HW #1 due now.

Final Exam Thurs. 2:00-4:30 pm

The Final Exam is not cumulative. It will cover the material discussed since the Midterm. Here are the topics.

1) Functors & Natural Transformations.

Let \mathcal{C} & \mathcal{D} be categories. A covariant functor $F: \mathcal{C} \to \mathcal{D}$ consists of

- a function $F: \text{Obj}(\mathcal{C}) \to \text{Obj}(\mathcal{D})$

- for each pair $X, Y \in \text{Obj}(\mathcal{C})$ a function

 $F: \text{Hom}_\mathcal{C}(X, Y) \to \text{Hom}_\mathcal{D}(F(X), F(Y))$

satisfy the two rules

- $\forall X \in \mathcal{C}$, $F(\text{id}_X) = \text{id}_{F(X)}$

- $\forall \alpha: X \to Y$ & $\beta: Y \to Z$

 $F(\beta \circ \alpha) = F(\beta) \circ F(\alpha)$
A contravariant functor \(F : C \to D \) is the same as a covariant functor \(F : C \to D^{\text{op}} \) or \(F : C^{\text{op}} \to D \). That is, for all \(\alpha : x \to y \) \& \(\beta : y \to z \) we have

\[
F(\beta \circ \alpha) = F(\alpha) \circ F(\beta).
\]

Now let \(F, G : C \to D \) be covariant functors. A natural transformation

\[
\Phi : F \to G
\]

assigns to each object \(X \in \mathcal{C} \) a morphism \(\Phi(X) : F(X) \to G(Y) \) such that for all objects \(X, Y \in \mathcal{C} \) and morphisms \(\alpha : X \to Y \), the following square commutes:

\[
\begin{array}{ccc}
F(X) & \xrightarrow{\Phi(X)} & G(X) \\
\downarrow F(\alpha) & & \downarrow G(\alpha) \\
F(Y) & \xrightarrow{\Phi(Y)} & G(Y)
\end{array}
\]

We say that \(\Phi \) is a natural isomorphism \(F \cong G \) if \(\Phi(X) \) is an isomorphism \(\forall X \in \mathcal{C} \).
(2) The Category of G-sets.

Let C & D be categories with C small. Then we can define the functor category

$$D^C$$

whose objects are functors $F: C \to D$ and whose morphisms are natural transformations.

For example, let G be a group thought of as a category with one object. Then a functor $F: G \to \text{Set}$ is called a "G-set".

A G-set $F: G \to \text{Set}$ consists of a set

$$X := F(*)$$

and a function

$$F: G = \text{Aut}_G(*) \to \text{End}_{\text{Set}}(X).$$

The axioms of a functor imply that this is actually a group homomorphism

$$F: G \to \text{Aut}_{\text{Set}}(X).$$
To be more concrete, a G-set consists of a set \(X \) and a function \(G \times X \rightarrow X \) written as \((g, x) \rightarrow g(x)\) satisfying the two axioms

\[
\begin{align*}
\forall x \in X, \quad 1_G(x) &= x \\
\forall x \in X \quad \forall g, h \in G, \quad g(h(x)) &= (gh)(x).
\end{align*}
\]

This is equivalent to the previous definition via the identification

\[g(x) = F(g)(x). \]

Now let \(X \) and \(Y \) be two \(G \)-sets with the actions \(G \times X \rightarrow X \) and \(G \times Y \rightarrow Y \) written implicitly. Then a morphism of \(G \)-sets is just a function \(\Phi : X \rightarrow Y \) such that for all \(x \in X \) and \(g \in G \) we have

\[\Phi(g(x)) = g(\Phi(x)). \]

Check that is the same as a natural transformation of functors \(G \rightarrow \text{Set} \).
3) Fundamental Theorem of G-sets.

Given a G-set X and an element $x \in X$ we define

$$\text{Orb}_G(x) := \{ y \in X : \exists g \in G, \ y = g(x) \}$$

$$\text{Stab}_G(x) := \{ g \in G : g(x) = x \}$$

A Theorem (FTGS):

(i) For each $x \in X$, $\text{Stab}_G(x) \leq G$ is a subgroup and we have an isomorphism of G-sets

$$\text{Orb}_G(x) \cong G/\text{Stab}_G(x)$$

$$g(x) \iff g \text{ Stab}_G(x)$$

(ii) Given two subgroups $H, K \leq G$ we have

$$G/H \cong G/K$$

if and only if $\exists g \in G$, $gHg^{-1} = K$.
Know how to prove the FTGS. Part (i) is straightforward. The key to Part (ii) is the identity

\[\text{Stab}_G(g(x)) = g \text{Stab}_G(x) g^{-1}. \]

Two Examples from HW4:

- Let \(\text{Gr}_1(r,n) \) be the set of \(r \)-element subsets of \(\{1,2,\ldots,n\} \). Then we have an isomorphism of \(S_n \)-sets

\[\text{Gr}_1(r,n) \cong S_n / (S_r \times S_{n-r}). \]

- Let \(\text{Gr}_K(r,n) \) be the set of \(r \)-dimensional subspaces of \(K^n \). Then we have an isomorphism of \(\text{GL}_n(K) \)-sets

\[\text{Gr}_K(r,n) \cong \frac{\text{GL}_n(K)}{\text{Mat}_{r,n-r}(K) \times (\text{GL}_r(K) \times \text{GL}_{n-r}(K))}. \]
General Example:

Let $H, K \leq G$ be subgroups. Then we define an action of $H \times K$ on G by

$$(H \times K) \times G \rightarrow G$$

$$(h, k, g) \rightarrow hgk^{-1}$$

The orbits are called double cosets

$$\text{Orb}_{H \times K}(g) = \{HgK : g \in G\}$$

If H & K are finite, be able to prove that

$$|HgK| = \frac{|H| \cdot |K|}{|H \cap gKg^{-1}|}$$

Hint: Show that

$$HgK \leftrightarrow \text{Orb}_H(gK) \times K$$

and $\text{Stab}_H(gK) = H \cap gKg^{-1}$.
4) The Class Equation.

Let \(G \) act on itself by \(g(h) := ghg^{-1} \).

The orbits are called conjugacy classes.

\[K_g(a) := \{ b \in G : \exists g \in G, \ b = gag^{-1} \} \]

and the stabilizers are called centralizers.

\[Z_g(a) := \{ g \in G : gag^{-1} = a \} \]

The intersection of all centralizers is called the center of \(G \).

\[Z(G) := \bigcap_{a \in G} Z_g(a) \]

If \(K_1, K_2, \ldots, K_n \) are the classes of \(G \) and \(Z_1, Z_2, \ldots, Z_n \) are the corresponding centralizers (up to isomorphism), use the FTGS to prove that we have an isomorphism of \(G \)-sets:

\[G \cong Z(G) \sqcup \left(\bigsqcup_{Z_i \neq G} \right) \]

Hint: \(K_g(a) = \{ a \} \iff a \in Z(G) \).
If \(G \) is finite, we obtain
\[
|G| = |Z(G)| + \sum_{Z \neq G} \frac{|G|}{|Z|}
\]
which is called the class equation.

(5) Application: Sylow Theory.

Let \(|G| = p^m \) with \(p \) prime and \(p \) divides \(m \).

A Theorem (Sylow):

(i) For all \(0 \leq \beta \leq \alpha \), \(\exists \) subgroup \(H \leq G \) with \(|H| = p^\beta \).

(ii) If \(H, K \leq G \) are subgroups with
\(|K| = p^\alpha \) & \(|H| = p^\beta \) \((\beta \leq \alpha)\), then
\(\exists g \in G \) such that \(gHg^{-1} \leq K \).

(iii) If \(n_p := \# \{ K \leq G : |K| = p^\alpha \} \) then

\(n_p \mid m \)
\(n_p = 1 \mod p \).
You do not need to memorize the proof but you should know what goes into it.

The hardest part is the following lemma.

Lemma: let A be a finite abelian group and let p be prime. If $p | |A|$ then A has an element of order p.

[We proved this with a tricky argument. We'll see the correct proof next semester when we prove the Fundamental Theorem of Finitely Generated \mathbb{Z}-modules.]

The rest of the proof is more straightforward.

Proof of (c): If $p^2 | |Z:1|$ then we're done by induction. Otherwise, the class equation says that $p | |Z(G)|$, hence $Z(G)$ has an element $z \in Z(G)$ of order p (by the lemma). By induction $G/Z(G)$ has p-subgroups of all orders and we can lift these up to G.

\square
Proof of (ii): Let $H, K \leq G$ with $|K| = p^\alpha$ and $|H| = p^\beta$ ($\beta < \alpha$). Decompose G into double cosets to get

$$|G| = \sum \frac{|H| \cdot |K|}{|K \cap g^{-1}Hg|}.$$

Show by contradiction that one of the denominators has size p^β, hence

$$g \cdot Hg^{-1} \leq K.$$

Proof of (iii): Let $G \in \text{Syl}_p(G)$ by conjugation and fix $K \in \text{Syl}_p(G)$.

- By (ii) and FTGS we know that

$$|\text{Syl}_p(G)| = |\text{Orb}_e(K)| = |G|/|N_e(K)|.$$

Since $K \leq N_e(K)$ we have $p^\alpha \mid |N_e(K)|$ and it follows that $|\text{Syl}_p(G)| \mid m$.

- Now let $K \in \text{Syl}_p(G)$ by conjugation, so

$$|\text{Syl}_p(G)| = \sum \frac{|K|}{|\text{Stab}_K(H_i)|}.$$
For some $H_i \in \text{Syl}_p(K)$, show that $\text{Stab}_K(H_i) = K \iff H_i = K$ and hence

$$|\text{Syl}_p(G)| = 1 + \sum_{H_i \neq K} \frac{|K|}{|\text{Stab}_K(H_i)|}$$

$$= 1 \mod p.$$

You should know how to apply Sylow to study groups of small order.

Example: Prove that there is no simple group of order 12.

Proof: Let $|G| = 12 = 2^2 \cdot 3$.

Let $N_2 = |\text{Syl}_2(G)|$ & $N_3 = |\text{Syl}_3(G)|$.

By Sylow (i) we have $N_3 \geq 1$. If $N_3 = 1$ then by Sylow (ii) we obtain a normal subgroup of size 3, so assume that $N_3 \geq 2$. Then by Sylow (iii) we have

$$N_3 = 1 \mod 3,$$ hence $N_3 \geq 4$.
Since these subgroups intersect trivially (they are cyclic), G must contain at least 8 elements of order 3.

But then there is room for only one Sylow 2-subgroup (of size 4), which must therefore be normal.

6. Finite matrix groups.

You should also remember that

\[|GL_n(q)| = q^{\binom{n}{2}} (q-1)^{n-1} [n]_q! \]

\[|SL_n(q)| = q^{\binom{n}{2}} (q-1)^{n-1} [n]_q! \]

\[|PGL_n(q)| = \frac{q^{\binom{n}{2}} (q-1)^{n-1} [n]_q!}{\gcd(n,q-1)} \]

In case I want to use these as an example somewhere.