1. Formal Derivatives. For any field \mathbb{F} we consider the \mathbb{F}-linear function $D: \mathbb{F}[x] \rightarrow \mathbb{F}[x]$ defined on the basis $1, x, x^{2}, \ldots$ by $D x^{n}:=n x^{n-1}$. That is, we define

$$
D\left(\sum_{k \geq 0} a_{k} x^{k}\right):=\sum_{k \geq 1} k a_{k} x^{k-1} .
$$

(a) For all $f(x), g(x) \in \mathbb{F}[x]$ prove that $D[f(x) g(x)]=f(x) D g(x)+D f(x) g(x)$.
(b) For all $f(x) \in \mathbb{F}[x]$ and $n \geq 1$ prove that $D\left[f(x)^{n}\right]=n f(x)^{n-1} D f(x)$. [Hint: Use part (a) and induction.]
2. Invariance of GCD. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and two polynomials $f(x), g(x) \in$ $\mathbb{F}[x]$. Let $d(x) \in \mathbb{F}[x]$ be the (monic) GCD of $f(x)$ and $g(x)$ in $\mathbb{F}[x]$ and let $D(x) \in \mathbb{E}[x]$ be the (monic) GCD of $f(x)$ and $g(x)$ in $\mathbb{E}[x]$. Prove that $d(x)=D(x)$. [Hint: The Euclidean Algorithm produces $a(x), b(x) \in \mathbb{F}[x]$ and $A(x), B(x) \in \mathbb{E}[x]$ such that $f(x) a(x)+g(x) b(x)=$ $d(x)$ and $f(x) A(x)+g(x) B(x)=D(x)$. Use this to show that $d(x) \mid D(x)$ and $D(x) \mid d(x)$ in $\mathbb{E}[x]$, which implies that $d(x)$ and $D(x)$ are associate in $\mathbb{E}[x]$.
3. Repeated Factors of Polynomials. If \mathbb{F} is a field then we know that $\mathbb{F}[x]$ is a unique factorization domain. That is, for all $f(x), p(x) \in \mathbb{F}[x]$ with $p(x)$ irreducible, there is a welldefined multiplicity $v_{p}(f) \in \mathbb{N}$, which is the number of times that $p(x)$ occurs in the prime factorization of $f(x)$. We say that $p(x)$ is a repeated factor when $v_{p}(f) \geq 2$.
(a) If $f(x) \in \mathbb{F}[x]$ has a repeated prime factor, show that $\operatorname{gcd}(f, D f) \neq 1$. [Hint: Suppose that $f(x)=p(x)^{2} g(x)$. Apply Problem 1 to show that $p(x)$ also divides $D f(x)$.]
(b) If $\operatorname{gcd}(f, D f) \neq 1$, show that $f(x)$ has a repeated prime factor. [Hint: Suppose that $p(x)$ is a common prime divisor of $f(x)$ and $D f(x)$. Say $f(x)=p(x) g(x)$. Apply Problem 1 to show that $p(x)$ divides $D p(x) g(x)$. Then use Euclid's Lemma and the fact that $\operatorname{deg}(D p)<\operatorname{deg}(p)$ to show that $p(x)$ divides $g(x)$.]
(c) It follows from (a) and (b) that

$$
f(x) \text { has no repeated prime factor in } \mathbb{F}[x] \quad \Leftrightarrow \quad \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] .
$$

We will apply this result to roots. We say that $f(x) \in \mathbb{F}[x]$ is separable if it has no repeated root in any field extension. Show that

$$
f(x) \text { is separable } \quad \Leftrightarrow \quad \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] .
$$

[Hint: For any field extension $\mathbb{E} \supseteq \mathbb{F}$, Problem 2 says that

$$
\operatorname{gcd}(f, D f)=1 \text { in } \mathbb{F}[x] \quad \Longleftrightarrow \quad \operatorname{gcd}(f, D f)=1 \text { in } \mathbb{E}[x] .]
$$

4. Counting Reduced Fractions. For any $n \geq 1$ we consider the following subsets of \mathbb{Q} :

$$
\begin{aligned}
& F_{n}:=\{k / n: 0 \leq k<n\}, \\
& F_{n}^{\prime}:=\{k / n: 0 \leq k<n \text { and } \operatorname{gcd}(k, n)=1\}
\end{aligned}
$$

Note that $\# F_{n}=n$ and $\# F_{n}^{\prime}=\phi(n)$. In this problem we will show that

$$
F_{n}=\coprod_{d \mid n} F_{d}^{\prime}
$$

which implies that $n=\sum_{d \mid n} \phi(d)$.
(a) Show that F_{n} is a subset of $\cup_{d \mid n} F_{d}^{\prime}$. [Hint: Every fraction can be reduced.]
(b) Show that $\cup_{d} F_{d}^{\prime}$ is a subset of F_{n}.
(c) Show that $d \neq e$ implies $F_{d}^{\prime} \cap F_{e}^{\prime}=\emptyset$. [Hint: Suppose for contradiction that α is in F_{d}^{\prime} and F_{e}^{\prime}, so we can write $\alpha=k / d=\ell / e$ with $0 \leq k<d, 0 \leq \ell<e$ and $\operatorname{gcd}(k, d)=\operatorname{gcd}(\ell, e)=1$. Use this to show that $d \mid e$ and $e \mid d$.
5. The Primitive Root Theorem. If \mathbb{E} is a finite field then we will prove that $\left(\mathbb{E}^{\times}, \cdot, 1\right)$ is a cyclic group. Suppose that $\# \mathbb{E}=p^{n}$, and hence $\# \mathbb{E}^{\prime}=p^{n}-1$.
(a) If $\alpha \in \mathbb{E}^{\times}$has order d, use Lagrange's Theorem to show that $d \mid\left(p^{n}-1\right)$.
(b) Let $d \mid\left(p^{n}-1\right)$. Show that \mathbb{E}^{\times}contains either 0 or $\phi(d)$ elements of order d. [Hint: If $\alpha \in \mathbb{E}^{\times}$is an element of order d then $\left\{1, \alpha, \ldots, \alpha^{d-1}\right\}$ is the full solution of $x^{d}=1$. But recall that α^{k} has order $d / \operatorname{gcd}(d, k)$. Use this to show that the full set of elements of order d is $\left\{\alpha^{k}: 0 \leq k<d\right.$ and $\left.\operatorname{gcd}(k, d)=1\right\}$.]
(c) Combine (b) with Problem 4 to show that that \mathbb{E}^{\times}contains exactly $\phi(d)$ elements of order d for each $d \mid\left(p^{n}-1\right)$. In particular, \mathbb{E}^{\times}contains at least one element α of order $p^{n}-1$, hence $\mathbb{E}^{\times}=\langle\alpha\rangle$ is a cyclic group. [Hint: Let N_{d} be the number of elements of order d in \mathbb{E}^{\times}and observe that $p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d}$. We know that $N_{d} \leq \phi(d)$ for all d. But if $N_{d}<\phi(d)$ for some d then we have

$$
\left.p^{n}-1=\sum_{d \mid\left(p^{n}-1\right)} N_{d}<\sum_{d \mid\left(p^{n}-1\right)} \phi(d)=p^{n}-1 .\right]
$$

(d) Corollary. Prove that there exist irreducible polynomials in $\mathbb{F}_{p}[x]$ of all degrees. [Hint: For any prime power p^{n} we already know that a field of size p^{n} exists. Let $\mathbb{E} \supseteq \mathbb{F}_{p}$ have size p^{n} and let $\alpha \in \mathbb{E}^{\times}$be a primitive root, which exists by part (c). Show that the minimal polynomial of α over \mathbb{F}_{p} has degree n.]
6. The Frobenius Automorphism. Let $p \geq 2$ be prime and let $\mathbb{E} \supseteq \mathbb{F}_{p}$ be a field of size p^{n} for some $n \geq 1$. Let $\varphi: \mathbb{E} \rightarrow \mathbb{E}$ denote the function $\varphi(\alpha):=\alpha^{p}$.
(a) Prove that φ is a ring homomorphism.
(b) Prove that φ is injective. Since \mathbb{E} is finite this implies that φ is also surjective. In other words, every element of \mathbb{E} has a unique p-th root. [Hint: A ring homomorphism φ is injective if and only if $\operatorname{ker} \varphi=\{0\}$.]
(c) Show that $\varphi^{n}: \mathbb{E} \rightarrow \mathbb{E}$ is the identity function. If $0<k<n$, show that φ^{k} is not the identity function. [Hint: If $k<n$ and $\alpha^{p^{k}}=\alpha$ for all $\alpha \in \mathbb{E}$ then the polynomial $x^{p^{k}}-x$ has too many roots in \mathbb{E}.]
(d) For all $\alpha \in \mathbb{E}$, show that $\alpha \in \mathbb{F}_{p}$ if and only if $\varphi(\alpha)=\alpha$.
(e) Harder. Show that every invertible ring homomorphism $\sigma: \mathbb{E} \rightarrow \mathbb{E}$ has the form $\sigma=\varphi^{k}$ for some k. [Hint: From the Primitive Root Theorem we know that $\mathbb{E}^{\times}=\langle\alpha\rangle$ for some α. Let $S=\left\{\alpha, \varphi(\alpha), \varphi^{2}(\alpha), \ldots, \varphi^{n-1}(\alpha)\right\}$ and let

$$
f(x)=\prod_{\beta \in S}(x-\beta) \in \mathbb{E}[x] .
$$

Note that φ permutes the roots of $f(x)$, hence it fixes the coefficients of $f(x)$. By (d) this implies that $f(x) \in \mathbb{F}_{p}[x]$. Use this to show that $f(\sigma(\alpha))=\sigma(f(\alpha))=0$, and hence $\sigma(\alpha) \in S$. Let's say $\sigma(\alpha)=\varphi^{k}(\alpha)$. In this case show that $\sigma=\varphi^{k}$. 1

[^0]
[^0]: ${ }^{1}$ Thanks to Qiaochu Yuan for this proof.

