1. The Galois Group Permutes the Roots. Let $\mathbb{E} \supseteq \mathbb{F}$ be a splitting field for a specific polynomial $f(x) \in \mathbb{F}[x]$ of degree n. This means that $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some elements $\alpha_{1}, \ldots, \alpha_{n}$ satisfying

$$
f(x)=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{n}\right) .
$$

Let $G=\operatorname{Gal}(\mathbb{E} / \mathbb{F})$ be the group of automorphisms $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ satisfying $\sigma(a)=a$ for all $a \in \mathbb{F}$.
(a) For each $\sigma \in G$ and each root α_{i} of $f(x)$, show that $\sigma\left(\alpha_{i}\right)$ is also a root of $f(x)$. Hence for each $\sigma \in G$ and $i \in\{1, \ldots, n\}$ there exists a unique $\pi_{\sigma}(i) \in\{1, \ldots, n\}$ satisfying

$$
\sigma\left(\alpha_{i}\right)=\alpha_{\pi_{\sigma}(i)}
$$

Let $\pi_{\sigma}:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ denote the corresponding function.
(b) Show that the function π_{σ} is a permutation. [Hint: It suffices to show that π_{σ} is injective. Recall that σ is injective by assumption.]
(c) Show that the function $\Pi: G \rightarrow S_{n}$ defined by $\sigma \mapsto \pi_{\sigma}$ is a group homomorphism.
(d) Finally, show that Π is injective. [Hint: A group homomorphism is injective if and only if its kernel is trivial. If $\pi_{\sigma} \in S_{n}$ is the identity permutation, show that $\sigma \in G$ must be the identity automorphism.]
2. Abstract Galois Connections. Let (P, \leq) and (Q, \leq) be posets. Let $*: P \leftrightarrows Q: *$ be a pair of functions satisfying the following property $]^{1]}$

$$
\text { for all } p \in P \text { and } q \in Q \text { we have } p \leq q^{*} \Longleftrightarrow q \leq p^{*} .
$$

Such a pair is called an abstract Galois connection. Since the following results are symmetric in P and Q you only need to prove half of them.
(a) For all $p \in P$ and $q \in Q$ show that $p \leq p^{* *}$ and $q \leq q^{* *}$.
(b) For all $p_{1}, p_{2} \in P$ and $q_{1}, q_{2} \in Q$ show that $p_{1} \leq p_{2} \Rightarrow p_{2}^{*} \leq p_{1}^{*}$ and $q_{1} \leq q_{2} \Rightarrow q_{2}^{*} \leq q_{1}^{*}$.
(c) For all $p \in P$ and $q \in Q$ show that $p^{* * *}=p^{*}$ and $q^{* * *}=q^{*}$.
(d) Let $P^{\prime}=\left\{p \in P: p^{* *}=p\right\}$ and $Q^{\prime}=\left\{q \in Q: q^{* *}=q\right\}$. Show that the maps $*: P \leftrightarrows Q: *$ restrict to a bijection:

$$
*: P^{\prime} \leftrightarrow Q^{\prime}: * .
$$

3. The Galois Group of a Cyclotomic Extension. Let $\omega=\exp (2 \pi i / n)$. The splitting field of the polynomial $x^{n}-1$ over \mathbb{Q} is

$$
\mathbb{Q}\left(1, \omega, \ldots, \omega^{n-1}\right)=\mathbb{Q}(\omega) .
$$

In this problem you will prove that $G:=\operatorname{Gal}(\mathbb{Q}(\omega) / \mathbb{Q}) \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$, assuming that the cyclotomic polynomial $\Phi_{n}(x)$ is irreducible over $\mathbb{Q} \cdot \|^{2}$
(a) For any $\sigma \in G$ show that we must have $\sigma(\omega)=\omega^{k}$ for some $\operatorname{gcd}(k, n)=1$. [Hint: Show that $\Phi_{n}(\omega)=0$ implies $\Phi_{n}(\sigma(\omega))=0$.]

[^0](b) For any $0 \leq k<n$ with $\operatorname{gcd}(k, n)=1$ show that there exists a (unique) element $\sigma \in G$ satisfying $\sigma(\omega)=\omega^{k}$. [Hint: Since ω and ω^{k} are both roots of the irreducible polynomial $\Phi_{n}(x) \in \mathbb{Q}[x]$, the minimal polynomial theorem implies that
$$
\left.\mathbb{Q}(\omega) \cong \frac{\mathbb{Q}[x]}{\Phi_{n}(x) \mathbb{Q}[x]} \cong \mathbb{Q}\left(\omega^{k}\right) .\right]
$$
(c) For any $0 \leq k<n$ with $\operatorname{gcd}(k, n)=1$ let $\sigma_{k} \in G$ we the unique element satisfying $\sigma_{k}(\omega)=\omega^{k}$. Show that the map $(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow G$ defined by $k \mapsto \sigma_{k}$ is a group isomorphism. [Hint: First show that $\left(\sigma_{k} \circ \sigma_{\ell}\right)(\omega)=\sigma_{k \ell}(\omega)$. Then use the fact that every element of $\mathbb{Q}(\omega)$ has the form $f(\omega) / g(\omega)$ for some $f(x), g(x) \in \mathbb{Q}[x]$ with $g(\omega) \neq 0$.]
4. Finite Dimensional Field Extensions. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ where \mathbb{E} is finite-dimensional as a vector space over \mathbb{F}, i.e., $[\mathbb{E} / \mathbb{F}]<\infty$.
(a) Prove that every element $\alpha \in \mathbb{E}$ is algebraic over \mathbb{F}, i.e., is the root of some polynomial $f(x) \in \mathbb{F}[x]$. [Hint: Since \mathbb{E} is finite-dimensional over \mathbb{F}, the infinite list of elements $1, \alpha, \alpha^{2}, \ldots$ must be linearly dependent over \mathbb{F}.]
(b) Prove that $\mathbb{E}=\mathbb{F}\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some finite list of elements $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{E}$. [Hint: Use induction on dimension. If $[\mathbb{E} / \mathbb{F}]=1$ then $\mathbb{E}=\mathbb{F}$ and there is nothing to show so suppose that $[\mathbb{E} / \mathbb{F}] \geq 2$, i.e., $\mathbb{E} \neq \mathbb{F}$. Choose any element $\alpha_{1} \in \mathbb{E} \backslash \mathbb{F}$ and consider the fields $\mathbb{E} \supseteq \mathbb{F}\left(\alpha_{1}\right) \supseteq \mathbb{F}$. Dedekind's Tower Law says
$$
[\mathbb{E} / \mathbb{F}]=\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right] \cdot\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right] .
$$

Since $\mathbb{F}\left(\alpha_{1}\right) \neq \mathbb{F}$ we have $\left[\mathbb{F}\left(\alpha_{1}\right) / \mathbb{F}\right] \geq 2$, hence $\left[\mathbb{E} / \mathbb{F}\left(\alpha_{1}\right)\right]$ is strictly less than $\left.[\mathbb{E} / \mathbb{F}].\right]$
5. Characteristic Zero Fields are Perfect. A field \mathbb{F} is called perfect if irreducible polynomials $f(x) \in \mathbb{F}[x]$ have no repeated roots in any field extension $\mathbb{E} \supseteq \mathbb{F}$. Prove that fields of characteristic zero are perfect. [Hint: Since \mathbb{F} has characteristic zero we know that $\operatorname{deg}(D f)=\operatorname{deg}(f)-1$. In particular, $D f(x) \neq 0$. Use the fact that $f(x)$ is irreducible to show that $\operatorname{gcd}(f, D f)=1$ in $\mathbb{F}[x]$. On the other hand, if $f(x)$ has a repeated root $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ in some field extension show that we must have $\operatorname{deg}(f, D f) \neq 1$ in $\mathbb{E}[x]$.]
6. The Primitive Element Theorem. Let \mathbb{F} be any subfield of \mathbb{C}, so \mathbb{F} has characteristic zero ${ }^{3}$ Given any two numbers $\alpha, \beta \in \mathbb{C}$ that are algebraic over \mathbb{F}, we will prove that there exists a number $\gamma \in \mathbb{C}$ (also algebraic over \mathbb{F}) satisfying

$$
\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma) .
$$

More precisely, we will show that there exists a scalar $c \in \mathbb{F}$ such that $\gamma:=\alpha+c \beta$ satisfies the desired property.
(a) Show that every field of characteristic zero is infinite.
(b) Let $f(x), g(x) \in \mathbb{F}[x]$ be the minimal polynomials of α, β. Since \mathbb{F} is infinite we may choose an element $c \in \mathbb{F}$ such that $c \neq\left(\alpha^{\prime}-\alpha\right) /\left(\beta-\beta^{\prime}\right)$ for all roots $\alpha^{\prime}, \beta^{\prime} \in \mathbb{E}$ of $f(x), g(x)$, respectively. Define $\gamma:=\alpha+c \beta$ and consider the polynomial

$$
h(x):=f(\gamma-c x) \in \mathbb{F}(\gamma)[x] .
$$

Show that the greatest common divisor of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$ has degree ≤ 1. [Hint: Note that β is a common root of $g(x)$ and $h(x)$. If the gcd of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$ has degree ≥ 2, use Problem 5 to show that $g(x)$ and $h(x)$ have another common root $\beta^{\prime} \neq \beta$, which contradicts the definition of c.]

[^1](c) Let $p(x) \in \mathbb{F}(\gamma)[x]$ be the minimal polynomial of β over $\mathbb{F}(\gamma)$. Prove that $p(x)=x-\beta$, and hence $\beta \in \mathbb{F}(\gamma)$. [Hint: Since $g(x), h(x) \in \mathbb{F}(\gamma)[x]$ have β as a common root, show that $p(x)$ divides the gcd of $g(x)$ and $h(x)$ in $\mathbb{F}(\gamma)[x]$. Then use part (b).]
(d) Finally, use (c) to show that $\mathbb{F}(\alpha, \beta)=\mathbb{F}(\gamma)$.
(e) Corollary. Let $\mathbb{E} \supseteq \mathbb{F}$ be any finite-dimensional extension of characteristic zero fields. Use Problem 4 to show that $\mathbb{E}=\mathbb{F}(\gamma)$ for some $\gamma \in \mathbb{E}$.

Remark: This result is the first step in the proof of the Fundamental Theorem of Galois Theory. I will provide a note that sketches out the rest of the proof.

[^0]: ${ }^{1}$ We write p^{*} instead of $*(p)$. Because of the symmetry we don't need to give the functions different names.
 ${ }^{2}$ This is fairly difficult to prove in general. On the previous homework you (almost) proved that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} when p is prime.

[^1]: ${ }^{3}$ This proof works more generally for any perfect field \mathbb{F}; e.g., for any finite field. Then we replace \mathbb{C} with any field large enough to contain all the roots of the minimal polynomials of α and β.

