
Math 562/662 Spring 2024
Homework 3 Drew Armstrong

1. One Step Ideal Test. Let I be a subset of a commutative ring (R,+, ·, 0, 1). We say
that I is an ideal of R when the following two properties hold:

(1) I is a subgroup of (R,+, 0).
(2) For all a ∈ R and b ∈ I we have ab ∈ I.

Prove that these two properties are equivalent to the following single property:

(3) For all a, b ∈ I and c ∈ R we have a+ bc ∈ I.

[Hint: You may use the One Step Subgroup Test from last semester.]

Suppose that (1) and (2) hold. Then for any a, b ∈ I and c ∈ R we have bc ∈ I by (2) and
then a+ bc ∈ I by (1). Hence (3) holds. Conversely, suppose that (3) holds. We will use the
One Step Subgroup Test to prove (1). So consider any a, b ∈ I. Then by taking c = −1 we
have a − b = a + bc ∈ I, as desired. In particular we have 0 ∈ I. Now taking a = 0 in the
statement of (3) says that b ∈ I and c ∈ R imply bc = 0 + bc ∈ I, hence (2) holds.

2. First Isomorphism Theorem for Rings. Let ϕ : R→ S be a ring homomorphism. We
define the image and kernel as follows:

imϕ = {ϕ(a) : a ∈ R},
kerϕ = {a ∈ R : ϕ(a) = 0}.

(a) Prove that kerϕ ⊆ R is an ideal.
(b) Prove that imϕ ⊆ S is a subring (i.e., a subset containing 0 and 1 that is closed under

addition and multiplication).
(c) From last semester we know that the function Φ : R/ kerϕ → imϕ defined by [a] 7→

ϕ(a) is an isomorphism of additive groups. Prove that Φ also preserves multiplication,
hence it gives a ring isomorphism R/ kerϕ ∼= imϕ.

(a): We will use the One Step Ideal Test. For any a, b ∈ kerϕ and b ∈ R we have

ϕ(a+ bc) = ϕ(a) + ϕ(b)ϕ(c) = 0 + 0ϕ(c) = 0,

and hence a+ bc ∈ kerϕ.

(b): First note that imϕ contains 0 and 1 because 0 = ϕ(0) and 1 = ϕ(1). Now consider
any two elements a, b ∈ imϕ. By definition, this means that a = ϕ(a′) and b = ϕ(b′)
for some a′, b′ ∈ R. But then we have a + b = ϕ(a′) + ϕ(b′) = ϕ(a′ + b′) ∈ imϕ and
ab = ϕ(a′)ϕ(b′) = ϕ(a′b′) ∈ imϕ, as desired.

(c): For any a ∈ R let [a] denote the additive coset a + kerϕ. We know from last semes-
ter that the operation [a] + [b] := [a + b] is well-defined and makes R/ kerϕ into a group.
Furthermore, the function Φ : R/ kerϕ → imϕ defined by Φ([a]) := ϕ(a) is a well-defined
group isomorphism. On HW2 you showed that the operation [a][b] := [ab] is well-defined and
makes R/ kerϕ into a ring. Then Φ is also a ring homomorphism because Φ([1]) = ϕ(1) = 1
and Φ([a][b]) = Φ([ab]) = ϕ(ab) = ϕ(a)ϕ(b) = Φ([a])Φ([b]). Hence Φ is a ring isomorphism
R/ kerϕ ∼= imϕ.



3. Characteristic of a Ring. For any ring R there exists a unique ring homomorphism
ιR : Z → R from the ring of integers. Since ker ιR is an ideal of Z we must have ker ιR = nZ
for some unique natural number n ∈ N. We call this the characteristic of R:

char(R) := n.

(a) Prove that im ιR is the smallest subring of R.
(b) If R is a domain, prove that char(R) = 0 or char(R) = p for some prime p ≥ 2. [Hint:

By the first isomorphism theorem, Z/ ker ιR is isomorphic to a subring of R.]
(c) Let F be a field and let F′ ⊆ F be the smallest subfield.1 Since every field is a domain,

we know from part (b) that char(F) = 0 or char(F) = p ≥ 2. In the first case show
that F′ ∼= Q. In the second case show that F′ ∼= Z/pZ. [Hint: From part (a) we know
that R := im ιF is the smallest subring of F. Show that Frac(R) = F′ and then use the
First Isomorphism Theorem.]

(a): The function ιR can be described as ιR(n) = n · 1R where

n · 1R :=


1R + 1R + · · ·+ 1R n ≥ 1,

0 n = 0,

−1R − 1R − · · · − 1R n ≤ −1.

This notation satisfies (m+n) · 1R = m · 1R +n · 1R, which shows that im ιR is a subring of R.
(Or just use the fact that any image is a subring.) Now let R′ ⊆ R be the smallest subring of
R. Since im ιR is a subring of R we must have R′ ⊆ im ιR. Conversely, since 1R ∈ R′ we can
show by induction that n · 1R ∈ R′ for all n ∈ Z, and hence im ιR ⊆ R′.

(b): Let R be a domain. Since ker ιR is an ideal of Z we have ker ιR = nZ for some unique
n ∈ N, and we write n = char(R). I claim that n = 0 or n = p for prime p ≥ 2. Indeed, by the
First Isomorphism Theorem we know that Z/nZ = Z/ ker ιR ∼= im ιR ⊆ R. Since im ιR is a
subring of a domain, it is also a domain. Then since Z/nZ is a domain we know that nZ ⊆ Z
is a prime ideal. Hence n = 0 or n = p for prime p ≥ 2.

(c): Let F be a field with smallest subfield F′ ⊆ F and smallest subring R′ ⊆ F, so that R′ ⊆ F′.
I claim that F′ = Frac(R′), where Frac(R′) is defined as the set {ab−1 : a, b ∈ R′, b 6= 0} ⊆ F.
Indeed, for all a, b ∈ R′ with b 6= 0 we have a, b ∈ F′ and hence ab−1 ∈ F′, so that Frac(R′) ⊆ F′.
Conversely, since Frac(R′) is a subfield of F and since F′ is the smallest subfield we have
F′ ⊆ Frac(R′).

Since F is a domain we know from (b) that R′ ∼= Z/0Z = Z or R′ ∼= Z/pZ for prime p ≥ 2.
Hence F′ ∼= Frac(Z) = Q or F′ ∼= Frac(Z/pZ) = Z/pZ.

4. Minimal Polynomials. Given an element α ∈ E ⊇ F of a field extension we have a
ring homomorphism ϕα : F[x]→ E defined by f(x) 7→ f(α). Since F[x] is Euclidean we know
that kerϕα = mα(x)F[x] for some unique monic polynomial mα(x) ∈ F[x] called the minimal
polynomial of α over F. We will assume that mα(x) 6= 02 and deg(mα) = n.

(a) Prove that mα(x) is irreducible over F. [Hint: Suppose for contradiction that mα(x) =
f(x)g(x) with deg(f), deg(g) ≥ 1. Evaluating x 7→ α gives f(α)g(α) = 0 so without
loss of generality we can assume that f(α) = 0. But this implies that f(x) ∈ kerϕα so
that f(x) = mα(x)h(x) for some h(x) ∈ F[x].]

1A subfield is a subring that is also a field.
2That is, we will assume that α is algebraic over F.



(b) Recall that we define F[α] := imϕα. Prove that every element of F[α] can be written
in the form a0 +a1α+ · · ·+an−1α

n−1 with a0, . . . , an−1 ∈ F. [Hint: By definition every
element β ∈ F[α] has the form β = f(α) for some polynomial f(x) ∈ F[x]. Divide f(x)
by the nonzero polynomial mα(x) and then substitute x 7→ α.]

(c) For any a0, . . . , an−1, b0, . . . , bn−1 ∈ F prove that

n−1∑
k=0

akα
k =

n−1∑
k=0

bkα
k ⇐⇒ ak = bk for all 0 ≤ k ≤ n− 1.

(a): Suppose for contradiction that mα(x) = f(x)g(x) for some f(x), g(x) ∈ F[x] with
deg(f),deg(g) ≥ 1. Since deg(mα) = deg(f) + deg(g) this implies that deg(f), deg(g) <
deg(mα). Now evaluating x 7→ α gives f(α)g(α) = mα(α) = 0. Since E is a domain this
implies that f(α) = 0 or g(α) = 0. Without loss of generality, let’s say f(α) = 0. By the def-
inition of mα(x) this means that f(x) = mα(x)h(x) for some h(x) ∈ F[x]. But since f(x) 6= 0
this implies that deg(f) = deg(mα) + deg(h) ≥ deg(mα), which contradicts the fact that
deg(f) < deg(mα).

(b): Let deg(mα) = n and consider any element β ∈ F[α]. By definition this means that
β = f(α) for some polynomial f(x) ∈ F[x]. Divide f(x) by the minimal polynomial mα(x) to
obtain q(x), r(x) ∈ F[x] satisfying{

f(x) = mα(x)q(x) + r(x),
r(x) = 0 or deg(r) < n.

In any case we can write r(x) = a0 + a1x + · · · + an−1x
n−1 for some a0, . . . , an−1 ∈ F. Then

evaluating x 7→ α gives

β = f(α)

= mα(α)q(α) + r(α)

= 0q(α) + r(α)

= r(α)

= a0 + a1α+ · · ·+ an−1α
n−1,

as desired.

(c): Consider any two polynomials f(x) = a0 + · · ·+an−1x
n−1 and g(x) = b0 + · · ·+ bn−1x

n−1

in F[x] of degree < n. If ak = bk for all k then f(x) = g(x) and hence f(α) = g(α). Conversely,
suppose that f(α) = g(α) and consider the polynomial h(x) = f(x) − g(x) ∈ F[x]. Our goal
is to show that h(x) = 0, which implies that each of its coefficients ak − bk is zero, and hence
ak = bk. So suppose for contradiction that h(x) 6= 0. Since h(α) = f(α) − g(α) = 0 we
have h(x) = mα(x)p(x) for some p(x) ∈ F[x] and since h(x) 6= 0 this implies that deg(h) =
deg(mα) + deg(p) ≥ deg(mα) = n. But this contradicts the fact that deg(h) = deg(f − g) ≤
max{deg(f), deg(g)} < n.

5. Irreducible Polynomials of Small Degree. Let F be a domain and let f(x) ∈ F[x] be
a polynomial of degree 2 or 3. Prove that

f(x) is irreducible over F ⇐⇒ f(x) has no root in F.
[Hint: If f(a) = 0 for some a ∈ F then Descartes’ Factor Theorem says that f(x) = (x−a)g(x)
for some g(x) ∈ F[x]. Conversely, suppose that f(x) = g(x)h(x) for some g(x), h(x) with
deg(g),deg(h) ≥ 1. Now what?]



Let deg(f) = 2 or 3. If f(x) ∈ F[x] has a root a ∈ F then f(x) = (x − a)g(x) for some
g(x) ∈ F[x], which implies that f(x) is not irreducible. Conversely, suppose that f(x) is
reducible, say f(x) = g(x)h(x) for some deg(g),deg(h) ≥ 1. Since deg(f) = 2 or 3, this
implies that deg(g) = 1 or deg(h) = 1. Without loss of generality, suppose that deg(g) = 1 so
that g(x) = a+ bx with a, b ∈ F and b 6= 0. But then

f(−ab−1) = g(−ab−1)h(−ab−1) = 0h(−ab−1) = 0,

which shows that f(x) has a root −ab−1 ∈ F.

6. The Rational Root Test. Let f(x) be a polynomial of degree n with integer coefficients:
c0 + c1x+ · · ·+ cnx

n ∈ Z[x] with cn 6= 0.

(a) Suppose that f(a/b) = 0 for some integers a, b ∈ Z with b 6= 0 and gcd(a, b) = 1. In
this case prove that a|c0 and b|cn. [Hint: Multiply both sides of f(a/b) = 0 by bn

to obtain an equation involving only integers. Show that b|cnan and a|c0bn, then use
Euclid’s Lemma.]

(b) Use part (a) to show that the polynomial x3 − 2 has no rational roots. It follows from
Problem 5 that x3 − 2 is irreducible over Q.

(c) Let α := 3
√

2 be the real cube root of 2. Use part (b) to prove that x3−2 is the minimal
polynomial of α over Q. [Hint: Let mα(x) ∈ Q[x] be the minimal polynomial of α over
Q. Since (α)3 − 2 = 0 we know that x3 − 2 = mα(x)f(x) for some f(x) ∈ Q[x].]

(a): Suppose that f(a/b) = 0 for some integers a, b ∈ Z with b 6= 0 and gcd(a, b) = 1.
Multiplying both sides of this equation by bn gives

f(a/b) = 0

c0 + c1(a/b) + · · ·+ cn(a/b)n = 0

c0b
n + c1ab

n−1 + · · ·+ cna
n = 0.

On the one hand we have −c0bn = c1ab
n−1 + · · · + cna

n = a(c1b
n−1 + · · · + cna

n−1). Then
since a|c0bn and gcd(a, b) = 1, Euclid’s Lemma implies that a|c0. On the other hand we
have −cnan = c0b

n + · · · + cn−1a
n−1b = b(c0b

n−1 + · · · + cn−1a
n−1). Then since b|cnan and

gcd(a, b) = 1, Euclid’s Lemma implies that b|an.

(b): Suppose that (a/b)3 − 2 = 0 for some a, b ∈ Z with gcd(a, b) = 1. From part (a) this
implies that a|2 and b|1, hence a/b = ±1,±2. But (±1)3 − 2 6= 0 and (±2)3 − 2 6= 0. Hence
this polynomial has no rational roots. Since x3 − 2 has degree 3, it follows from Problem 5
that x3 − 2 is irreducible over Q.

(c): Let α := 3
√

2 be the real cube root of 2, so that α3− 2 = 0. By definition this means that
x3 − 2 = mα(x)f(x) for some f(x) ∈ Q[x], where mα(x) ∈ Q[x] is the minimal polynomial of
α over Q. But we know from part (b) that x3 − 2 is irreducible over Q, hence we must have
x3 − 2 ∼ mα(x), and since mα(x) is monic we must have x3 − 2 = mα(x).


