1. One Step Ideal Test. Let *I* be a subset of a commutative ring $(R, +, \cdot, 0, 1)$. We say that *I* is an *ideal of R* when the following two properties hold:

- (1) I is a subgroup of (R, +, 0).
- (2) For all $a \in R$ and $b \in I$ we have $ab \in I$.

Prove that these two properties are equivalent to the following single property:

(3) For all
$$a, b \in I$$
 and $c \in R$ we have $a + bc \in I$.

[Hint: You may use the One Step Subgroup Test from last semester.]

Suppose that (1) and (2) hold. Then for any $a, b \in I$ and $c \in R$ we have $bc \in I$ by (2) and then $a + bc \in I$ by (1). Hence (3) holds. Conversely, suppose that (3) holds. We will use the One Step Subgroup Test to prove (1). So consider any $a, b \in I$. Then by taking c = -1 we have $a - b = a + bc \in I$, as desired. In particular we have $0 \in I$. Now taking a = 0 in the statement of (3) says that $b \in I$ and $c \in R$ imply $bc = 0 + bc \in I$, hence (2) holds.

2. First Isomorphism Theorem for Rings. Let $\varphi : R \to S$ be a ring homomorphism. We define the *image* and *kernel* as follows:

$$\operatorname{im} \varphi = \{\varphi(a) : a \in R\}, \\ \operatorname{ker} \varphi = \{a \in R : \varphi(a) = 0\}.$$

- (a) Prove that $\ker \varphi \subseteq R$ is an ideal.
- (b) Prove that im $\varphi \subseteq S$ is a *subring* (i.e., a subset containing 0 and 1 that is closed under addition and multiplication).
- (c) From last semester we know that the function $\Phi : R/\ker \varphi \to \operatorname{im} \varphi$ defined by $[a] \mapsto \varphi(a)$ is an isomorphism of additive groups. Prove that Φ also preserves multiplication, hence it gives a **ring isomorphism** $R/\ker \varphi \cong \operatorname{im} \varphi$.

(a): We will use the One Step Ideal Test. For any $a, b \in \ker \varphi$ and $b \in R$ we have

$$\varphi(a+bc) = \varphi(a) + \varphi(b)\varphi(c) = 0 + 0\varphi(c) = 0,$$

and hence $a + bc \in \ker \varphi$.

(b): First note that im φ contains 0 and 1 because $0 = \varphi(0)$ and $1 = \varphi(1)$. Now consider any two elements $a, b \in \operatorname{im} \varphi$. By definition, this means that $a = \varphi(a')$ and $b = \varphi(b')$ for some $a', b' \in R$. But then we have $a + b = \varphi(a') + \varphi(b') = \varphi(a' + b') \in \operatorname{im} \varphi$ and $ab = \varphi(a')\varphi(b') = \varphi(a'b') \in \operatorname{im} \varphi$, as desired.

(c): For any $a \in R$ let [a] denote the additive coset $a + \ker \varphi$. We know from last semester that the operation [a] + [b] := [a + b] is well-defined and makes $R/\ker \varphi$ into a group. Furthermore, the function $\Phi : R/\ker \varphi \to \operatorname{im} \varphi$ defined by $\Phi([a]) := \varphi(a)$ is a well-defined group isomorphism. On HW2 you showed that the operation [a][b] := [ab] is well-defined and makes $R/\ker \varphi$ into a ring. Then Φ is also a ring homomorphism because $\Phi([1]) = \varphi(1) = 1$ and $\Phi([a][b]) = \Phi([ab]) = \varphi(ab) = \varphi(a)\varphi(b) = \Phi([a])\Phi([b])$. Hence Φ is a ring isomorphism $R/\ker \varphi \cong \operatorname{im} \varphi$. **3.** Characteristic of a Ring. For any ring R there exists a unique ring homomorphism $\iota_R : \mathbb{Z} \to R$ from the ring of integers. Since ker ι_R is an ideal of \mathbb{Z} we must have ker $\iota_R = n\mathbb{Z}$ for some unique natural number $n \in \mathbb{N}$. We call this the *characteristic of* R:

$$\operatorname{char}(R) := n$$

- (a) Prove that $\operatorname{im} \iota_R$ is the smallest subring of R.
- (b) If R is a domain, prove that $\operatorname{char}(R) = 0$ or $\operatorname{char}(R) = p$ for some prime $p \ge 2$. [Hint: By the first isomorphism theorem, $\mathbb{Z}/\ker \iota_R$ is isomorphic to a subring of R.]
- (c) Let \mathbb{F} be a field and let $\mathbb{F}' \subseteq \mathbb{F}$ be the smallest subfield.¹ Since every field is a domain, we know from part (b) that $\operatorname{char}(\mathbb{F}) = 0$ or $\operatorname{char}(\mathbb{F}) = p \geq 2$. In the first case show that $\mathbb{F}' \cong \mathbb{Q}$. In the second case show that $\mathbb{F}' \cong \mathbb{Z}/p\mathbb{Z}$. [Hint: From part (a) we know that $R := \operatorname{im} \iota_{\mathbb{F}}$ is the smallest subring of \mathbb{F} . Show that $\operatorname{Frac}(R) = \mathbb{F}'$ and then use the First Isomorphism Theorem.]

(a): The function ι_R can be described as $\iota_R(n) = n \cdot 1_R$ where

$$n \cdot 1_R := \begin{cases} 1_R + 1_R + \dots + 1_R & n \ge 1, \\ 0 & n = 0, \\ -1_R - 1_R - \dots - 1_R & n \le -1. \end{cases}$$

This notation satisfies $(m+n) \cdot 1_R = m \cdot 1_R + n \cdot 1_R$, which shows that im ι_R is a subring of R. (Or just use the fact that any image is a subring.) Now let $R' \subseteq R$ be the smallest subring of R. Since im ι_R is a subring of R we must have $R' \subseteq \operatorname{im} \iota_R$. Conversely, since $1_R \in R'$ we can show by induction that $n \cdot 1_R \in R'$ for all $n \in \mathbb{Z}$, and hence im $\iota_R \subseteq R'$.

(b): Let R be a domain. Since ker ι_R is an ideal of \mathbb{Z} we have ker $\iota_R = n\mathbb{Z}$ for some unique $n \in \mathbb{N}$, and we write $n = \operatorname{char}(R)$. I claim that n = 0 or n = p for prime $p \ge 2$. Indeed, by the First Isomorphism Theorem we know that $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}/\ker \iota_R \cong \operatorname{im} \iota_R \subseteq R$. Since $\operatorname{im} \iota_R$ is a subring of a domain, it is also a domain. Then since $\mathbb{Z}/n\mathbb{Z}$ is a domain we know that $n\mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal. Hence n = 0 or n = p for prime $p \ge 2$.

(c): Let \mathbb{F} be a field with smallest subfield $\mathbb{F}' \subseteq \mathbb{F}$ and smallest subring $R' \subseteq \mathbb{F}$, so that $R' \subseteq \mathbb{F}'$. I claim that $\mathbb{F}' = \operatorname{Frac}(R')$, where $\operatorname{Frac}(R')$ is defined as the set $\{ab^{-1} : a, b \in R', b \neq 0\} \subseteq \mathbb{F}$. Indeed, for all $a, b \in R'$ with $b \neq 0$ we have $a, b \in \mathbb{F}'$ and hence $ab^{-1} \in \mathbb{F}'$, so that $\operatorname{Frac}(R') \subseteq \mathbb{F}'$. Conversely, since $\operatorname{Frac}(R')$ is a subfield of \mathbb{F} and since \mathbb{F}' is the smallest subfield we have $\mathbb{F}' \subseteq \operatorname{Frac}(R')$.

Since \mathbb{F} is a domain we know from (b) that $R' \cong \mathbb{Z}/0\mathbb{Z} = \mathbb{Z}$ or $R' \cong \mathbb{Z}/p\mathbb{Z}$ for prime $p \ge 2$. Hence $\mathbb{F}' \cong \operatorname{Frac}(\mathbb{Z}) = \mathbb{Q}$ or $\mathbb{F}' \cong \operatorname{Frac}(\mathbb{Z}/p\mathbb{Z}) = \mathbb{Z}/p\mathbb{Z}$.

4. Minimal Polynomials. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ of a field extension we have a ring homomorphism $\varphi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$. Since $\mathbb{F}[x]$ is Euclidean we know that ker $\varphi_{\alpha} = m_{\alpha}(x)\mathbb{F}[x]$ for some unique monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ called the *minimal polynomial of* α over \mathbb{F} . We will assume that $m_{\alpha}(x) \neq 0^2$ and $\deg(m_{\alpha}) = n$.

(a) Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F} . [Hint: Suppose for contradiction that $m_{\alpha}(x) = f(x)g(x)$ with $\deg(f), \deg(g) \ge 1$. Evaluating $x \mapsto \alpha$ gives $f(\alpha)g(\alpha) = 0$ so without loss of generality we can assume that $f(\alpha) = 0$. But this implies that $f(x) \in \ker \varphi_{\alpha}$ so that $f(x) = m_{\alpha}(x)h(x)$ for some $h(x) \in \mathbb{F}[x]$.]

¹A subfield is a subring that is also a field.

²That is, we will assume that α is algebraic over \mathbb{F} .

- (b) Recall that we define $\mathbb{F}[\alpha] := \operatorname{im} \varphi_{\alpha}$. Prove that every element of $\mathbb{F}[\alpha]$ can be written in the form $a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1}$ with $a_0, \ldots, a_{n-1} \in \mathbb{F}$. [Hint: By definition every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x)by the nonzero polynomial $m_{\alpha}(x)$ and then substitute $x \mapsto \alpha$.]
- (c) For any $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1} \in \mathbb{F}$ prove that

$$\sum_{k=0}^{n-1} a_k \alpha^k = \sum_{k=0}^{n-1} b_k \alpha^k \quad \iff \quad a_k = b_k \text{ for all } 0 \le k \le n-1.$$

(a): Suppose for contradiction that $m_{\alpha}(x) = f(x)g(x)$ for some $f(x), g(x) \in \mathbb{F}[x]$ with $\deg(f), \deg(g) \geq 1$. Since $\deg(m_{\alpha}) = \deg(f) + \deg(g)$ this implies that $\deg(f), \deg(g) < \deg(m_{\alpha})$. Now evaluating $x \mapsto \alpha$ gives $f(\alpha)g(\alpha) = m_{\alpha}(\alpha) = 0$. Since \mathbb{E} is a domain this implies that $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss of generality, let's say $f(\alpha) = 0$. By the definition of $m_{\alpha}(x)$ this means that $f(x) = m_{\alpha}(x)h(x)$ for some $h(x) \in \mathbb{F}[x]$. But since $f(x) \neq 0$ this implies that $\deg(f) = \deg(m_{\alpha}) + \deg(h) \geq \deg(m_{\alpha})$, which contradicts the fact that $\deg(f) < \deg(m_{\alpha})$.

(b): Let deg $(m_{\alpha}) = n$ and consider any element $\beta \in \mathbb{F}[\alpha]$. By definition this means that $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x) by the minimal polynomial $m_{\alpha}(x)$ to obtain $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$\begin{cases} f(x) = m_{\alpha}(x)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < n. \end{cases}$$

In any case we can write $r(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$ for some $a_0, \dots, a_{n-1} \in \mathbb{F}$. Then evaluating $x \mapsto \alpha$ gives

$$\beta = f(\alpha)$$

= $m_{\alpha}(\alpha)q(\alpha) + r(\alpha)$
= $0q(\alpha) + r(\alpha)$
= $r(\alpha)$
= $a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1}$

as desired.

(c): Consider any two polynomials $f(x) = a_0 + \cdots + a_{n-1}x^{n-1}$ and $g(x) = b_0 + \cdots + b_{n-1}x^{n-1}$ in $\mathbb{F}[x]$ of degree < n. If $a_k = b_k$ for all k then f(x) = g(x) and hence $f(\alpha) = g(\alpha)$. Conversely, suppose that $f(\alpha) = g(\alpha)$ and consider the polynomial $h(x) = f(x) - g(x) \in \mathbb{F}[x]$. Our goal is to show that h(x) = 0, which implies that each of its coefficients $a_k - b_k$ is zero, and hence $a_k = b_k$. So suppose for contradiction that $h(x) \neq 0$. Since $h(\alpha) = f(\alpha) - g(\alpha) = 0$ we have $h(x) = m_{\alpha}(x)p(x)$ for some $p(x) \in \mathbb{F}[x]$ and since $h(x) \neq 0$ this implies that $\deg(h) =$ $\deg(m_{\alpha}) + \deg(p) \geq \deg(m_{\alpha}) = n$. But this contradicts the fact that $\deg(h) = \deg(f - g) \leq$ $\max\{\deg(f), \deg(g)\} < n$.

5. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a domain and let $f(x) \in \mathbb{F}[x]$ be a polynomial of degree 2 or 3. Prove that

f(x) is irreducible over $\mathbb{F} \iff f(x)$ has no root in \mathbb{F} .

[Hint: If f(a) = 0 for some $a \in \mathbb{F}$ then Descartes' Factor Theorem says that f(x) = (x-a)g(x) for some $g(x) \in \mathbb{F}[x]$. Conversely, suppose that f(x) = g(x)h(x) for some g(x), h(x) with $\deg(g), \deg(h) \ge 1$. Now what?]

Let $\deg(f) = 2$ or 3. If $f(x) \in \mathbb{F}[x]$ has a root $a \in \mathbb{F}$ then f(x) = (x - a)g(x) for some $g(x) \in \mathbb{F}[x]$, which implies that f(x) is not irreducible. Conversely, suppose that f(x) is reducible, say f(x) = g(x)h(x) for some $\deg(g), \deg(h) \ge 1$. Since $\deg(f) = 2$ or 3, this implies that $\deg(g) = 1$ or $\deg(h) = 1$. Without loss of generality, suppose that $\deg(g) = 1$ so that g(x) = a + bx with $a, b \in \mathbb{F}$ and $b \neq 0$. But then

$$f(-ab^{-1}) = g(-ab^{-1})h(-ab^{-1}) = 0h(-ab^{-1}) = 0,$$

which shows that f(x) has a root $-ab^{-1} \in \mathbb{F}$.

6. The Rational Root Test. Let f(x) be a polynomial of degree n with integer coefficients: $c_0 + c_1 x + \cdots + c_n x^n \in \mathbb{Z}[x]$ with $c_n \neq 0$.

- (a) Suppose that f(a/b) = 0 for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and gcd(a, b) = 1. In this case prove that $a|c_0$ and $b|c_n$. [Hint: Multiply both sides of f(a/b) = 0 by b^n to obtain an equation involving only integers. Show that $b|c_na^n$ and $a|c_0b^n$, then use Euclid's Lemma.]
- (b) Use part (a) to show that the polynomial $x^3 2$ has no rational roots. It follows from Problem 5 that $x^3 2$ is irreducible over \mathbb{Q} .
- (c) Let $\alpha := \sqrt[3]{2}$ be the real cube root of 2. Use part (b) to prove that $x^3 2$ is the minimal polynomial of α over \mathbb{Q} . [Hint: Let $m_{\alpha}(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} . Since $(\alpha)^3 2 = 0$ we know that $x^3 2 = m_{\alpha}(x)f(x)$ for some $f(x) \in \mathbb{Q}[x]$.]

(a): Suppose that f(a/b) = 0 for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and gcd(a, b) = 1. Multiplying both sides of this equation by b^n gives

$$f(a/b) = 0$$

$$c_0 + c_1(a/b) + \dots + c_n(a/b)^n = 0$$

$$c_0 b^n + c_1 a b^{n-1} + \dots + c_n a^n = 0.$$

On the one hand we have $-c_0b^n = c_1ab^{n-1} + \cdots + c_na^n = a(c_1b^{n-1} + \cdots + c_na^{n-1})$. Then since $a|c_0b^n$ and gcd(a,b) = 1, Euclid's Lemma implies that $a|c_0$. On the other hand we have $-c_na^n = c_0b^n + \cdots + c_{n-1}a^{n-1}b = b(c_0b^{n-1} + \cdots + c_{n-1}a^{n-1})$. Then since $b|c_na^n$ and gcd(a,b) = 1, Euclid's Lemma implies that $b|a_n$.

(b): Suppose that $(a/b)^3 - 2 = 0$ for some $a, b \in \mathbb{Z}$ with gcd(a, b) = 1. From part (a) this implies that a|2 and b|1, hence $a/b = \pm 1, \pm 2$. But $(\pm 1)^3 - 2 \neq 0$ and $(\pm 2)^3 - 2 \neq 0$. Hence this polynomial has no rational roots. Since $x^3 - 2$ has degree 3, it follows from Problem 5 that $x^3 - 2$ is irreducible over \mathbb{Q} .

(c): Let $\alpha := \sqrt[3]{2}$ be the real cube root of 2, so that $\alpha^3 - 2 = 0$. By definition this means that $x^3 - 2 = m_{\alpha}(x)f(x)$ for some $f(x) \in \mathbb{Q}[x]$, where $m_{\alpha}(x) \in \mathbb{Q}[x]$ is the minimal polynomial of α over \mathbb{Q} . But we know from part (b) that $x^3 - 2$ is irreducible over \mathbb{Q} , hence we must have $x^3 - 2 \sim m_{\alpha}(x)$, and since $m_{\alpha}(x)$ is monic we must have $x^3 - 2 = m_{\alpha}(x)$.