1. Extending Ring Homomorphisms to Polynomials. Given a ring homomorphism $\varphi: R \to S$ we define the function $\varphi: R[x] \to S[x]$ by sending $f(x) = \sum_k a_k x^k$ to

$$f^{\varphi}(x) := \sum_{k} \varphi(a_k) x^k$$

- (a) Prove that $f(x) \mapsto f^{\varphi}(x)$ is a ring homomorphism.
- (b) Given an integer $n \ge 0$ let $\varphi : \mathbb{Z}[x] \to (\mathbb{Z}/n\mathbb{Z})[x]$ be the extension of the quotient homomorphism $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Show that

 $f^{\varphi}(x) = 0 \quad \iff \quad n \text{ divides every coefficient of } f(x).$

(c) **Gauss' Lemma.** A polynomial $f(x) \in \mathbb{Z}[x]$ is called *primitive* when its coefficients have no common prime factors. If $f(x), g(x) \in \mathbb{Z}[x]$ are primitive, prove that $f(x)g(x) \in \mathbb{Z}[x]$ is also primitive. [Hint: Let $p \geq 2$ be a common prime factor of the coefficients of f(x)g(x) and let $\varphi : \mathbb{Z}[x] \to (\mathbb{Z}/p\mathbb{Z})[x]$ be the map from part (b). Since $\mathbb{Z}/p\mathbb{Z}$ is a field, and since $f^{\varphi}(x)g^{\varphi}(x) = \varphi(f(x)g(x)) = 0$ we must have $f^{\varphi}(x) = 0$ or $g^{\varphi}(x) = 0$.]

2. Equivalent Statements of the FTA. Consider the following statements:

- (1R) Every non-constant $f(x) \in \mathbb{R}[x]$ has a root in \mathbb{C} .
- (2 \mathbb{R}) Every non-constant $f(x) \in \mathbb{R}[x]$ is a product degree 1 and 2 polynomials in $\mathbb{R}[x]$
- (1C) Every non-constant $f(x) \in \mathbb{C}[x]$ has a root in \mathbb{C} .
- (2C) Every non-constant $f(x) \in \mathbb{C}[x]$ is a product of degree 1 polynomials in $\mathbb{C}[x]$.

I claim that these four statements are equivalent. We will prove the more difficult implications.

- (a) Prove that $(1\mathbb{R})$ implies $(2\mathbb{R})$. [Hint: Let $* : \mathbb{C} \to \mathbb{C}$ be complex conjugation and let $* : \mathbb{C}[x] \to \mathbb{C}[x]$ be the extension as in Problem 1. For all $\alpha \in \mathbb{C}$ note that $f(\alpha)^* = f^*(\alpha^*)$. But if f(x) has real coefficients then $f^*(x) = f(x)$. Use this to show that the non-real roots of a real polynomial come in complex conjugate pairs.]
- (b) Prove that $(1\mathbb{R})$ implies $(1\mathbb{C})$. [Hint: Given $f(x) \in \mathbb{C}[x]$ we note that $(ff^*)^* = f^*(f^{**}) = f^*f = ff^*$, and hence the polynomial $f(x)f^*(x)$ has real coefficients. Assuming $(1\mathbb{R})$ we know that ff^* has a root $\alpha \in \mathbb{C}$, i.e., $f(\alpha)f^*(\alpha) = 0$. Use this to show that f(x) has a root in \mathbb{C} .]

3. Freshman's Binomial Theorem. Let $p \ge 2$ be prime and let R be any ring of characteristic p. For any elements $a, b \in R$, prove that

$$(a+b)^p = a^p + b^p.$$

[Hint: For any $a \in R$ and $n \in \mathbb{Z}$ recall that we have an element $n \cdot a \in R$ defined by induction. If R has characteristic p then $p \cdot a = 0$ for any $a \in R$. For any $a, b \in R$, the usual binomial theorem for integers tells us that

$$(a+b)^{p} = a^{p} + {p \choose 1} \cdot a^{p-1}b + \dots + {p \choose p-1} \cdot ab^{p-1} + b^{p}.$$

Your job is to show that the integer $\binom{p}{k}$ is divisible by p whenever $1 \le k \le p-1$.]

4. Eisenstein's Criterion. Let $p \ge 2$ be prime.

- (a) Given a polynomial $f(x) = a_0 + \dots + a_n x^n \in \mathbb{Z}[x]$ with $p|a_i$ for $0 \le i \le n-1$, $p \nmid a_n$ and $p^2 \nmid a_0$, prove that f(x) is irreducible over \mathbb{Z} . [Hint: Suppose that f(x) = g(x)h(x)with $\deg(g) = k \ge 1$ and $\deg(h) = \ell \ge 1$. Consider the ring homomorphism $\varphi : \mathbb{Z}[x] \to (\mathbb{Z}/p\mathbb{Z})[x]$ from 1(b), so that $g^{\varphi}(x)h^{\varphi}(x) = f^{\varphi}(x) = [a_n]x^n$ with $[a_n] \ne [0]$. Since pis prime this implies that $g^{\varphi}(x) = [b]x^k$ and $h^{\varphi}(x) = [c]x^{\ell}$ for some $[c], [d] \ne [0]$. But then the constant terms of g(x) and h(x) are divisible by p, so the constant term of f(x) = g(x)h(x) is divisible by p^2 .]
- (b) The *p*-th cyclotomic polynomial is $\Phi_p(x) = 1 + x + \dots + x^{p-1} = (x^p 1)/(x 1)$, so

$$\Phi_p(1+x) = \frac{(1+x)^p - 1}{x} = \binom{p}{1} + \binom{p}{2}x + \dots + \binom{p}{p}x^{p-1}$$

Use part (a) and the proof of Problem 3 to show that $\Phi_p(1+x)$ is irreducible over \mathbb{Z} . Use this to conclude that $\Phi_p(x)$ is irreducible over \mathbb{Z} .

5. Fundamental Theorem of Symmetric Polynomials. For any field \mathbb{F} , the symmetric group S_n acts on the set of polynomials $\mathbb{F}[x_1, \ldots, x_n]$ by permuting the variables:

$$\sigma \cdot f(x_1, \ldots, x_n) := f(x_{\sigma(1)}, \cdots, x_{\sigma(n)}).$$

We say that f is a symmetric polynomial when $\sigma \cdot f = f$ for all $\sigma \in S_n$.

(a) Let $\mathbf{x} = (x_1, \ldots, x_n)$. Then for any $\mathbf{k} = (k_1, \ldots, k_n) \in \mathbb{N}^n$ we define the notation

$$\mathbf{x}^{\mathbf{k}} := x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}.$$

Every $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ has a unique expression $f(\mathbf{x}) = \sum_{\mathbf{k} \in \mathbb{N}^n} a_{\mathbf{k}} \mathbf{x}^{\mathbf{k}}$ with $a_{\mathbf{k}} \in \mathbb{F}$ for all $\mathbf{k} \in \mathbb{N}^n$. Check that this notation satisfies $\mathbf{x}^{\mathbf{k}} \mathbf{x}^{\boldsymbol{\ell}} = \mathbf{x}^{\mathbf{k}+\boldsymbol{\ell}}$ for all $\mathbf{k}, \boldsymbol{\ell} \in \mathbb{N}^n$. It follows from this (but you don't need to prove it) that

$$\left(\sum_{\mathbf{k}\in\mathbb{N}^n}a_{\mathbf{k}}\mathbf{x}^{\mathbf{k}}\right)\left(\sum_{\boldsymbol{\ell}\in\mathbb{N}^n}b_{\boldsymbol{\ell}}\mathbf{x}^{\boldsymbol{\ell}}\right)=\sum_{\mathbf{m}\in\mathbb{N}^n}\left(\sum_{\mathbf{k}+\boldsymbol{\ell}=\mathbf{m}}a_{\mathbf{k}}b_{\boldsymbol{\ell}}\right)\mathbf{x}^{\mathbf{m}}.$$

(b) We define the *lexicographic order* on \mathbb{N}^n as follows:

 $\mathbf{k} < \boldsymbol{\ell} \quad \Leftrightarrow \quad \text{there exists } j \text{ such that } k_j < \ell_j \text{ and } k_i = \ell_i \text{ for all } i < j.$

One can check (don't do this) that this defines a total order on \mathbb{N}^n which satisfies the well-ordering property and for all $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathbb{N}^n$ we have $\mathbf{a} \leq \mathbf{b} \Rightarrow \mathbf{a} + \mathbf{c} \leq \mathbf{b} + \mathbf{c}$. Based on this, we define the *lexicographic degree* function deg : $\mathbb{F}[\mathbf{x}] \to \mathbb{N}^n$ by

$$\deg\left(\sum_{\mathbf{k}\in\mathbb{N}^n}a_{\mathbf{k}}\mathbf{x}^{\mathbf{k}}\right) := \max_{\mathrm{lex}}\{\mathbf{k}\in\mathbb{N}^n: a_{\mathbf{k}}\neq 0\}.$$

Use part (a) and the given properties to show that $\deg(fg) = \deg(f) + \deg(g)$ for all nonzero polynomials $f(\mathbf{x}), g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$.

(c) The elementary symmetric polynomials $e_1(\mathbf{x}), \ldots, e_n(\mathbf{x})$ are defined by

$$(y - x_1) \cdots (y - x_n) = y^n - e_1(\mathbf{x})y^{n-1} + e_2(\mathbf{x})y^{n-2} + \cdots + (-1)^n e_n(\mathbf{x}).$$

One can check that each $e_i(\mathbf{x})$ is monic (i.e., has lex-leading coefficient 1) and has $\deg(e_j) = (1, \ldots, 1, 0, \ldots, 0)$, with j ones followed by n - j zeroes. For any symmetric polynomial $f(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$, prove that we can find a (possibly non-symmetric) polynomial $g(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$ such that

$$f(\mathbf{x}) = g(e_1(\mathbf{x}), \dots, e_n(\mathbf{x})).$$

[Hint: Use induction on lexicographic degree. Suppose that $f(\mathbf{x}) = c\mathbf{x}^{\mathbf{k}} + \text{lower terms.}$ Use the fact that $f(\mathbf{x})$ is symmetric to show that $k_1 \ge k_2 \ge \cdots \ge k_n$. Define

$$g(\mathbf{x}) := ce_1(\mathbf{x})^{k_1 - k_2} e_2(\mathbf{x})^{k_2 - k_3} \cdots e_{n-1}(\mathbf{x})^{k_{n-1} - k_n} e_n(\mathbf{x})^{k_n}$$

and use (b) to check that $g(\mathbf{x}) = c\mathbf{x}^{\mathbf{k}}$ + lower terms. Then since $\deg(f - g) < \deg(f)$ we may assume that $f(\mathbf{x}) - g(\mathbf{x}) = h(e_1(\mathbf{x}), \dots, e_n(\mathbf{x}))$ for some $h(\mathbf{x}) \in \mathbb{F}[\mathbf{x}]$.]

(d) Let $f(x) \in \mathbb{F}[x]$ be a polynomial in one variable and let $\mathbb{E} \supseteq \mathbb{F}$ be a splitting field for f(x) over \mathbb{F} . That is, suppose that there exist $\alpha_1, \ldots, \alpha_n \in \mathbb{E}$ such that

$$f(x) = (x - \alpha_1) \cdots (x - \alpha_n).$$

For any multivariable polynomial $F(x_1, \ldots, x_n) \in \mathbb{F}[x_1, \ldots, x_n]$ we have the evaluation $F(\alpha_1, \ldots, \alpha_n) \in \mathbb{E}$. If F is symmetric, use part (c) to show that $F(\alpha_1, \ldots, \alpha_n) \in \mathbb{F}$.