
Math 562/662 Spring 2024
Homework 5 Drew Armstrong

1. Formal Derivatives. For any field F we consider the F-linear function D : F[x] → F[x]
defined on the basis 1, x, x2, . . . by Dxn := nxn−1. That is, we define

D

∑
k≥0

akx
k

 :=
∑
k≥1

kakx
k−1.

(a) For all f(x), g(x) ∈ F[x] prove that D[f(x)g(x)] = f(x)Dg(x) +Df(x)g(x).
(b) For all f(x) ∈ F[x] and n ≥ 1 prove that D[f(x)n] = nf(x)n−1Df(x). [Hint: Use part

(a) and induction.]

2. Invariance of GCD. Consider a field extension E ⊇ F and two polynomials f(x), g(x) ∈
F[x]. Let d(x) ∈ F[x] be the (monic) GCD of f(x) and g(x) in F[x] and let D(x) ∈ E[x] be
the (monic) GCD of f(x) and g(x) in E[x]. Prove that d(x) = D(x). [Hint: The Euclidean
Algorithm produces a(x), b(x) ∈ F[x] and A(x), B(x) ∈ E[x] such that f(x)a(x) + g(x)b(x) =
d(x) and f(x)A(x) + g(x)B(x) = D(x). Use this to show that d(x)|D(x) and D(x)|d(x) in
E[x], which implies that d(x) and D(x) are associate in E[x].]

3. Repeated Factors of Polynomials. If F is a field then we know that F[x] is a unique
factorization domain. That is, for all f(x), p(x) ∈ F[x] with p(x) irreducible, there is a well-
defined multiplicity vp(f) ∈ N, which is the number of times that p(x) occurs in the prime
factorization of f(x). We say that p(x) is a repeated factor when vp(f) ≥ 2.

(a) If f(x) ∈ F[x] has a repeated prime factor, show that gcd(f,Df) 6= 1. [Hint: Suppose
that f(x) = p(x)2g(x). Apply Problem 1 to show that p(x) also divides Df(x).]

(b) If gcd(f,Df) 6= 1, show that f(x) has a repeated prime factor. [Hint: Suppose that
p(x) is a common prime divisor of f(x) and Df(x). Say f(x) = p(x)g(x). Apply
Problem 1 to show that p(x) divides Dp(x)g(x). Then use Euclid’s Lemma and the
fact that deg(Dp) < deg(p) to show that p(x) divides g(x).]

(c) It follows from (a) and (b) that

f(x) has no repeated prime factor in F[x] ⇔ gcd(f,Df) = 1 in F[x].

We will apply this result to roots. We say that f(x) ∈ F[x] is separable if it has no
repeated root in any field extension. Show that

f(x) is separable ⇔ gcd(f,Df) = 1 in F[x].

[Hint: For any field extension E ⊇ F, Problem 2 says that

gcd(f,Df) = 1 in F[x] ⇐⇒ gcd(f,Df) = 1 in E[x].]

4. Counting Reduced Fractions. For any n ≥ 1 we consider the following subsets of Q:

Fn := {k/n : 0 ≤ k < n},
F ′n := {k/n : 0 ≤ k < n and gcd(k, n) = 1}

Note that #Fn = n and #F ′n = φ(n). In this problem we will show that

Fn =
∐
d|n

F ′d,

which implies that n =
∑

d|n φ(d).



(a) Show that Fn is a subset of ∪d|nF ′d. [Hint: Every fraction can be reduced.]
(b) Show that ∪dF ′d is a subset of Fn.
(c) Show that d 6= e implies F ′d ∩ F ′e = ∅. [Hint: Suppose for contradiction that α is

in F ′d and F ′e, so we can write α = k/d = `/e with 0 ≤ k < d, 0 ≤ ` < e and
gcd(k, d) = gcd(`, e) = 1. Use this to show that d|e and e|d.]

5. The Primitive Root Theorem. If E is a finite field then we will prove that (E×, ·, 1) is
a cyclic group. Suppose that #E = pn, and hence #E′ = pn − 1.

(a) If α ∈ E× has order d, use Lagrange’s Theorem to show that d|(pn − 1).
(b) Let d|(pn − 1). Show that E× contains either 0 or φ(d) elements of order d. [Hint: If

α ∈ E× is an element of order d then {1, α, . . . , αd−1} is the full solution of xd = 1.
But recall that αk has order d/ gcd(d, k). Use this to show that the full set of elements
of order d is {αk : 0 ≤ k < d and gcd(k, d) = 1}.]

(c) Combine (b) with Problem 4 to show that that E× contains exactly φ(d) elements of
order d for each d|(pn − 1). In particular, E× contains at least one element α of
order pn − 1, hence E× = 〈α〉 is a cyclic group. [Hint: Let Nd be the number of
elements of order d in E× and observe that pn − 1 =

∑
d|(pn−1)Nd. We know that

Nd ≤ φ(d) for all d. But if Nd < φ(d) for some d then we have

pn − 1 =
∑

d|(pn−1)

Nd <
∑

d|(pn−1)

φ(d) = pn − 1.]

(d) Corollary. Prove that there exist irreducible polynomials in Fp[x] of all degrees. [Hint:
For any prime power pn we already know that a field of size pn exists. Let E ⊇ Fp
have size pn and let α ∈ E× be a primitive root, which exists by part (c). Show that
the minimal polynomial of α over Fp has degree n.]

6. The Frobenius Automorphism. Let p ≥ 2 be prime and let E ⊇ Fp be a field of size
pn for some n ≥ 1. Let ϕ : E→ E denote the function ϕ(α) := αp.

(a) Prove that ϕ is a ring homomorphism.
(b) Prove that ϕ is injective. Since E is finite this implies that ϕ is also surjective. In

other words, every element of E has a unique p-th root. [Hint: A ring homomorphism
ϕ is injective if and only if kerϕ = {0}.]

(c) Show that ϕn : E → E is the identity function. If 0 < k < n, show that ϕk is not

the identity function. [Hint: If k < n and αp
k

= α for all α ∈ E then the polynomial

xp
k − x has too many roots in E.]

(d) For all α ∈ E, show that α ∈ Fp if and only if ϕ(α) = α.
(e) Harder. Show that every invertible ring homomorphism σ : E → E has the form

σ = ϕk for some k. [Hint: From the Primitive Root Theorem we know that E× = 〈α〉
for some α. Let S = {α,ϕ(α), ϕ2(α), . . . , ϕn−1(α)} and let

f(x) =
∏
β∈S

(x− β) ∈ E[x].

Note that ϕ permutes the roots of f(x), hence it fixes the coefficients of f(x). By (d)
this implies that f(x) ∈ Fp[x]. Use this to show that f(σ(α)) = σ(f(α)) = 0, and

hence σ(α) ∈ S. Let’s say σ(α) = ϕk(α). In this case show that σ = ϕk.]1

1Thanks to Qiaochu Yuan for this proof.


