Math 562/662 Spring 2024
Homework 5 Drew Armstrong

1. Formal Derivatives. For any field F we consider the F-linear function D : F[z] — F[z]
defined on the basis 1, z, 22, ... by Dz" := nz"~!. That is, we define

D Zakmk) = Z kapz 1.

k>0 k>1

(a) For all f(z),g(x) € Flz] prove that D[f(z)g(x)] = f(z)Dg(z) + D f(x)g(x).

(b) ](F‘o)r all f(z) € F[x]] and n > 1 prove that D[f(x)"] = nf(x)" ' Df(z). [Hint: Use part
a) and induction.

2. Invariance of GCD. Consider a field extension E D F and two polynomials f(x),g(x) €
Flz]. Let d(x) € F[z] be the (monic) GCD of f(z) and g(z) in F[z] and let D(z) € E[x] be
the (monic) GCD of f(z) and g(z) in E[z]. Prove that d(z) = D(x). [Hint: The Euclidean
Algorithm produces a(z),b(z) € Flz] and A(z), B(z) € E[z] such that f(x)a(x) + g(z)b(x) =
d(z) and f(x)A(x) + g(x)B(x) = D(z). Use this to show that d(z)|D(z) and D(x)|d(z) in
E[z], which implies that d(z) and D(x) are associate in E[z].]

3. Repeated Factors of Polynomials. If F is a field then we know that F[z] is a unique
factorization domain. That is, for all f(z),p(z) € F[z] with p(z) irreducible, there is a well-
defined multiplicity vy(f) € N, which is the number of times that p(z) occurs in the prime
factorization of f(z). We say that p(z) is a repeated factor when v,(f) > 2.

(a) If f(x) € F[z] has a repeated prime factor, show that ged(f, Df) # 1. [Hint: Suppose
that f(z) = p(z)%g(z). Apply Problem 1 to show that p(z) also divides D f(z).]

(b) If ged(f, Df) # 1, show that f(z) has a repeated prime factor. [Hint: Suppose that
p(z) is a common prime divisor of f(z) and Df(z). Say f(x) = p(x)g(x). Apply
Problem 1 to show that p(x) divides Dp(x)g(x). Then use Euclid’s Lemma and the
fact that deg(Dp) < deg(p) to show that p(x) divides g(x).]

(c) It follows from (a) and (b) that

f(z) has no repeated prime factor in Flz] < ged(f,Df) =1 in F[x].

We will apply this result to roots. We say that f(x) € Flx] is separable if it has no
repeated root in any field extension. Show that

f(z) is separable < ged(f,Df) =1 in Flx].
[Hint: For any field extension E D F, Problem 2 says that
ged(f,Df) =1in Flz] <= gcd(f,Df)=11in E[z]]

4. Counting Reduced Fractions. For any n > 1 we consider the following subsets of Q:
E,:={k/n:0<k<n},
F :={k/n:0<k<nand ged(k,n) =1}
Note that #F,, = n and #F] = ¢(n). In this problem we will show that
F, =] 7.
djn
which implies that n =}, ¢(d).



(a) Show that F), is a subset of Uy, ;. [Hint: Every fraction can be reduced.]

(b) Show that UgF} is a subset of F,.

(c) Show that d # e implies F); N F, = (. [Hint: Suppose for contradiction that o is
in F; and F/, so we can write o = k/d = {/e with 0 < k < d, 0 < £ < e and
ged(k, d) = ged (¢, e) = 1. Use this to show that dle and e|d.]

5. The Primitive Root Theorem. If E is a finite field then we will prove that (E*,-,1) is
a cyclic group. Suppose that #E = p”, and hence #E' = p" — 1.

(a) If o € E* has order d, use Lagrange’s Theorem to show that d|(p" — 1).

(b) Let d|(p™ — 1). Show that E* contains either 0 or ¢(d) elements of order d. [Hint: If
a € EX is an element of order d then {1,a,...,a% !} is the full solution of 2¢ = 1.
But recall that o* has order d/ ged(d, k). Use this to show that the full set of elements
of order d is {a* : 0 < k < d and ged(k,d) = 1}.]

(¢) Combine (b) with Problem 4 to show that that E* contains exactly ¢(d) elements of
order d for each d|(p"” — 1). In particular, EX contains at least one element « of
order p" — 1, hence EX = (a) is a cyclic group. [Hint: Let Ny be the number of
elements of order d in E* and observe that p™ — 1 = Zden_l) N;. We know that
Ny < ¢(d) for all d. But if Ny < ¢(d) for some d then we have

pr-1l= > Ny< > ¢(d)=p"—1]
d|(p"—1) dl(p"—1)

(d) Corollary. Prove that there exist irreducible polynomials in Fp[z] of all degrees. [Hint:
For any prime power p" we already know that a field of size p" exists. Let E O F,
have size p" and let o € E* be a primitive root, which exists by part (c). Show that
the minimal polynomial of o over F,, has degree n.]

6. The Frobenius Automorphism. Let p > 2 be prime and let E O [F,, be a field of size
p" for some n > 1. Let ¢ : E — E denote the function ¢(«a) := aP.
(a) Prove that ¢ is a ring homomorphism.
(b) Prove that ¢ is injective. Since E is finite this implies that ¢ is also surjective. In
other words, every element of E has a unique p-th root. [Hint: A ring homomorphism
¢ is injective if and only if ker ¢ = {0}.]
(c) Show that ¢" : E — E is the identity function. If 0 < k < n, show that ¢* is not
the identity function. [Hint: If £ < n and o' = a for all a € E then the polynomial
2?" — 2 has too many roots in E.]
(d) For all « € E, show that a € F,, if and only if p(a) = a.
(e) Harder. Show that every invertible ring homomorphism o : E — E has the form
o = ¢F for some k. [Hint: From the Primitive Root Theorem we know that EX = ()
for some a. Let S = {a, ¢(a), ¥*(a),...,¢" ()} and let

f@) =]~ B) €Elz].
BeS

Note that ¢ permutes the roots of f(x), hence it fixes the coefficients of f(z). By (d)
this implies that f(x) € Fp[z]. Use this to show that f(o(a)) = o(f(a)) = 0, and
hence o(a) € S. Let’s say o(a) = ¢¥(). In this case show that o = <pk]E|

IThanks to Qiaochu Yuan for this proof.



