1. Formal Derivatives. For any field \mathbb{F} we consider the \mathbb{F} -linear function $D : \mathbb{F}[x] \to \mathbb{F}[x]$ defined on the basis $1, x, x^2, \ldots$ by $Dx^n := nx^{n-1}$. That is, we define

$$D\left(\sum_{k\geq 0}a_kx^k\right) := \sum_{k\geq 1}ka_kx^{k-1}.$$

- (a) For all $f(x), g(x) \in \mathbb{F}[x]$ prove that D[f(x)g(x)] = f(x)Dg(x) + Df(x)g(x).
- (b) For all $f(x) \in \mathbb{F}[x]$ and $n \ge 1$ prove that $D[f(x)^n] = nf(x)^{n-1}Df(x)$. [Hint: Use part (a) and induction.]

2. Invariance of GCD. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and two polynomials $f(x), g(x) \in \mathbb{F}[x]$. Let $d(x) \in \mathbb{F}[x]$ be the (monic) GCD of f(x) and g(x) in $\mathbb{F}[x]$ and let $D(x) \in \mathbb{E}[x]$ be the (monic) GCD of f(x) and g(x) in $\mathbb{E}[x]$. Prove that d(x) = D(x). [Hint: The Euclidean Algorithm produces $a(x), b(x) \in \mathbb{F}[x]$ and $A(x), B(x) \in \mathbb{E}[x]$ such that f(x)a(x) + g(x)b(x) = d(x) and f(x)A(x) + g(x)B(x) = D(x). Use this to show that d(x)|D(x) and D(x)|d(x) in $\mathbb{E}[x]$, which implies that d(x) and D(x) are associate in $\mathbb{E}[x]$.]

3. Repeated Factors of Polynomials. If \mathbb{F} is a field then we know that $\mathbb{F}[x]$ is a unique factorization domain. That is, for all $f(x), p(x) \in \mathbb{F}[x]$ with p(x) irreducible, there is a well-defined *multiplicity* $v_p(f) \in \mathbb{N}$, which is the number of times that p(x) occurs in the prime factorization of f(x). We say that p(x) is a *repeated factor* when $v_p(f) \geq 2$.

- (a) If $f(x) \in \mathbb{F}[x]$ has a repeated prime factor, show that $gcd(f, Df) \neq 1$. [Hint: Suppose that $f(x) = p(x)^2 g(x)$. Apply Problem 1 to show that p(x) also divides Df(x).]
- (b) If $gcd(f, Df) \neq 1$, show that f(x) has a repeated prime factor. [Hint: Suppose that p(x) is a common prime divisor of f(x) and Df(x). Say f(x) = p(x)g(x). Apply Problem 1 to show that p(x) divides Dp(x)g(x). Then use Euclid's Lemma and the fact that deg(Dp) < deg(p) to show that p(x) divides g(x).]
- (c) It follows from (a) and (b) that

f(x) has no repeated prime factor in $\mathbb{F}[x] \quad \Leftrightarrow \quad \gcd(f, Df) = 1$ in $\mathbb{F}[x]$.

We will apply this result to roots. We say that $f(x) \in \mathbb{F}[x]$ is *separable* if it has no repeated root in any field extension. Show that

f(x) is separable \Leftrightarrow gcd(f, Df) = 1 in $\mathbb{F}[x]$.

[Hint: For any field extension $\mathbb{E} \supseteq \mathbb{F}$, Problem 2 says that

$$gcd(f, Df) = 1$$
 in $\mathbb{F}[x] \iff gcd(f, Df) = 1$ in $\mathbb{E}[x]$.

4. Counting Reduced Fractions. For any $n \ge 1$ we consider the following subsets of \mathbb{Q} :

$$F_n := \{k/n : 0 \le k < n\},\$$

$$F'_n := \{k/n : 0 \le k < n \text{ and } \gcd(k, n) = 1\}$$

Note that $\#F_n = n$ and $\#F'_n = \phi(n)$. In this problem we will show that

$$F_n = \coprod_{d|n} F'_d,$$

which implies that $n = \sum_{d|n} \phi(d)$.

- (a) Show that F_n is a subset of $\bigcup_{d|n} F'_d$. [Hint: Every fraction can be reduced.]
- (b) Show that $\cup_d F'_d$ is a subset of F_n .
- (c) Show that $d \neq e$ implies $F'_d \cap F'_e = \emptyset$. [Hint: Suppose for contradiction that α is in F'_d and F'_e , so we can write $\alpha = k/d = \ell/e$ with $0 \leq k < d, 0 \leq \ell < e$ and $\gcd(k, d) = \gcd(\ell, e) = 1$. Use this to show that d|e and e|d.]

5. The Primitive Root Theorem. If \mathbb{E} is a finite field then we will prove that $(\mathbb{E}^{\times}, \cdot, 1)$ is a cyclic group. Suppose that $\#\mathbb{E} = p^n$, and hence $\#\mathbb{E}' = p^n - 1$.

- (a) If $\alpha \in \mathbb{E}^{\times}$ has order d, use Lagrange's Theorem to show that $d|(p^n 1)$.
- (b) Let $d|(p^n 1)$. Show that \mathbb{E}^{\times} contains either 0 or $\phi(d)$ elements of order d. [Hint: If $\alpha \in \mathbb{E}^{\times}$ is an element of order d then $\{1, \alpha, \ldots, \alpha^{d-1}\}$ is the full solution of $x^d = 1$. But recall that α^k has order $d/\gcd(d, k)$. Use this to show that the full set of elements of order d is $\{\alpha^k : 0 \le k < d \text{ and } \gcd(k, d) = 1\}$.]
- (c) Combine (b) with Problem 4 to show that that \mathbb{E}^{\times} contains exactly $\phi(d)$ elements of order d for each $d|(p^n 1)$. In particular, \mathbb{E}^{\times} contains at least one element α of order $p^n 1$, hence $\mathbb{E}^{\times} = \langle \alpha \rangle$ is a cyclic group. [Hint: Let N_d be the number of elements of order d in \mathbb{E}^{\times} and observe that $p^n 1 = \sum_{d|(p^n-1)} N_d$. We know that $N_d \leq \phi(d)$ for all d. But if $N_d < \phi(d)$ for some d then we have

$$p^{n} - 1 = \sum_{d \mid (p^{n} - 1)} N_{d} < \sum_{d \mid (p^{n} - 1)} \phi(d) = p^{n} - 1.$$
]

- (d) **Corollary.** Prove that there exist irreducible polynomials in $\mathbb{F}_p[x]$ of all degrees. [Hint: For any prime power p^n we already know that a field of size p^n exists. Let $\mathbb{E} \supseteq \mathbb{F}_p$ have size p^n and let $\alpha \in \mathbb{E}^{\times}$ be a primitive root, which exists by part (c). Show that the minimal polynomial of α over \mathbb{F}_p has degree n.]
- **6. The Frobenius Automorphism.** Let $p \ge 2$ be prime and let $\mathbb{E} \supseteq \mathbb{F}_p$ be a field of size p^n for some $n \ge 1$. Let $\varphi : \mathbb{E} \to \mathbb{E}$ denote the function $\varphi(\alpha) := \alpha^p$.
 - (a) Prove that φ is a ring homomorphism.
 - (b) Prove that φ is injective. Since \mathbb{E} is finite this implies that φ is also surjective. In other words, every element of \mathbb{E} has a unique p-th root. [Hint: A ring homomorphism φ is injective if and only if ker $\varphi = \{0\}$.]
 - (c) Show that $\varphi^n : \mathbb{E} \to \mathbb{E}$ is the identity function. If 0 < k < n, show that φ^k is **not** the identity function. [Hint: If k < n and $\alpha^{p^k} = \alpha$ for all $\alpha \in \mathbb{E}$ then the polynomial $x^{p^k} x$ has too many roots in \mathbb{E} .]
 - (d) For all $\alpha \in \mathbb{E}$, show that $\alpha \in \mathbb{F}_p$ if and only if $\varphi(\alpha) = \alpha$.
 - (e) **Harder.** Show that *every* invertible ring homomorphism $\sigma : \mathbb{E} \to \mathbb{E}$ has the form $\sigma = \varphi^k$ for some k. [Hint: From the Primitive Root Theorem we know that $\mathbb{E}^{\times} = \langle \alpha \rangle$ for some α . Let $S = \{\alpha, \varphi(\alpha), \varphi^2(\alpha), \dots, \varphi^{n-1}(\alpha)\}$ and let

$$f(x) = \prod_{\beta \in S} (x - \beta) \in \mathbb{E}[x].$$

Note that φ permutes the roots of f(x), hence it fixes the coefficients of f(x). By (d) this implies that $f(x) \in \mathbb{F}_p[x]$. Use this to show that $f(\sigma(\alpha)) = \sigma(f(\alpha)) = 0$, and hence $\sigma(\alpha) \in S$. Let's say $\sigma(\alpha) = \varphi^k(\alpha)$. In this case show that $\sigma = \varphi^k$.]¹

¹Thanks to Qiaochu Yuan for this proof.