1. Extending Ring Homomorphisms to Polynomials. Given a ring homomorphism $\varphi: R \rightarrow S$ we define the function $\varphi: R[x] \rightarrow S[x]$ by sending $f(x)=\sum_{k} a_{k} x^{k}$ to

$$
f^{\varphi}(x):=\sum_{k} \varphi\left(a_{k}\right) x^{k} .
$$

(a) Prove that $f(x) \mapsto f^{\varphi}(x)$ is a ring homomorphism.
(b) Given an integer $n \geq 0$ let $\varphi: \mathbb{Z}[x] \rightarrow(\mathbb{Z} / n \mathbb{Z})[x]$ be the extension of the quotient homomorphism $\mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$. Show that

$$
f^{\varphi}(x)=0 \quad \Longleftrightarrow \quad n \text { divides every coefficient of } f(x)
$$

(c) Gauss' Lemma. A polynomial $f(x) \in \mathbb{Z}[x]$ is called primitive when its coefficients have no common prime factors. If $f(x), g(x) \in \mathbb{Z}[x]$ are primitive, prove that $f(x) g(x) \in$ $\mathbb{Z}[x]$ is also primitive. [Hint: Let $p \geq 2$ be a common prime factor of the coefficients of $f(x) g(x)$ and let $\varphi: \mathbb{Z}[x] \rightarrow(\mathbb{Z} / p \mathbb{Z})[x]$ be the map from part (b). Since $\mathbb{Z} / p \mathbb{Z}$ is a field, and since $f^{\varphi}(x) g^{\varphi}(x)=\varphi(f(x) g(x))=0$ we must have $f^{\varphi}(x)=0$ or $g^{\varphi}(x)=0$.]
2. Equivalent Statements of the FTA. Consider the following statements:
$(1 \mathbb{R})$ Every non-constant $f(x) \in \mathbb{R}[x]$ has a root in \mathbb{C}.
$(2 \mathbb{R})$ Every non-constant $f(x) \in \mathbb{R}[x]$ is a product degree 1 and 2 polynomials in $\mathbb{R}[x]$
$(1 \mathbb{C})$ Every non-constant $f(x) \in \mathbb{C}[x]$ has a root in \mathbb{C}.
(2C) Every non-constant $f(x) \in \mathbb{C}[x]$ is a product of degree 1 polynomials in $\mathbb{C}[x]$.
I claim that these four statements are equivalent. We will prove the more difficult implications.
(a) Prove that ($1 \mathbb{R}$) implies ($2 \mathbb{R}$). [Hint: Let $*: \mathbb{C} \rightarrow \mathbb{C}$ be complex conjugation and let $*: \mathbb{C}[x] \rightarrow \mathbb{C}[x]$ be the extension as in Problem 1. For all $\alpha \in \mathbb{C}$ note that $f(\alpha)^{*}=f^{*}\left(\alpha^{*}\right)$. But if $f(x)$ has real coefficients then $f^{*}(x)=f(x)$. Use this to show that the non-real roots of a real polynomial come in complex conjugate pairs.]
(b) Prove that $(1 \mathbb{R})$ implies ($1 \mathbb{C}$). [Hint: Given $f(x) \in \mathbb{C}[x]$ we note that $\left(f f^{*}\right)^{*}=$ $f^{*}\left(f^{* *}\right)=f^{*} f=f f^{*}$, and hence the polynomial $f(x) f^{*}(x)$ has real coefficients. Assuming $(1 \mathbb{R})$ we know that $f f^{*}$ has a root $\alpha \in \mathbb{C}$, i.e., $f(\alpha) f^{*}(\alpha)=0$. Use this to show that $f(x)$ has a root in \mathbb{C}.]
3. Freshman's Binomial Theorem. Let $p \geq 2$ be prime and let R be any ring of characteristic p. For any elements $a, b \in R$, prove that

$$
(a+b)^{p}=a^{p}+b^{p} .
$$

[Hint: For any $a \in R$ and $n \in \mathbb{Z}$ recall that we have an element $n \cdot a \in R$ defined by induction. If R has characteristic p then $p \cdot a=0$ for any $a \in R$. For any $a, b \in R$, the usual binomial theorem for integers tells us that

$$
(a+b)^{p}=a^{p}+\binom{p}{1} \cdot a^{p-1} b+\cdots+\binom{p}{p-1} \cdot a b^{p-1}+b^{p} .
$$

Your job is to show that the integer $\binom{p}{k}$ is divisible by p whenever $1 \leq k \leq p-1$.]
4. Eisenstein's Criterion. Let $p \geq 2$ be prime.
(a) Given a polynomial $f(x)=a_{0}+\cdots+a_{n} x^{n} \in \mathbb{Z}[x]$ with $p \mid a_{i}$ for $0 \leq i \leq n-1, p \nmid a_{n}$ and $p^{2} \nmid a_{0}$, prove that $f(x)$ is irreducible over \mathbb{Z}. [Hint: Suppose that $f(x)=g(x) h(x)$ with $\operatorname{deg}(g)=k \geq 1$ and $\operatorname{deg}(h)=\ell \geq 1$. Consider the ring homomorphism $\varphi: \mathbb{Z}[x] \rightarrow$ $(\mathbb{Z} / p \mathbb{Z})[x]$ from $1(\mathrm{~b})$, so that $g^{\varphi}(x) h^{\varphi}(x)=f^{\varphi}(x)=\left[a_{n}\right] x^{n}$ with $\left[a_{n}\right] \neq[0]$. Since p is prime this implies that $g^{\varphi}(x)=[b] x^{k}$ and $h^{\varphi}(x)=[c] x^{\ell}$ for some $[c],[d] \neq[0]$. But then the constant terms of $g(x)$ and $h(x)$ are divisible by p, so the constant term of $f(x)=g(x) h(x)$ is divisible by p^{2}.]
(b) The p-th cyclotomic polynomial is $\Phi_{p}(x)=1+x+\cdots+x^{p-1}=\left(x^{p}-1\right) /(x-1)$, so

$$
\Phi_{p}(1+x)=\frac{(1+x)^{p}-1}{x}=\binom{p}{1}+\binom{p}{2} x+\cdots+\binom{p}{p} x^{p-1} .
$$

Use part (a) and the proof of Problem 3 to show that $\Phi_{p}(1+x)$ is irreducible over \mathbb{Z}. Use this to conclude that $\Phi_{p}(x)$ is irreducible over \mathbb{Z}.
5. Fundamental Theorem of Symmetric Polynomials. For any field \mathbb{F}, the symmetric group S_{n} acts on the set of polynomials $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ by permuting the variables:

$$
\sigma \cdot f\left(x_{1}, \ldots, x_{n}\right):=f\left(x_{\sigma(1)}, \cdots, x_{\sigma(n)}\right) .
$$

We say that f is a symmetric polynomial when $\sigma \cdot f=f$ for all $\sigma \in S_{n}$.
(a) Let $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Then for any $\mathbf{k}=\left(k_{1}, \ldots, k_{n}\right) \in \mathbb{N}^{n}$ we define the notation

$$
\mathbf{x}^{\mathbf{k}}:=x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{n}^{k_{n}} .
$$

Every $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ has a unique expression $f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ with $a_{\mathbf{k}} \in \mathbb{F}$ for all $\mathbf{k} \in \mathbb{N}^{n}$. Check that this notation satisfies $\mathbf{x}^{\mathbf{k}} \mathbf{x}^{\ell}=\mathbf{x}^{\mathbf{k}+\ell}$ for all $\mathbf{k}, \boldsymbol{\ell} \in \mathbb{N}^{n}$. It follows from this (but you don't need to prove it) that

$$
\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}\right)\left(\sum_{\ell \in \mathbb{N}^{n}} b_{\ell} \mathbf{x}^{\ell}\right)=\sum_{\mathbf{m} \in \mathbb{N}^{n}}\left(\sum_{\mathbf{k}+\ell=\mathbf{m}} a_{\mathbf{k}} b_{\ell}\right) \mathbf{x}^{\mathbf{m}} .
$$

(b) We define the lexicographic order on \mathbb{N}^{n} as follows:

$$
\mathbf{k}<\boldsymbol{\ell} \Leftrightarrow \text { there exists } j \text { such that } k_{j}<\ell_{j} \text { and } k_{i}=\ell_{i} \text { for all } i<j .
$$

One can check (don't do this) that this defines a total order on \mathbb{N}^{n} which satisfies the well-ordering property and for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^{n}$ we have $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{a}+\mathbf{c} \leq \mathbf{b}+\mathbf{c}$. Based on this, we define the lexicographic degree function $\operatorname{deg}: \mathbb{F}[\mathbf{x}] \rightarrow \mathbb{N}^{n}$ by

$$
\operatorname{deg}\left(\sum_{\mathbf{k} \in \mathbb{N}^{n}} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}\right):=\max _{\text {lex }}\left\{\mathbf{k} \in \mathbb{N}^{n}: a_{\mathbf{k}} \neq 0\right\} .
$$

Use part (a) and the given properties to show that $\operatorname{deg}(f g)=\operatorname{deg}(f)+\operatorname{deg}(g)$ for all nonzero polynomials $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$.
(c) The elementary symmetric polynomials $e_{1}(\mathbf{x}), \ldots, e_{n}(\mathbf{x})$ are defined by

$$
\left(y-x_{1}\right) \cdots\left(y-x_{n}\right)=y^{n}-e_{1}(\mathbf{x}) y^{n-1}+e_{2}(\mathbf{x}) y^{n-2}+\cdots+(-1)^{n} e_{n}(\mathbf{x}) .
$$

One can check that each $e_{i}(\mathbf{x})$ is monic (i.e., has lex-leading coefficient 1) and has $\operatorname{deg}\left(e_{j}\right)=(1, \ldots, 1,0, \ldots, 0)$, with j ones followed by $n-j$ zeroes. For any symmetric polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, prove that we can find a (possibly non-symmetric) polynomial $g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ such that

$$
f(\mathbf{x})=g\left(e_{1}(\mathbf{x}), \ldots, e_{n}(\mathbf{x})\right) .
$$

[Hint: Use induction on lexicographic degree. Suppose that $f(\mathbf{x})=c \mathbf{x}^{\mathbf{k}}+$ lower terms. Use the fact that $f(\mathbf{x})$ is symmetric to show that $k_{1} \geq k_{2} \geq \cdots \geq k_{n}$. Define

$$
g(\mathbf{x}):=c e_{1}(\mathbf{x})^{k_{1}-k_{2}} e_{2}(\mathbf{x})^{k_{2}-k_{3}} \cdots e_{n-1}(\mathbf{x})^{k_{n-1}-k_{n}} e_{n}(\mathbf{x})^{k_{n}}
$$

and use (b) to check that $g(\mathbf{x})=c \mathbf{x}^{\mathbf{k}}+$ lower terms. Then since $\operatorname{deg}(f-g)<\operatorname{deg}(f)$ we may assume that $f(\mathbf{x})-g(\mathbf{x})=h\left(e_{1}(\mathbf{x}), \ldots, e_{n}(\mathbf{x})\right)$ for some $\left.h(\mathbf{x}) \in \mathbb{F}[\mathbf{x}].\right]$
(d) Let $f(x) \in \mathbb{F}[x]$ be a polynomial in one variable and let $\mathbb{E} \supseteq \mathbb{F}$ be a splitting field for $f(x)$ over \mathbb{F}. That is, suppose that there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{E}$ such that

$$
f(x)=\left(x-\alpha_{1}\right) \cdots\left(x-\alpha_{n}\right) .
$$

For any multivariable polynomial $F\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ we have the evaluation $F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{E}$. If F is symmetric, use part (c) to show that $F\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{F}$.

