
Math 562/662 Spring 2024
Homework 4 Drew Armstrong

1. Extending Ring Homomorphisms to Polynomials. Given a ring homomorphism
ϕ : R→ S we define the function ϕ : R[x]→ S[x] by sending f(x) =

∑
k akx

k to

fϕ(x) :=
∑
k

ϕ(ak)x
k.

(a) Prove that f(x) 7→ fϕ(x) is a ring homomorphism.
(b) Given an integer n ≥ 0 let ϕ : Z[x] → (Z/nZ)[x] be the extension of the quotient

homomorphism Z→ Z/nZ. Show that

fϕ(x) = 0 ⇐⇒ n divides every coefficient of f(x).

(c) Gauss’ Lemma. A polynomial f(x) ∈ Z[x] is called primitive when its coefficients
have no common prime factors. If f(x), g(x) ∈ Z[x] are primitive, prove that f(x)g(x) ∈
Z[x] is also primitive. [Hint: Let p ≥ 2 be a common prime factor of the coefficients
of f(x)g(x) and let ϕ : Z[x] → (Z/pZ)[x] be the map from part (b). Since Z/pZ is a
field, and since fϕ(x)gϕ(x) = ϕ(f(x)g(x)) = 0 we must have fϕ(x) = 0 or gϕ(x) = 0.]

2. Equivalent Statements of the FTA. Consider the following statements:

(1R) Every non-constant f(x) ∈ R[x] has a root in C.
(2R) Every non-constant f(x) ∈ R[x] is a product degree 1 and 2 polynomials in R[x]
(1C) Every non-constant f(x) ∈ C[x] has a root in C.
(2C) Every non-constant f(x) ∈ C[x] is a product of degree 1 polynomials in C[x].

I claim that these four statements are equivalent. We will prove the more difficult implications.

(a) Prove that (1R) implies (2R). [Hint: Let ∗ : C → C be complex conjugation and
let ∗ : C[x] → C[x] be the extension as in Problem 1. For all α ∈ C note that
f(α)∗ = f∗(α∗). But if f(x) has real coefficients then f∗(x) = f(x). Use this to show
that the non-real roots of a real polynomial come in complex conjugate pairs.]

(b) Prove that (1R) implies (1C). [Hint: Given f(x) ∈ C[x] we note that (ff∗)∗ =
f∗(f∗∗) = f∗f = ff∗, and hence the polynomial f(x)f∗(x) has real coefficients. As-
suming (1R) we know that ff∗ has a root α ∈ C, i.e., f(α)f∗(α) = 0. Use this to show
that f(x) has a root in C.]

3. Freshman’s Binomial Theorem. Let p ≥ 2 be prime and let R be any ring of charac-
teristic p. For any elements a, b ∈ R, prove that

(a+ b)p = ap + bp.

[Hint: For any a ∈ R and n ∈ Z recall that we have an element n ·a ∈ R defined by induction.
If R has characteristic p then p · a = 0 for any a ∈ R. For any a, b ∈ R, the usual binomial
theorem for integers tells us that

(a+ b)p = ap +

(
p

1

)
· ap−1b+ · · ·+

(
p

p− 1

)
· abp−1 + bp.

Your job is to show that the integer
(
p
k

)
is divisible by p whenever 1 ≤ k ≤ p− 1.]



4. Eisenstein’s Criterion. Let p ≥ 2 be prime.

(a) Given a polynomial f(x) = a0 + · · · + anx
n ∈ Z[x] with p|ai for 0 ≤ i ≤ n − 1, p - an

and p2 - a0, prove that f(x) is irreducible over Z. [Hint: Suppose that f(x) = g(x)h(x)
with deg(g) = k ≥ 1 and deg(h) = ` ≥ 1. Consider the ring homomorphism ϕ : Z[x]→
(Z/pZ)[x] from 1(b), so that gϕ(x)hϕ(x) = fϕ(x) = [an]xn with [an] 6= [0]. Since p
is prime this implies that gϕ(x) = [b]xk and hϕ(x) = [c]x` for some [c], [d] 6= [0]. But
then the constant terms of g(x) and h(x) are divisible by p, so the constant term of
f(x) = g(x)h(x) is divisible by p2.]

(b) The p-th cyclotomic polynomial is Φp(x) = 1 + x+ · · ·+ xp−1 = (xp − 1)/(x− 1), so

Φp(1 + x) =
(1 + x)p − 1

x
=

(
p

1

)
+

(
p

2

)
x+ · · ·+

(
p

p

)
xp−1.

Use part (a) and the proof of Problem 3 to show that Φp(1 + x) is irreducible over Z.
Use this to conclude that Φp(x) is irreducible over Z.

5. Fundamental Theorem of Symmetric Polynomials. For any field F, the symmetric
group Sn acts on the set of polynomials F[x1, . . . , xn] by permuting the variables:

σ · f(x1, . . . , xn) := f(xσ(1), · · · , xσ(n)).
We say that f is a symmetric polynomial when σ · f = f for all σ ∈ Sn.

(a) Let x = (x1, . . . , xn). Then for any k = (k1, . . . , kn) ∈ Nn we define the notation

xk := xk11 x
k2
2 · · ·x

kn
n .

Every f(x) ∈ F[x] has a unique expression f(x) =
∑

k∈Nn akx
k with ak ∈ F for all

k ∈ Nn. Check that this notation satisfies xkx` = xk+` for all k, ` ∈ Nn. It follows
from this (but you don’t need to prove it) that(∑

k∈Nn

akx
k

)(∑
`∈Nn

b`x
`

)
=
∑

m∈Nn

( ∑
k+`=m

akb`

)
xm.

(b) We define the lexicographic order on Nn as follows:

k < ` ⇔ there exists j such that kj < `j and ki = `i for all i < j.

One can check (don’t do this) that this defines a total order on Nn which satisfies the
well-ordering property and for all a,b, c ∈ Nn we have a ≤ b⇒ a + c ≤ b + c. Based
on this, we define the lexicographic degree function deg : F[x]→ Nn by

deg

(∑
k∈Nn

akx
k

)
:= max

lex
{k ∈ Nn : ak 6= 0}.

Use part (a) and the given properties to show that deg(fg) = deg(f) + deg(g) for all
nonzero polynomials f(x), g(x) ∈ F[x].

(c) The elementary symmetric polynomials e1(x), . . . , en(x) are defined by

(y − x1) · · · (y − xn) = yn − e1(x)yn−1 + e2(x)yn−2 + · · ·+ (−1)nen(x).

One can check that each ei(x) is monic (i.e., has lex-leading coefficient 1) and has
deg(ej) = (1, . . . , 1, 0, . . . , 0), with j ones followed by n− j zeroes. For any symmetric
polynomial f(x) ∈ F[x], prove that we can find a (possibly non-symmetric) polynomial
g(x) ∈ F[x] such that

f(x) = g(e1(x), . . . , en(x)).



[Hint: Use induction on lexicographic degree. Suppose that f(x) = cxk + lower terms.
Use the fact that f(x) is symmetric to show that k1 ≥ k2 ≥ · · · ≥ kn. Define

g(x) := ce1(x)k1−k2e2(x)k2−k3 · · · en−1(x)kn−1−knen(x)kn

and use (b) to check that g(x) = cxk + lower terms. Then since deg(f − g) < deg(f)
we may assume that f(x)− g(x) = h(e1(x), . . . , en(x)) for some h(x) ∈ F[x].]

(d) Let f(x) ∈ F[x] be a polynomial in one variable and let E ⊇ F be a splitting field for
f(x) over F. That is, suppose that there exist α1, . . . , αn ∈ E such that

f(x) = (x− α1) · · · (x− αn).

For any multivariable polynomial F (x1, . . . , xn) ∈ F[x1, . . . , xn] we have the evaluation
F (α1, . . . , αn) ∈ E. If F is symmetric, use part (c) to show that F (α1, . . . , αn) ∈ F.


