Math 562/662 Spring 2024
Homework 6 Drew Armstrong

1. The Galois Group Permutes the Roots. Let E O F be a splitting field for a specific
polynomial f(z) € F[z] of degree n. This means that E = F(ay,...,a,) for some elements
at, - .., 0 satisfying

f(@) = (z —a)(z —ag) - (z — an).
Let G = Gal(E/F) be the group of automorphisms o : E — E satisfying o(a) = a for all a € F.

(a) For each o € G and each root «; of f(x), show that o(w;) is also a root of f(x). Hence
for each 0 € G and i € {1,...,n} there exists a unique 7,(i) € {1,...,n} satisfying

U(Oéi) = Odﬂg(i) .

Let 7y : {1,...,n} = {1,...,n} denote the corresponding function.

(b) Show that the function 7, is a permutation. [Hint: It suffices to show that 7, is
injective. Recall that o is injective by assumption.]

(c) Show that the function II : G — S,, defined by o — 7, is a group homomorphism.

(d) Finally, show that II is injective. [Hint: A group homomorphism is injective if and
only if its kernel is trivial. If w, € S, is the identity permutation, show that ¢ € G
must be the identity automorphism.]

2. Abstract Galois Connections. Let (P, <) and (Q, <) be posets. Let x: P Q : * be
a pair of functions satisfying the following property

for all p € P and g € Q we have p < ¢* < ¢ < p*.
Such a pair is called an abstract Galois connection. Since the following results are symmetric
in P and @ you only need to prove half of them.

(a) For all p € P and ¢ € @ show that p < p** and ¢ < ¢**

(b) For all p1,p2 € P and q1,¢2 € Q show that p; <p2 = p; < pj and ¢1 < g2 = ¢3 < qf-

(c) For all p € P and ¢ € Q show that p*** = p* and ¢*** = ¢*.

(d) Let P" ={p e P:p*™ =p}and Q = {qg € Q : ¢ = ¢q}. Show that the maps
*: P S (@ : * restrict to a bijection:

P & Q %

3. The Galois Group of a Cyclotomic Extension. Let w = exp(27i/n). The splitting
field of the polynomial 2" — 1 over Q is

Q1,w, ..., ”’1)2 ()

In this problem you will prove that G := Gal(Q(w
tomic polynomial ®,,(z) is irreducible over Q

(Z/nZ)*, assuming that the cyclo-

(a) For any o € G show that we must have o(w) = w* for some ged(k,n) = 1. [Hint: Show
that ®,,(w) = 0 implies ¢, (o(w)) = 0.]

lWe write p” instead of *(p). Because of the symmetry we don’t need to give the functions different names.
2This is fairly difficult to prove in general. On the previous homework you (almost) proved that ®,(z) is
irreducible over Q when p is prime.



(b) For any 0 < k < n with ged(k,n) = 1 show that there exists a (unique) element
o € G satisfying o(w) = w*. [Hint: Since w and w* are both roots of the irreducible
polynomial ®,(x) € Q[x], the minimal polynomial theorem implies that

~ Q[z] ~ Ok
Q) = g = 0]

(¢) For any 0 < k < n with ged(k,n) = 1 let o € G we the unique element satisfying
or(w) = w*. Show that the map (Z/nZ)* — G defined by k + oy, is a group isomor-
phism. [Hint: First show that (o} o 0y)(w) = oe(w). Then use the fact that every
element of Q(w) has the form f(w)/g(w) for some f(x), g(z) € Q[z] with g(w) # 0.]

4. Finite Dimensional Field Extensions. Consider a field extension E D F where E is
finite-dimensional as a vector space over F, i.e., [E/F] < co.

(a) Prove that every element o € E is algebraic over F, i.e., is the root of some polynomial
f(z) € Flz]. [Hint: Since E is finite-dimensional over F, the infinite list of elements
1,a,a?, ... must be linearly dependent over F.]

(b) Prove that E = F(ay,...,a,) for some finite list of elements «1,...,a, € E. [Hint:
Use induction on dimension. If [E/F] =1 then E = F and there is nothing to show so
suppose that [E/F] > 2, i.e., E # F. Choose any element o1 € E \ F and consider the
fields E D F(a;) D F. Dedekind’s Tower Law says

[E/F] = [E/F(c1)] - [F(o)/F].
Since F(a;) # F we have [F(a1)/F] > 2, hence [E/F(ay)] is strictly less than [E/F].]

5. Characteristic Zero Fields are Perfect. A field F is called perfect if irreducible
polynomials f(z) € F[x] have no repeated roots in any field extension E D F. Prove that
fields of characteristic zero are perfect. [Hint: Since I has characteristic zero we know that
deg(Df) = deg(f)—1. In particular, D f(x) # 0. Use the fact that f(x) is irreducible to show
that ged(f, Df) = 1 in F[z]. On the other hand, if f(x) has a repeated root « € E D F in
some field extension show that we must have deg(f, Df) # 1 in E[z].]

6. The Primitive Element Theorem. Let I be any subfield of C, so F has characteristic
zeroE| Given any two numbers «, 3 € C that are algebraic over F, we will prove that there
exists a number v € C (also algebraic over ) satisfying

Fe, ) = F(7).
More precisely, we will show that there exists a scalar ¢ € F such that v := « + ¢f satisfies
the desired property.
(a) Show that every field of characteristic zero is infinite.
(b) Let f(x),g(z) € F[z] be the minimal polynomials of «, 5. Since F is infinite we may
choose an element ¢ € F such that ¢ # (¢/ — «)/(8 — #') for all roots o, 5" € E of
f(x), g(z), respectively. Define v := a 4 ¢f and consider the polynomial

h(w) = f(y — cx) € F(y)[x].
Show that the greatest common divisor of g(x) and h(x) in F(vy)[x] has degree < 1.
[Hint: Note that 8 is a common root of g(z) and h(x). If the ged of g(z) and h(x)
in F()[z] has degree > 2, use Problem 5 to show that g(x) and h(z) have another
common root 5" # 3, which contradicts the definition of ¢.]

3This proof works more generally for any perfect field F; e.g., for any finite field. Then we replace C with
any field large enough to contain all the roots of the minimal polynomials of « and .



(c) Let p(z) € F(v)[z] be the minimal polynomial of 5 over F(vy). Prove that p(z) = = —f,
and hence € F(v). [Hint: Since g(z), h(z) € F(v)[z] have 8 as a common root, show
that p(z) divides the ged of g(x) and h(z) in F(+)[z]. Then use part (b).]

(d) Finally, use (c) to show that F(«, 8) = F(vy).

(e) Corollary. Let E D F be any finite-dimensional extension of characteristic zero fields.
Use Problem 4 to show that E = F(v) for some 7 € E.

Remark: This result is the first step in the proof of the Fundamental Theorem of Galois
Theory. I will provide a note that sketches out the rest of the proof.



