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Abstract. This is a survey on old and new results as well as an introduction to vari-

ous related basic notions and concepts, based on two talks given at the International

Workshop on Geometry and Analysis in Kemerovo (Sobolev Institute of Mathematics,

Kemerovo State University) and at the University of Krasnojarsk in June 2011. We

discuss finite groups acting on low-dimensional spheres, comparing with the finite sub-

groups of the corresponding orthogonal groups, and also finite simple groups acting on

spheres and homology spheres of arbitrary dimension.

1. Introduction

We are interested in the class of finite groups which admit an orientation-preserving

action on a sphere Sn of a given dimension n. All actions in the present paper

will be faithful and orientation-preserving (but no necessarily free). So formally an

action of a finite group G is an injective homomorphism from G into the group of

orientation-preserving homeomorphism of Sn; informally, we will consider G as a group

of orientation-preserving homeomorphisms of Sn and distinguish various types of ac-

tions:

topological actions: G acts by homeomorphisms;

smooth actions: G acts by diffeomorphisms;

linear (orthogonal) actions: G acts by orthogonal maps of Sn ⊂ Rn+1 (that is, G is a

subgroup of the orthogonal group SO(n+1)); or, more generally, any topological action

which is conjugate to a linear action;

locally linear actions: topological actions which are linear in regular neighbourhoods of

fixed points of any nontrivial subgroup.

It is well-known that smooth actions are locally linear (by the existence of equivariant

regular neighbourhoods, see [Bre]; see also the discussion in the next two sections for

some examples).

1

http://arxiv.org/abs/1108.2602v1


The reference model for finite group actions on Sn is the orientation-preserving orthog-

onal group SO(n+1); in fact, the only examples of actions which can easily be seen are

linear actions by finite subgroups of SO(n+1). A rough general guiding line is then the

following:

Motivating naive conjecture: Every action of a finite group on Sn is linear (that is,

conjugate to a linear action). More generally, how far can an action by homeomorphisms

or diffeomorphisms be from a linear action?

It is one of the main features of linear actions that fixed point sets of single elements are

standard unknotted spheres Sk in Sn (that is, intersections of linear subspaces Rk+1 of

R
n+1 with Sn). We note that it is a classical and central result of Smith fixed point

theory that, for an action of a finite p-group (a group whose order is a power of a prime

p) on a mod p homology n-sphere (a closed n-manifold with the mod p homology of

Sn), fixed point sets are again mod p homology spheres (see [Bre]; one has to consider

homology with coefficients in the integers mod p here since this does not remain true

in the setting of integer homology spheres).

We note that for free actions on Sn (nontrivial elements have empty fixed point sets),

the class of finite groups occurring is very restricted (they have periodic cohomology, of

period n + 1, see [Bro]). On the other hand, for not necessarily free actions, all finite

groups occur for some n (by just considering a faithful, real, linear representation of

the finite group). Two of the motivating problems of the present survey are then the

following:

Problems. i) Given a dimension n, determine the finite groups G which admit an

action on a sphere or a homology sphere of dimension n (comparing with the class of

finite subgroups of the orthogonal group SO(n+ 1)).

ii) Given a finite group G, determine the minimal dimension of a sphere or homology

sphere on which G admits an action (show that it coincides with the minimal dimension

of a linear action of G on a sphere).

We close the introduction with a general result by Dotzel and Hamrick ([DH]), again

for finite p-groups: If G is a finite p-group acting smoothly on a mod p homology n-

sphere then G admits also a linear action on Sn such that the two actions have the

same dimension function for the fixed point sets of all subgroups of G.

In the next sections we will discuss finite groups acting on low-dimensional spheres,

starting with the 2-sphere S2.
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2. Finite groups acting on S2 and finite subgroups of SO(3).

Let G be a finite group of (orientation-preserving) homeomorphisms of the 2-sphere

S2. It is a classical result of Brouwer and Kerekjarto from 1919 that such a finite

group action on a 2-manifold is locally linear: each fixed point of a nontrivial element

has a regular neighbourhood which is a 2-disk on which the cyclic subgroup fixing the

point acts as a standard orthogonal rotation on the 2-disk. This implies easily that the

quotient space S2/G (the space of orbits) is a again a 2-manifold, or better a 2-orbifold

of some signature (g;n1, . . . , nr): an orientable surface of some genus g, with r branch

points of orders n1, . . . , nr which are the projections of the fixed points of the nontrivial

cyclic subgroup of G (of orders ni > 1).

The projection S2 → S2/G is a branched covering. We choose some triangulation of the

quotient orbifold S/G such that the branch points are vertices of the triangulation, and

lift this triangulation to a triangulation of S2; then the projection S2 → S2/G becomes

a simplicial map. If the projection p is a covering in the usual sense (unbranched, i.e.

without branch points), then clearly the Euler characteristic χ behaves multiplicatively,

i.e. 2 = χ(S2) = |G| χ(S2/G) = |G| (2−2g) (just multiplying Euler characteristics with

the order |G| of G). In the case with branch points, we can correct this by subtracting

|G| for each branch point and then adding |G|/ni (the actual number of points of

S2 projecting to the i’th branch point), obtaining in this way the classical formula of

Riemann-Hurwitz:

2 = χ(S2) = |G| (2− 2g −

r∑

i=1

(1−
1

ni
)).

It is easy to see that the only solutions with positive integers of this equation are the

following (first two columns):

(0;n, n), |G| = n; G ∼= Zn cyclic;

(0; 2, 2, n), |G| = 2n; G ∼= D2n dihedral;

(0; 2, 3, 3), |G| = 12; G ∼= A4 tetrahedral;

(0; 2, 3, 4), |G| = 24; G ∼= S4 octahedral;

(0; 2, 3, 5), |G| = 60; G ∼= A5 dodecahedral.

We still have to identify the groups G. For this, we first determine the finite subgroups

of the orthogonal group SO(3) and suppose that the action of G on S2 is orthogonal. Of

course the possibilities for the signatures of the quotient orbifolds S2/G and the orders

|G| remain the same, and for orthogonal actions one can identify the groups now as the

orientation-preserving symmetry groups of the platonic solids. As an example, if the

signature is (0; 2,3,5) and |G| = 60, one considers a fixed point P of a cyclic subgroup

Z5 of G and the five fixed points of subgroups Z3 closest to P on S2; these are the

vertices of a regular pentagon on S2 which is one of the twelve pentagons of a regular

dodecahedron projected to S2, invariant under the action of G. Hence G, of order 60,
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coincides with the orientation-preserving isometry group of the regular dodecahedron,

the dodecahedral group A5; see [W, section 2.6] for more details. In this way one shows

that the finite subgroups of SO(3) are, up to conjugation, exactly the polyhedral groups

as indicated in the list above: cyclic Zn, dihedral D2n, tetrahedral A4, octahedral S4
and dodecahedral A5.

As a consequence, returning to topological actions of finite groups G on S2, the topolog-

ical orbifolds S2/G in the above list are geometric since they are homeomorphic exactly

to the quotients of S2 by the polyhedral groups. Hence the topological orbifolds S2/G

have a spherical orbifold structure (a Riemannian metric of constant curvature one, with

singular cone points of angles 2π/ni); lifting this spherical structure to S2 realizes S2 as

a spherical manifold (i.e., with a Riemannian metric of constant curvature 1, without

singular points). Since the spherical metric on S2 is unique up to isometry this gives

the standard Riemannian S2, and G acts by isometries now. Hence every topological

action of a finite group G on S2 is conjugate to an orthogonal action, that is finite

group actions on S2 are linear (this can be considered as the orbifold geometrization in

dimension two, in the spherical case).

Concluding and summarizing, finite group actions on S2 are locally linear, and then

also linear; the finite groups occurring are exactly the polyhedral groups, and every

topological action of such a group is geometric (or linear, or orthogonal), i.e. conjugate

to a linear action.

3. Finite groups acting on S3 and finite subgroups of SO(4).

3.1. Geometrization of finite group actions on S3

We consider actions of a finite group G on the 3-sphere S3 now. The first question is if

such a topological action is locally linear; by the normal form for orthogonal matrices, in

dimension three this means that an element with fixed points acts locally as a standard

rotation around some axis (the orientation-preserving case). Unfortunately this is no

longer true in dimension three; after a first example of Bing from 1952 in the orientation-

reversing case, Montgomery-Zippen 1954 gave examples also of orientation-preserving

cyclic group actions on S3 with ”wildly embedded fixed point sets”, i.e. with fixed

points sets which are locally not homeomorphic to the standard embedding of S1 in S3.

Obviously such actions are not locally linear, and in particular cannot be conjugate to

smooth or linear actions.

We will avoid these wild phenomena in the following by concentrating on smooth or

locally linear actions. Suppose now that a cyclic group G ∼= Zp, for a prime p, acts

locally linear on S3 with nonempty fixed point set; then it acts locally as a standard

rotation around an axis, and by compactness this axis closes globally to an embedded

knot K ∼= S1 in S3. We note that also for a topological action of G, by general Smith

fixed point theory the fixed point set of G is a knot K, i.e. an embedded S1 in S3. If the
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action is locally linear, K is a tame knot as considered in classical knot theory (smooth

or polygonal embeddings), otherwise K is a wild knot leading to the different field of

wild or Bing topology (see [Ro, chapter 3.I] for such wild phenomena in dimension

three).

So we will consider only locally linear actions in the following. Globally, the question

arises then which knots K can occur as the fixed point set of an action of a cyclic group

on S3; it is easy to see that the action of G ∼= Zp is linear (conjugate to a linear action)

if and only if K is a trivial knot (unknotted, i.e. bounding a disk in S3). The classical

Smith conjecture states that K is always a trivial knot, and that consequently locally

linear actions of cyclic groups are linear. A positive solution of the Smith conjecture was

the first major success of Thurston’s geometrization program for 3-manifolds (see [MB]).

This has been widely generalized by Thurston then who showed that finite nonfree group

actions on closed 3-manifolds are build from geometric actions (orbifold geometrization

in dimension three), and recently by Perelman also for free actions of finite groups

(manifold geometrization in dimension three). As a consequence, every finite group

acting smoothly or locally linearly on S3 is geometric, i.e. conjugate to an orthogonal

or linear action.

Concluding, finite group actions on S3 are not locally linear, in general, but smooth

or locally linear actions are linear; in particular, the finite groups acting smoothly or

locally linearly on S3 are exactly the finite subgroups of the orthogonal group SO(4).

In the remaining part of this section we discuss the finite subgroups of the orthogonal

group SO(4), starting with the relation between SO(3) and the unit quaternions.

3.2. The orthogonal group SO(3) and the unit quaternions S3.

The orthogonal group SO(3) is homeomorphic to the real projective space RP3 of di-

mension three. In fact, by the normal form for orthogonal 3×3 matrices, such a matrix

induces a clockwise rotation of the unit 3-ball in R3 around some oriented axis or diam-

eter; parametrising the diameter by an rotation angle from −π to π, one obtains SO(3)

by identifying diametral points on the boundary S2 of the 3-ball (since −π and π give

the same rotation), and consequently SO(3) is homeomorphic to RP3.

Hence the universal covering of SO(3) ∼= RP3 ∼= S3/〈±id〉 is the 3-sphere S3. Con-

sidering S3 as the unit quaternions, an orthogonal action of S3 on the 2-sphere S2 is

obtained as follows. The unit quaternions S3 act on itself by conjugation x → q−1xq,

for a fixed q ∈ S3; this action is clearly linear and also orthogonal. Since q fixes both

poles 1 and -1 in S3, it restricts to an orthogonal action on the corresponding equatorial

2-sphere S2 in S3, so this defines an element of the orthogonal group SO(3) and a group

homomorphism S3 → SO(3) of Lie groups of the same dimension, with kernel ±1; by

standard facts about Lie groups, this is the universal covering of SO(3) ∼= S3/〈±1〉.
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The finite subgroups of SO(3) are exactly the polyhedral groups Zn,D2n,A4, S4 and A5.

Their preimages in the unit quaternions S3 are the binary polyhedral groups

Z2n, D
∗

2n, A
∗

4, S
∗

4, A
∗

5

(cyclic, binary dihedral, binary tetrahedral, binary octahedral or binary dodecahedral).

Since S3 has a unique nontrivial involution -1, together with the cyclic groups of odd

order these are exactly the finite subgroups of the unit quaternions S3, up to conjuga-

tion. By right multiplication, they act freely and orthogonally on the 3-sphere S3, and

the quotient spaces are examples of spherical 3-manifolds; for example, S3/A∗
5 is the

Poincaré homology 3-sphere.

We note that the Lie group S3 has various descriptions: it occurs as the unitary group

SU(2) over the complex numbers, as the universal covering group Spin(3) of SO(3) over

the reals, and finally as the symplectic group Sp(1) over the quaternions (in fact, the

unit quaternions).

3.3. The orthogonal group SO(4) as a central product S3 ×Z2
S3.

Passing to the orthogonal group SO(4) now acting on the unit 3-sphere S3 ⊂ R4, there

is an orthogonal action of S3 × S3 on S3 given by x → q−1
1 xq2, for a fixed pair of

unit quaternions (q1, q2) ∈ S3 × S3. This defines again a homomorphism of Lie groups

S3 × S3 → SO(4) of the same dimension, with kernel Z2 generated by (−1,−1), so this

is in fact the universal covering of the Lie group SO(4). In particular, the universal

covering group Spin(4) of SO(4) is isomorphic to S3 × S3, and SO(4) is isomorphic to

the central product S3 ×Z2
S3 of two copies of the unit quaternions (the direct product

with identified centers, noting that the center of the unit quaternions is isomorphic to

Z2 generated by −1).

Identifying SO(4) with S3 ×Z2
S3, the finite subgroups of SO(4) are, up to conjugation,

exactly the finite subgroups of the central products

P ∗

1 ×Z2
P ∗

2 ⊂ S3 ×Z2
S3

of two binary polyhedral groups P ∗
1 and P ∗

2 . The most interesting example of such a

group is the central product A∗
5 ×Z2

A∗
5 of two binary dodecahedral groups which occurs

as the orientation-preserving symmetry group of the regular 4-dimensional 120-cell (a

fundamental domain for the universal covering group A
∗
5 of the Poincaré homology

sphere S3/A∗
5 is a regular spherical dodecahedron, and 120 copies of this dodecahedron

give a regular spherical tesselation of the 3-sphere S3; the vertices of this tesselation

are the vertices of the regular euclidean 120-cell in R4 whose faces are 120 regular

dodecahedra.)

Concluding, the finite subgroups of SO(4) are exactly the subgroups of the central

products P ∗
1 × P ∗

2 of two binary polyhedral groups P ∗
1 and P ∗

2 . It is then an algebraic
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exercise to classify the possible groups, up to isomorphism and up to conjugation (see

[DV] for a list of the finite subgroups of SO(4), and also of O(4)).

4. Finite groups acting on S4 and finite subgroups of SO(5).

As we have seen in the previous sections, finite group actions on the 2-sphere are locally

linear, and then also linear. In dimension three, finite group actions are not locally

linear, in general, but by deep results of Thurston and Perelman, smooth or locally

linear actions on the 3-sphere are linear. In dimension four, also smooth or locally

linear actions are no longer linear, in general. In fact it has been shown by Giffen

in 1966 that the Smith conjecture fails in dimension four, by constructing examples of

smooth actions of a finite cyclic group on S4 whose fixed point sets are knotted 2-spheres

in S4 (see [R, chapter 11.C]); in particular, such an action cannot be linear.

Restricting again to smooth or locally linear actions, we consider now the problem stated

in the introduction: which finite groups G admit a smooth orientation-preserving action

on the 4-sphere S4; also, what are the finite subgroups of SO(5)?

Suppose that G is a finite group with an orientation-preserving, faithful, linear action on

S4 ⊂ R5; using the language of group representations, this means that G has a faithful,

orientation-preserving, real representation in dimension five. If such a representation

is reducible (a direct sum of lower-dimensional representations), G is an orientation-

preserving subgroup of a product of orthogonal groups O(3)×O(2) or O(4)×O(1), so

one can reduce to lower dimensions.

Suppose that the representation is irreducible but imprimitive; this means that there

is a decomposition of R5 into proper linear subspaces which are permuted transitively

by the group. Since the dimension five is prime, these linear subspaces have to be 1-

dimensional (such a representation is then called monomial). The group of orthogonal

maps permuting the five factors R of R5 is the Weyl-group W5 = (Z2)
5
⋊S5 of inversions

and permutations of coordinates, i.e. the semidirect product of the normal subgroup

(Z2)
5 generated by the inversions and the symmetric group S5 of permutations of the

factors. Hence G is a subgroup of the Weyl-group W = (Z2)
5 ⋊ S5 in this case.

There remains the case of an irreducible, primitive representation; this is the main

case which has been considered by various authors and for arbitrary dimension; a major

problem here is to find the simple groups which admit such a representation (i.e., groups

without a nontrivial proper normal subgroup). This leads into classical representation

theory of finite groups, and we will not go further into it. In fact, we gave the above

description mainly as a motivation for the next result on smooth or locally linear actions

of finite groups on the 4-sphere.
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Theorem 1. ([MeZ1]) A finite group G with a smooth or locally linear, orientation-

preserving action on the 4-sphere, or on any homology 4-sphere, is isomorphic to one of

the following groups:

i) an orientation-preserving subgroup of O(3)×O(2) or O(4)×O(1);

ii) an orientation-preserving subgroup of the Weyl group W = (Z2)
5 ⋊ S5;

iii) A5, S5, A6 or S6;

i’) if G is nonsolvable, a 2-fold extension of a subgroup of SO(4).

Note that the different cases of the Theorem are not mutually exclusive. The only

indetermination remains case i’); in fact, in this case G should be isomorphic to a

subgroup of O(4) and hence to an orientation-preserving subgroup of the group O(4)×

O(1) of case i); however the proof in this case is not completed at present since many

different cases have to be considered, according to the long list of finite subgroups of

SO(4) (see [DV]).

Corollary 1. A finite group G which admits an orientation-preserving action on a

homology 4-sphere is isomorphic to a subgroup of SO(5) or, if G is solvable, to a 2-fold

extension of a subgroup of SO(4).

The symmetric group S6 acts orthogonally on R6 by permutation of coordinates, and

also on its subspace R5 defined by setting the sum of the coordinates equal to zero

(this is called the standard representation of S6), and hence on the unit sphere S4 ⊂

R5. Composing the orientation-reversing elements by -id, one obtains an orientation-

presering action of S6 on S4 (alternatively, S6 acts on the 5-simplex by permuting its

six vertices, and hence on its boundary which is the 4-sphere.)

For linear action, Theorem 1 and its proof easily give the following characterization of

the finite subgroups of SO(5).

Corollary 2. Let G be a finite subgroup of the orthogonal group SO(5). Then one of

the following cases occurs:

i) G is conjugate to an orientation-preserving subgroup of O(4) ×O(1) or O(3)×O(2)

(the reducible case);

ii) G is conjugate to a subgroup of the Weyl group W = (Z2)
4 ⋊ S5 (the irreducible,

imprimitive case);

iii) G is isomorphic to A5, S5, A6 or S6 (the irreducible, primitive case).

See the character tables in [C] or [FH] for the irreducible representations of the groups

in iii) (e.g. A5 occurs as an irreducible subgroup of all three orthogonal groups SO(3),

SO(4) and SO(5)).

It should be noted that the proof of Corollary 2 is considerably easier than the proof of

Theorem 1. For both Theorem 1 and Corollary 2 one has to determine the finite simple
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groups which act on a homology 4-sphere resp. which admit an orthogonal action on

the 4-sphere. In the case of Theorem 1 this is based on [MeZ2, Theorem 1] which

employs the Gorenstein-Harada classification of the finite simple groups of sectional

2-rank at most four (see [Su2], [G1]). For the proof of Corollary 2 instead, this heavy

machinery from the classification of the finite simple groups can be replaced by much

shorter arguments from the representation theory of finite groups.

For solvable groups G instead, the proof of Theorem 1 is easier; here one can consider the

Fitting subgroup of G, the maximal normal nilpotent subgroup, which is nontrivial for

solvable groups. As a nilpotent group, the Fitting subgroup is the direct product of its

Sylow p-subgroups, has nontrivial center and hence nontrivial cyclic normal subgroups

of prime order. A starting point of the proof of Theorem 1 is then the following lemma

which shows some of the basic ideas involved.

Lemma 1. Let G be a finite group with a smooth, orientation-preserving action on a

homology 4-sphere. Suppose that G has a cyclic normal group Zp of prime order p; by

Smith fixed point theory, the fixed point set of Zp is either a 0-sphere S0 or a 2-sphere

S2 (i.e., a mod p homology sphere of even codimension).

i) If the fixed point set of Zp is a 0-sphere then G contains of index at most two a

subgroup isomorphic to a subgroup of SO(4). Moreover if G acts orthogonally on S4

then G is conjugate to a subgroup of O(4)×O(1).

ii) If the fixed point set of Zp is a 2-sphere then G is isomorphic to a subgroup of

O(3)×O(2). Moreover if G acts orthogonally on S4 then G is conjugate to a subgroup

of O(3)×O(2).

Proof. i) Since Zp is normal in G, the group G leaves invariant the fixed point set S0 of

Zp which consists of two points. A subgroup G0 of index at most two of G fixes both

points and acts orthogonally and orientation-preservingly on a 3-sphere, the boundary

of a G0-invariant regular neighborhood of one of the two fixed points.

If the action of G is an orthogonal action on the 4-sphere then G acts orthogonally on

the equatorial 3-sphere of the 0-sphere S0 and hence is a subgroup of O(4) × O(1), up

to conjugation.

ii) The group G leaves invariant the fixed point set S2 of Zp. A G-invariant regular

neighbourhood of S2 is diffeomorphic to the product of S2 with a 2-disk, so G acts on

its boundary S2×S1 (preserving its fibration by circles). Now, by the geometrization of

finite group actions in dimension three, it is well-known that every finite group action on

S2×S1 preserves the product structure and is standard, i.e. is conjugate to a subgroup

of its isometry group O(3)×O(2).

If G acts orthogonally on S4 then the group G leaves invariant S2, the corresponding

3-dimensional subspace in R5 as well as its orthogonal complement, so up to conjugation

it is a subgroup of O(3)×O(2).
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5. Higher dimensions

Relevant in the context of linear actions on spheres is the classical Jordan number:

for each dimension n there is an integer j(n) such that each finite subgroup of the

complex linear group GLn(C), and hence in particular also of its subgroup SO(n), has

a normal abelian subgroup of index at most j(n) (we note that a lower bound for j(n)

is (n+ 1)! since the symmetric group Sn+1 is a subgroup of GLn(C); see the comments

to [KP, Theorem 5.1] for an upper bound.) Whereas this is insignificant for abelian

group, it implies that the order of a nonabelian simple groups acting linearly on Sn

is bounded by j(n + 1); in particular, up to isomorphism there are only finitely many

finite simple groups (always understood to be nonabelian in the following) which admit a

faithful, linear action on Sn (or equivalently, have a faithful, real, linear representation

in dimension n + 1). For smooth or locally linear actions of finite simple groups on

spheres and homology spheres, there is the following analogue.

Theorem 2. ([GZ]) For each dimension n, up to isomorphism there are only finitely

many finite simple groups which admit a smooth or locally linear action on the n-sphere,

or on some homology sphere of dimension n.

We note that any finite simple group admits many smooth actions on high-dimensional

spheres which are not linear (conjugate to a linear action; see the survey [Da, section

7]).

It is natural to ask whether the Jordan number theorem can be generalized for all finite

groups acting on homology n-spheres. Since, as noted in the introduction, finite p-groups

admitting a smooth action on some homology n-sphere admit also a linear action on

Sn ([DH]), it is easy to generalize the Jordan number theorem for nilpotent groups; so

the Jordan theorem remains true for the two extreme opposite cases of nilpotent groups

and simple groups, but at present we don’t know it for arbitrary finite groups.

Not surprisingly, the proof of Theorem 2 requires the full classification of the finite

simple groups; we will present part of the proof in the following. We note that the proof

of Theorem 2 permits to produce for each dimension n a finite list of finite simple groups

which are the candidates for actions on homology n-spheres; then one can identify those

groups from the list which admit a linear action on Sn (or equivalently, have a faithful,

real, linear representation in dimension n+ 1), and try to eliminate the remaining ones

by refined methods. For example, it is shown in [MeZ2-4] that the only finite simple

group which admits an action on a homology 3-sphere is the alternating group A5, and

that the only finite simple groups acting on a homology 4-sphere are the alternating

groups A5 and A6; already these low-dimensional results require heavy machinery from

the classification of the finite simple groups.

Crucial for the proofs of Theorems 1 and 2 is a control over the minimal dimension of

an action of a linear fractional group PSL2(p) and a linear group SL2(p) (the latter is
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the group of 2 × 2-matrices of determinant one over the finite field with p elements,

the former its factor group by the central subgroup Z2 = 〈±E2〉); this is given by the

following:

Proposition 1. ([GZ]) For a prime p ≥ 5, the minimal dimension of an action of a

linear fractional group PSL2(p) on a mod p homology sphere is (p−1)/2 if p ≡ 1 mod 4,

and p− 2 if p ≡ 3 mod 4, and these are also lower bounds for the dimension of such an

action of a linear group SL2(p).

Whereas the groups PSL2(p) admit linear actions on spheres of the corresponding di-

mensions (see e.g. [FH]), for the groups SL2(p) the minimal dimension of a linear action

on a sphere is p−2 resp. p, that is strictly larger than the lower bounds given in Propo-

sition 1, so the minimal dimension of an action on a homology sphere remains open

here.

In analogy with Proposition 1, we need also the following result from Smith fixed point

theory for elementary abelian p-groups ([Sm]).

Proposition 2. The minimal dimension of a faithful, orientation-preserving action of

an elementary abelian p-group (Zp)
k on a mod p homology sphere is k if p = 2, and

2k − 1 if p is an odd prime.

Considering commutator subgroups, the proof of the following lemma is an easy exercise

(a finite central extension of G is a finite group with a central subgroup whose factor

group is isomorphic to G; a group is perfect if it coincides with its commutator subgroup

or, equivalently, the abelianized group is trivial).

Lemma 2. If a finite group G has a perfect subgroupH then any finite central extension

of G contains a perfect central extension of H.

For the proof of Theorem 2, Lemma 2 will be applied mainly when H is a linear group

SL2(q), for a prime power q = pk (that is, over the finite field with pk elements); we note

that, for q ≥ 5 and different from 9, the only perfect central extension of the perfect

group SL2(q) is the group itself (see [H, chapter V.25]) (and the only nontrivial perfect

central extension of PSL2(q) is SL2(q)).

On the basis of Propositions 1 and 2 and the classification of the finite simple groups,

we indicate now the

Proof of Theorem 2. Fixing a dimension n, we have to exclude all but finitely many

finite simple groups. By the classification of the finite simple groups, a finite simple

group is one of 26 sporadic groups, or an alternating group, or a group of Lie type

([Co], [G1]). We can neglect the sporadic groups and have to exclude all but finitely

many groups of the infinite series. Clearly, an alternating group Am contains elementary
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abelian subgroups (Z2)
k of rank k growing with the degree m, so Proposition 2 excludes

all but finitely many alternating groups and we are left with the infinite series of groups

of Lie type.

We consider first the projective linear groups PSLm(q), for a prime power q = pk.

The group PSL2(q) has subgroups PSL2(p) and (Zp)
k (the subgroup represented by all

diagonal matrices with entries one on the diagonal, isomorphic to the additive group

of the field with pk elements), and by Propositions 1 and 2 only finitely many primes

p and prime powers pk can occur. If m ≥ 3 instead, PSLm(q) has subgroups SL2(q)

and SL2(p); again Proposition 1 excludes all but finitely many primes p and, since also

SL2(q) has an elementary abelian subgroup (Zp)
k, by Proposition 4 only finitely many

powers pk of a fixed prime p can occur. Concluding, only finitely many prime powers

pk can occur for a fixed dimension n. Note that, in a similar way, also for the groups

SL2(q) only finitely many values of q can occur. We still have to bound m; if q is not a

power of two, then PSLm(q) has a subgroup (Z2)
m−2 represented by diagonal matrices

with entries ±1 on the diagonal, so m is bounded by Proposition 2. If q is a power of

two, one may consider instead subgroups (Zp)
[m/2] < SL2(p)

[m/2] < PSLm(q) and again

apply Proposition 2.

This finishes the proof of Theorem 2 for the case of the projective linear groups PSLm(q).

The proof for the unitary groups PSUm(q) and the symplectic groups PSp2m(q) is

similar, noting that there are isomorphisms

PSU2(q) ∼= PSp2(q)
∼= PSL2(q), SU2(q) ∼= Sp2(q)

∼= SL2(q);

in particular, if m ≥ 3 resp. 2m ≥ 4, the latter groups are subgroups of both PSUm(q)

and PSp2m(q), so we can conclude as before.

The last class of classical groups are the orthogonal groups Ω2m+1(q) = PΩ2m+1(q) and

PΩ±

2m(q) (the latter stands for two different groups which are simple if m ≥ 3). There

are isomorphisms

Ω3(q) ∼= PSL2(q), PΩ+
4 (q)

∼= PSL2(q)× PSL2(q), PΩ−

4 (q)
∼= PSL2(q

2)

(see [Su, p.384]). By canonical inclusions between orthogonal groups and the cases

considered before, this leaves again only finitely many possibilities.

Next we consider the exceptional groups G2(q), F4(q), E6(q), E7(q), E8(q) as well as

the Steinberg triality groups 3D4(q). By [St, Table 0A8], [GL, Table 4-1], up to central

extensions there are inclusions

E6(q) > F4(q) >
3D4(q) > G2(q) > PSL3(q), E7(q) > PSL8(q), E8(q) > PSL9(q).

Applying Lemma 1 we reduce to subgroups SL2(q) in all cases.
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Finally, there remain the twisted groups

2E6(q),
3D4(q), Sz(22m+1) = 2B2(2

2m+1), 2G2(3
2m+1), 2F4(2

2m+1).

By [St, Table 0A8], [GL, Table 4-1], up to central extensions there are inclusions
2E6(q) > F4(q) and 3D4(q) > G2(q) (already considered before); the Suzuki groups

Sz(22m+1) have subgroups (Z2)
2m+1 ([G1, p.74]), the Ree groups 2G2(3

2m+1) subgroups

PSL2(3
2m+1) ([G2, p.164]) and the Ree groups 2F4(2

2m+1) subgroups SU3(2
2m+1) ([GL,

Table 4-1]), so in all these cases some previously considered case applies.

This completes the proof of Theorem 2.
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