Math 562/662 Spring 2024
Homework 4 Drew Armstrong

1. Extending Ring Homomorphisms to Polynomials. Given a ring homomorphism
¢ : R — S we define the function ¢ : R[z] — S[z] by sending f(z) = >, axz” to

@)=Y plar)at.
k

(a) Prove that f(x)+— f¥(x) is a ring homomorphism.
(b) Given an integer n > 0 let ¢ : Z[x] — (Z/nZ)[x] be the extension of the quotient
homomorphism Z — Z/nZ. Show that

ff(x)=0 <= n divides every coefficient of f(z).

(c) Gauss’ Lemma. A polynomial f(z) € Z[z] is called primitive when its coeflicients
have no common prime factors. If f(z), g(x) € Z[x] are primitive, prove that f(z)g(x) €
Z[z] is also primitive. [Hint: Let p > 2 be a common prime factor of the coefficients
of f(x)g(z) and let ¢ : Z[z] — (Z/pZ)[x] be the map from part (b). Since Z/pZ is a
field, and since f¥(x)g¥(x) = o(f(z)g(x)) = 0 we must have f#(z) =0 or g¥(x) = 0.]

2. Equivalent Statements of the FTA. Consider the following statements:

1R) Every non-constant f(z) € R[z] has a root in C.

2R) Every non-constant f(x) € R[z] is a product degree 1 and 2 polynomials in R[z]

1C) Every non-constant f(x) € C[x] has a root in C.

2C) Every non-constant f(x) € C[x] is a product of degree 1 polynomials in C[z].

I claim that these four statements are equivalent. We will prove the more difficult implications.

(a) Prove that (1R) implies (2R). [Hint: Let x : C — C be complex conjugation and
let * : C[z] — CJz] be the extension as in Problem 1. For all a € C note that
f(a)* = f*(a*). But if f(z) has real coefficients then f*(x) = f(z). Use this to show
that the non-real roots of a real polynomial come in complex conjugate pairs.|

(b) Prove that (1R) implies (1C). [Hint: Given f(z) € Clx] we note that (ff*)" =
A (f) = f*f = ff* and hence the polynomial f(z)f*(x) has real coefficients. As-
suming (1R) we know that ff* has a root a € C, i.e., f(«)f*(a) = 0. Use this to show
that f(x) has a root in C.]
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3. Freshman’s Binomial Theorem. Let p > 2 be prime and let R be any ring of charac-
teristic p. For any elements a,b € R, prove that

(a+b)P = aP + .

[Hint: For any a € R and n € Z recall that we have an element n-a € R defined by induction.
If R has characteristic p then p-a = 0 for any a € R. For any a,b € R, the usual binomial
theorem for integers tells us that

(a+b)p=ap+<zlj> -ap‘1b+---+<p€1>-abp‘1+bp.

Your job is to show that the integer (i) is divisible by p whenever 1 < k <p —1/]



4. Eisenstein’s Criterion. Let p > 2 be prime.

(a) Given a polynomial f(x) = ag+ -+ apa™ € Zlx] with pla; for 0 <i<n-—-1,pfay
and p? t ag, prove that f(z) is irreducible over Z. [Hint: Suppose that f(z) = g(z)h(z)
with deg(g) = k > 1 and deg(h) = ¢ > 1. Consider the ring homomorphism ¢ : Z[x] —
(Z/pZ)[z] from 1(b), so that g?(x)h?(x) = f¥(x) = [ay)z™ with [a,] # [0]. Since p
is prime this implies that ¢%(z) = [b]z* and h¥(z) = [c]z’ for some [c],[d] # [0]. But
then the constant terms of g(z) and h(x) are divisible by p, so the constant term of
f(x) = g(x)h(x) is divisible by p?.]

(b) The p-th cyclotomic polynomial is ®,(z) =1+x + -+ 2P~ = (2P —1)/(z — 1), so

,(1+2)= Wx)p_l = <]17) + <g>$+-~+ <z>x1’1.

Use part (a) and the proof of Problem 3 to show that ®,(1 + ) is irreducible over Z.
Use this to conclude that ®,(x) is irreducible over Z.

5. Fundamental Theorem of Symmetric Polynomials. For any field F, the symmetric
group S, acts on the set of polynomials F[z1,...,z,] by permuting the variables:

g f(xlv v 7‘7;71) = f(x(f(l)v T 71‘0(77,))'
We say that f is a symmetric polynomial when o - f = f for all o € .S,,.
(a) Let x = (21,...,2,). Then for any k = (k1,...,k,) € N” we define the notation

k ki, ko

X =T Xy "l’kn

o
Every f(x) € F[x] has a unique expression f(x) = > ) yn axx¥ with ay € F for all

k € N™. Check that this notation satisfies x¥x¢ = x¥*¢ for all k, £ € N*. It follows
from this (but you don’t need to prove it) that

(5 o) (500 - 3 (5 oo

keNn £eNm meN” \k+£f=m
(b) We define the lexicographic order on N™ as follows:
k <€ < there exists j such that k; < ¢; and k; = ¢; for all © < j.

One can check (don’t do this) that this defines a total order on N™ which satisfies the
well-ordering property and for all a,b,c € N” we have a < b = a+ c < b + c¢. Based
on this, we define the lexicographic degree function deg : F[x|] — N" by

deg ( Z akxk> := max{k € N" : ax # 0}.
lex
keNn
Use part (a) and the given properties to show that deg(fg) = deg(f) + deg(g) for all
nonzero polynomials f(x), g(x) € F[x].
(¢) The elementary symmetric polynomials e1(X), ..., ey(x) are defined by

(y—a1) - (—zn) =y" —er(x)y" " +eax)y" 7+ + (1) "en(x).

One can check that each e;(x) is monic (i.e., has lex-leading coefficient 1) and has
deg(e;) = (1,...,1,0,...,0), with j ones followed by n — j zeroes. For any symmetric
polynomial f(x) € F[x], prove that we can find a (possibly non-symmetric) polynomial
g(x) € F[x] such that

f(X) = g(el(X)7 R 6n(X)).



[Hint: Use induction on lexicographic degree. Suppose that f(x) = ¢xX 4 lower terms.
Use the fact that f(x) is symmetric to show that ky > ke > .-+ > k,,. Define

9(x) = cer ()M ey ()2 7R ey ()Pt TR, (x)
and use (b) to check that g(x) = ¢x¥ + lower terms. Then since deg(f — g) < deg(f)
we may assume that f(x) — g(x) = h(e1(x),...,en(x)) for some h(x) € F[x].]
Let f(x) € Flz] be a polynomial in one variable and let E O F be a splitting field for
f(x) over F. That is, suppose that there exist aq,...,a, € E such that

fl@) = (x—a1)---(z = an).
For any multivariable polynomial F'(x1,...,z,) € F[z1,...,z,] we have the evaluation
F(aq,...,ap) € E. If F is symmetric, use part (c) to show that F(aq,...,ap) € F.



