linear function df : V → V such that for all p ∈ A and v ∈ V we have

f(p+ v) = f(p) + df(v).

In particular, taking v = [p, q] gives

f(q) = f(p+ [p, q]) = f(p) + df([p, q])

and it follows from (1) that df([p, q]) = [f(p), f(q)]. This means that the linear function df is
uniquely determined by the affine function f . We call df the differential of f .

Now consider two affine functions f, g : A→ A. For all p ∈ A and v ∈ V we have

(fg)(p+ v) = f(g(p+ v))

= f(g(p) + dg(v))

= f(g(p)) + df(dg(v))

= (fg)(p) + (df · dg)(v)

(2)

and then by uniqueness of the differential we conclude that d(fg) = df · dg. If fg = 1 then
equation (2) says that p+ v = p+ (df · dg)(v) for all v ∈ V and it follows that

v = [p, p+ v] = [p, p+ (df · dg)(v)] = (df · dg)(v).

Since this is true for all v ∈ V we conclude that df · dg = 1. Similarly, if gf = 1 then we have
dg · df = 1. In summary, if f is invertible with f−1 = g then df is invertible with (df)−1 = dg.

Conversely, let f : A → A be any affine function and suppose that the differential df is
invertible. To show that f is invertible, we first choose an arbitrary basepoint o ∈ A. Then
for all points p ∈ A we define a function g : A→ A by

g(p) := o+ (df)−1([f(o), p]).



Note that for all p ∈ A and v ∈ V we have

g(p+ v) = o+ (df)−1([f(o), p+ v])

= o+ (df)−1([f(o), p] + [p, p+ v])

= o+ (df)−1([f(o), p]) + (df)−1([p, p+ v])

= g(p) + (df)−1(v),

so that g is an affine function with differential dg = (df)−1. Then for all p ∈ A we have

f(g(p)) = f(o+ (df)−1([f(o), p]))

= f(o) + df((df)−1([f(o), p]))

= f(o) + [f(o), p]

= p

and

g(f(p)) = o+ (df)−1([f(o), f(p)])

= o+ (df)−1(df([o, p]))

= o+ [o, p]

= p,

hence f is invertible with f−1 = g. [Remark: This proves a very special case of the Jacobian
conjecture. (Look it up!) You might wonder where the definition of the function g came from. Let
o ∈ A be any point and suppose that the affine function f : A → A is invertible. Then applying
f−1 to the vector [f(o), p] gives the following diagram:

We conclude from the diagram that f−1(p) = o + (df)−1([f(o), p]), and this suggests how one
might define the function f−1 in terms of its differential (df)−1.]

For part (c), let me first define a map t : V → GA(V ) sending the vector v ∈ V to the
“translation function” tv : A → A defined by tv(p) := p + v. Note that tv is affine with
differential dtv = 1. Indeed, for all p ∈ A and u ∈ V we have

tv(p+ u) = (p+ u) + v = p+ (u+ v) = p+ (v + u) = (p+ v) + u = tv(p) + u.

Furthermore, the map t is a group homomorphism since for all points p ∈ A and vectors
u, v ∈ V we have

tu(tv(p)) = tu(p+ v) = (p+ v) + u = p+ (v + u) = tv+u(p).

We have already seen in (2) that the differential map d : GA(V )→ GL(V ) is a homomorphism,
so we obtain a sequence of homomorphisms

(3) 1 // V
t // GA(V )

d // GL(V ) // 1



with im t ⊆ ker d. I claim that, moreover, im t = ker d. Indeed, let f : A → A be any affine
map with df = 1. If we choose an arbitrary basepoint o ∈ A and define the vector v := [o, f(o)]
then for all p ∈ A we have

[p, f(p)] = [p, o] + [o, f(o)] + [f(o), f(p)]

= [p, o] + v + df([o, p])

= [p, o] + v + [o, p]

= v,

and it follows from (1) that f(p) = p + v, that is f = tv. Thus the sequence (3) is exact.
[Remark: Here is the intuition behind the proof. Consider any points o, p ∈ A and any affine
function f : A→ A. By applying f to the vector [o, p] we obtain the following diagram:

If df = 1 then this diagram is a “parallelogram” and it follows that [p, f(p)] = [o, f(o)] = v.]

Finally, I will show that “choosing an origin” o ∈ A defines a homomorphism s : GL(V )→
GA(V ) such that for all ϕ ∈ GL(V ) we have d(sϕ) = ϕ (i.e., a section of the map d). Recall
from the definition of affine space that [o,−] : A → V is a bijection. If ϕ ∈ GL(V ) is any
invertible linear map then we will define the function sϕ : A→ A so that the following square
commutes:

A
[o,−] //

sϕ
��

V

ϕ

��
A

[o,−] // V

That is, for all points p ∈ A we let sϕ(p) ∈ A be the unique point such that

(4) [o, sϕ(p)] = ϕ([o, p]).

First note that sϕ : A → A is an affine function with d(sϕ) = ϕ. Indeed, for all p ∈ A and
v ∈ V we have

[o, sϕ(p+ v)] = ϕ([o, p+ v])

[o, sϕ(p)] + [sϕ(p), sϕ(p+ v)] = ϕ([o, p] + [p, p+ v])

����ϕ([o, p]) + [sϕ(p), sϕ(p+ v)] = ����ϕ([o, p]) + ϕ([p, p+ v])

[sϕ(p), sϕ(p+ v)] = ϕ(v),

and it follows from (1) that sϕ(p + v) = sϕ(p) + ϕ(v). Then for all ϕ, µ ∈ GL(V ) and p ∈ A
we have

[o, sϕ(sµ(p))] = ϕ([o, sµ(p)])

= ϕ(µ([o, p]))

= (ϕµ)([o, p])

= [o, sϕµ(p)],



and the injectivity of [o,−] implies that sϕ(sµ(p)) = sϕµ(p). Since this is true for all p ∈ A we
conclude that sϕµ = sϕsµ and hence s : GL(V )→ GA(V ) is a homomorphism.

We have shown that the short exact sequence (3) is right-split. It follows from HW3.5 that

GA(V ) = t(V ) o s(GL(V )) ≈ V o GL(V ).

And what is the action of GL(V ) on V implied by this semi-direct product? I claim that it’s
the obvious action: for all linear maps ϕ ∈ GL(V ) and vectors v ∈ V we have

sϕtvs
−1
ϕ = tϕ(v).

Indeed, for all p ∈ A, v ∈ V and ϕ ∈ GL(V ) we have

���[o, p] + [p, sϕtvs
−1
ϕ (p)] = [o, sϕtvs

−1
ϕ (p)]

= ϕ([o, tvs
−1
ϕ (p)])

= ϕ([o, s−1ϕ (p)] + [s−1ϕ (p), tvs
−1
ϕ (p)])

= ϕ(ϕ−1([o, p]) + v)

= ���[o, p] + ϕ(v)

and it follows from (1) that sϕtvs
−1
ϕ (p) = p+ ϕ(v) = tϕ(v)(p). �

[Remark: No splitting of the short exact sequence (3) is better than any other splitting, just as
no point of A is better than any other point. That’s the whole idea. However, suppose that V is
n-dimensional over a field K. If we fix an arbitrary basis for V and an arbitrary basepoint for A
then we can represent the element tvsϕ ∈ GA(V ) as an (n+ 1)× (n+ 1) matrix(

ϕ v
0 1

)
,

where ϕ is an n× n matrix and v is an n× 1 column. One can check that matrix multiplication
agrees with the relation (tusϕ)(tvsµ) = (tutϕ(v))(sϕsµ). In other words, GA(V ) is isomorphic to
a subgroup of GLn+1(K). I could have phrased the problem in this language from the beginning
but I wanted to emphasize that the map GA(V ) ↪→ GLn+1(K) is not canonical.]

Problem 4. Grassmannians.

(a) Let Gr1(r, n) denote the set of r-element subsets of {1, 2, . . . , n}. Show that the obvious
action of the symmetric group Sn on Gr1(r, n) is transitive with stabilizer isomorphic
to Sr × Sn−r. Then use orbit-stabilizer to compute |Gr1(r, n)|.

(b) Let K be a field and let GrK(r, n) denote the set of r-dimensional subspaces of Kn.
Show that the obvious action of GLn(K) on GrK(r, n) is transitive with stabilizer iso-
morphic to

Matr,n−r(K) o (GLr(K)× GLn−r(K)),

where Matr,n−r(K) is the additive group of r× (n− r) matrices. [Hint: Show that the
stabilizer is isomorphic to the group of block matrices(

A C
0 B

)
with A ∈ GLr(K), B ∈ GLn−r(K), and C ∈ Matr,n−r(K).]



(c) When K is the finite field of size q we will write Grq(r, n) := GrK(r, n). Use orbit-
stabilizer and part (b) to compute |Grq(r, n)|. [Hint: Define GLn(q) := GLn(K). You
can assume the formula

|GLn(q)| = q(
n
2)(q − 1)n[n]q!,

where [n]q! = [n]q[n− 1]q · · · [2]q[1]q and [m]q = 1 + q+ q2 + · · ·+ qm−1.] Now compare
your answers from parts (a) and (c).

Proof. For part (a), we define the action of π ∈ Sn on a subset X ⊆ {1, 2, . . . , n} by

π(X) := {π(x1), π(x2), . . . , π(xr)}.

Since |π(X)| = |X|, this defines an action of Sn on the set Gr1(r, n) for any r. Now consider
any two subsets X = {x1, . . . , xr} and Y = {y1, . . . , yr} in Gr1(r, n). By extending these to
the full set we can write

{x1, . . . , xr, xr+1, . . . , xn} = {1, 2, . . . , n} = {y1, . . . , yr, yr+1, . . . , yn}.

Then the permutation π ∈ Sn defined by π(xi) := yi for all i satisfies π(X) = Y and we
conclude that the action of Sn on Gr1(r, n) is transitive.

Now fix a subset X ∈ Gr1(r, n). Let H ⊆ Sn be the subgroup that fixes the elements of
{1, 2, . . . , n} \X pointwise and let K be the subgroup that fixes the elements of X pointwise.
Note that H ≈ Sr and K ≈ Sn−r. Then since H and K commute elementwise and intersect
trivially we have HK = H ×K ≈ Sr × Sn−r. I claim that HK = StabSn(X). Certainly, we
have HK ⊆ StabSn(X). Conversely, consider any π ∈ Sn such that π(X) = X. We will define
hπ ∈ Sn by hπ(i) := π(i) when i ∈ X and hπ(i) := i when i ∈ {1, 2, . . . , n} \X. Similarly we
define kπ ∈ Sn by kπ(i) := π(i) when i ∈ {1, 2, . . . , n} \X and kπ(i) := i when i ∈ X. Note
that we have hπ ∈ H, kπ ∈ K and π = hπkπ ∈ HK. It follows that StabSn(X) ⊆ HK, as
desired.

Finally, the orbit-stabilizer theorem gives

|Gr1(r, n)| = |Sn|
|Sr × Sn−r|

=
|Sn|

|Sr| · |Sn−r|

=
n!

r!(n− r)!
.

For part (b), we define an action of ϕ ∈ GLn(K) on a subspace U ⊆ Kn by

ϕ(U) := {ϕ(u) : u ∈ U}.

Note that ϕ(U) ⊆ Kn is another subspace of the same dimension, so we obtain an action of
GLn(K) on the set GLK(r, n) for any r. Now consider any two subspaces U and V in GrK(r, n)
and choose bases u1, u2, . . . , ur ∈ U and v1, v2, . . . , vn ∈ V . By extending these to bases for
the full space we can write

〈u1, . . . , ur, ur+1, . . . , un〉 = Kn = 〈v1, v2, . . . , vr, vr+1, . . . , vn〉.

Now define a function ϕ ∈ GLn(K) by setting ϕ(ui) := vi for all i and extending linearly.
Since ϕ(U) = V we conclude that the action of GLn(K) on GrK(r, n) is transitive.

Now fix a subspace U ∈ GrK(r, n) and choose a basis u1, u2, . . . , ur ∈ U . Extend this
to a basis u1, . . . , ur, ur+1, . . . , un for Kn and define the complementary subspace U ′ :=



〈ur+1, . . . , un〉. We will express each vector x ∈ Kn in this basis by writing

x =



x1
...
xk
xk+1

...
xn


=

(
xU
xU ′

)
,

so that x ∈ U if and only if xU ′ = 0. Now consider the set of matrices

P :=

{(
A C
0 B

)
: A ∈ GLr(K), B ∈ GLn−r(K), C ∈ Matr,n−r(K)

}
,

and observe that P is a subgroup of GLn(K) with blockwise multiplication(
A C
0 B

)(
A′ C ′

0 B′

)
=

(
AA′ AC ′ + CB′

0 BB′

)
.

I claim that P = StabGLn(K)(U). Indeed, if ϕ ∈ GLn(K) is any invertible matrix and x ∈ Kn

is any vector then we have

(5) ϕ(x) =

(
A C
D B

)(
xU
xU ′

)
=

(
AxU + CxU ′

DxU +BxU ′

)
for some matrices A,B,C,D of the correct shape. If ϕ ∈ P (i.e. D = 0) and x ∈ U
(i.e. xU ′ = 0) then we find that ϕ(x)U ′ = DxU + BxU ′ = 0, and hence ϕ(x) ∈ U . It
follows that P ⊆ StabGLn(K)(U). Conversely, suppose that ϕ ∈ GLn(K) and ϕ(x) ∈ U for all
x ∈ U . From (5) this means that DxU = 0 for all xU ∈ U and hence D = 0. Then since
0 6= detϕ = detA · detB we must have A ∈ GLr(K) and B ∈ GLn−r(K) so that ϕ ∈ P . We
conclude that StabGLn(K) ⊆ P as desired.

It remains to show that P ≈ Matr,n−r(K) o (GLr(K) × GLn−r(K)). To do this we will let
H denote the subgroup of P where C = 0 and B = I, let K denote the subgroup of P where
C = 0 and A = I, and let M denote the subgroup of P where A = I and B = I. Note that we
have H ≈ GLr(K) and K ≈ GLn−r(K). Then we have HK = H ×K ≈ GLr(K)× GLn−r(K)
because the groups intersect trivially and commute elementwise:(

A 0
0 I

)(
I 0
0 B

)
=

(
A 0
0 B

)
=

(
I 0
0 B

)(
A 0
0 I

)
.

Note that we also have M ≈ Matk,n−k(K) as additive groups because(
I C
0 I

)(
I C ′

0 I

)
=

(
I C + C ′

0 I

)
.

Next observe that M ∩ (H ×K) = 1 and that M(H ×K) = P because(
I CB−1

0 I

)(
A 0
0 B

)
=

(
A C
0 B

)
.



To finish the proof we will show that M is normal in P . Indeed, we have(
A C
0 B

)(
I D
0 I

)(
A C
0 B

)−1
=

(
A AD + C
0 B

)(
A−1 −A−1CB−1

0 B−1

)
=

(
AA−1 −AA−1CB−1 + (AD + C)B−1

0 BB−1

)
=

(
I −CB−1 +ADB−1 + CB−1

0 I

)
=

(
I ADB−1

0 I

)
.

We conclude that P = M o (H ×K) as desired, and the associated action of H ×K on M is
our favorite action of GLr(K)× GLn−r on Matr,n−r(K), namely

((A,B), D) 7→ ADB−1.

For part (c), note that the orbit-stabilizer theorem identifies the Grassmannian GrK(r, n)
with the coset space GLn(K)/P , where P is the subgroup defined above. Now assume that

K is the finite field of size q. We proved in class that |GLn(q)| = q(
n
2)(q − 1)n[n]q! and we see

that |Matr,n−r(q)| = qr(n−r) because the matrix entries are arbitrary. Note that we also have
|P | = |M o (H ×K)| = |M | · |H ×K| = |M | · |H| · |K|. Putting everything together gives

|Grq(r, n)| = |GLn(q)|
|Matr,n−r(q)| · |GLr(q)| · |GLn−r(q)|

=
qn(n−1)/2(q − 1)n[n]q!

qr(n−r) · qr(r−1)/2(q − 1)r[r]q! · q(n−r)(n−r−1)/2(q − 1)n−r[n− r]q!

=
[n]q!

[r]q! [n− r]q!
.

If q is a prime power then one can show (for example, by induction) that this last formula is
a polynomial in q with non-negative integer coefficients. More generally, if q is any element of
a commutative ring R then we can use the polynomial to define the element |Grq(r, n)| ∈ R.
This explains the strange choice of notation in part (a). �

[Remark: The analogy between parts (a) and (c) is beautiful but I don’t really understand it. Here’s
another beautiful thing that I don’t understand. We can think of the Grassmannian GrC(r, n) as
a complex manifold. It turns out that the Betti numbers of this manifold are encoded by the
numbers |Grq(r, n)|. That is, we have

PGrC(r,n)(t) =
∑
k≥0

dimHk(GrC(r, n))tk =
[n]t2 !

[r]t2 ![n− r]t2 !
,

where the right hand side is interpreted as a polynomial in the formal variable t. It follows from
this that the Euler characteristic of GrC(r, n) is the binomial coefficient

(
n
r

)
. This was one of the

motivating examples that led to the Weil Conjectures. (Look it up!)]


