1. One Step Ideal Test. Let I be a subset of a commutative ring $(R,+, \cdot, 0,1)$. We say that I is an ideal of R when the following two properties hold:
(1) I is a subgroup of $(R,+, 0)$.
(2) For all $a \in R$ and $b \in I$ we have $a b \in I$.

Prove that these two properties are equivalent to the following single property:

$$
\begin{equation*}
\text { For all } a, b \in I \text { and } c \in R \text { we have } a+b c \in I \text {. } \tag{3}
\end{equation*}
$$

[Hint: You may use the One Step Subgroup Test from last semester.]
Suppose that (1) and (2) hold. Then for any $a, b \in I$ and $c \in R$ we have $b c \in I$ by (2) and then $a+b c \in I$ by (1). Hence (3) holds. Conversely, suppose that (3) holds. We will use the One Step Subgroup Test to prove (1). So consider any $a, b \in I$. Then by taking $c=-1$ we have $a-b=a+b c \in I$, as desired. In particular we have $0 \in I$. Now taking $a=0$ in the statement of (3) says that $b \in I$ and $c \in R$ imply $b c=0+b c \in I$, hence (2) holds.
2. First Isomorphism Theorem for Rings. Let $\varphi: R \rightarrow S$ be a ring homomorphism. We define the image and kernel as follows:

$$
\begin{aligned}
\operatorname{im} \varphi & =\{\varphi(a): a \in R\} \\
\operatorname{ker} \varphi & =\{a \in R: \varphi(a)=0\} .
\end{aligned}
$$

(a) Prove that $\operatorname{ker} \varphi \subseteq R$ is an ideal.
(b) Prove that $\operatorname{im} \varphi \subseteq S$ is a subring (i.e., a subset containing 0 and 1 that is closed under addition and multiplication).
(c) From last semester we know that the function $\Phi: R / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$ defined by $[a] \mapsto$ $\varphi(a)$ is an isomorphism of additive groups. Prove that Φ also preserves multiplication, hence it gives a ring isomorphism $R / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$.
(a): We will use the One Step Ideal Test. For any $a, b \in \operatorname{ker} \varphi$ and $b \in R$ we have

$$
\varphi(a+b c)=\varphi(a)+\varphi(b) \varphi(c)=0+0 \varphi(c)=0
$$

and hence $a+b c \in \operatorname{ker} \varphi$.
(b): First note that $\operatorname{im} \varphi$ contains 0 and 1 because $0=\varphi(0)$ and $1=\varphi(1)$. Now consider any two elements $a, b \in \operatorname{im} \varphi$. By definition, this means that $a=\varphi\left(a^{\prime}\right)$ and $b=\varphi\left(b^{\prime}\right)$ for some $a^{\prime}, b^{\prime} \in R$. But then we have $a+b=\varphi\left(a^{\prime}\right)+\varphi\left(b^{\prime}\right)=\varphi\left(a^{\prime}+b^{\prime}\right) \in \operatorname{im} \varphi$ and $a b=\varphi\left(a^{\prime}\right) \varphi\left(b^{\prime}\right)=\varphi\left(a^{\prime} b^{\prime}\right) \in \operatorname{im} \varphi$, as desired.
(c): For any $a \in R$ let $[a]$ denote the additive $\operatorname{coset} a+\operatorname{ker} \varphi$. We know from last semester that the operation $[a]+[b]:=[a+b]$ is well-defined and makes $R / \operatorname{ker} \varphi$ into a group. Furthermore, the function $\Phi: R / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$ defined by $\Phi([a]):=\varphi(a)$ is a well-defined group isomorphism. On HW2 you showed that the operation $[a][b]:=[a b]$ is well-defined and makes $R / \operatorname{ker} \varphi$ into a ring. Then Φ is also a ring homomorphism because $\Phi([1])=\varphi(1)=1$ and $\Phi([a][b])=\Phi([a b])=\varphi(a b)=\varphi(a) \varphi(b)=\Phi([a]) \Phi([b])$. Hence Φ is a ring isomorphism $R / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$.
3. Characteristic of a Ring. For any ring R there exists a unique ring homomorphism $\iota_{R}: \mathbb{Z} \rightarrow R$ from the ring of integers. Since $\operatorname{ker} \iota_{R}$ is an ideal of \mathbb{Z} we must have $\operatorname{ker} \iota_{R}=n \mathbb{Z}$ for some unique natural number $n \in \mathbb{N}$. We call this the characteristic of R :

$$
\operatorname{char}(R):=n .
$$

(a) Prove that im ι_{R} is the smallest subring of R.
(b) If R is a domain, prove that $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=p$ for some prime $p \geq 2$. [Hint: By the first isomorphism theorem, $\mathbb{Z} / \operatorname{ker} \iota_{R}$ is isomorphic to a subring of R.]
(c) Let \mathbb{F} be a field and let $\mathbb{F}^{\prime} \subseteq \mathbb{F}$ be the smallest subfield ${ }^{\mathbb{1}}$ Since every field is a domain, we know from part (b) that $\operatorname{char}(\mathbb{F})=0$ or $\operatorname{char}(\mathbb{F})=p \geq 2$. In the first case show that $\mathbb{F}^{\prime} \cong \mathbb{Q}$. In the second case show that $\mathbb{F}^{\prime} \cong \mathbb{Z} / p \mathbb{Z}$. [Hint: From part (a) we know that $R:=\operatorname{im} \iota_{\mathbb{F}}$ is the smallest subring of \mathbb{F}. Show that $\operatorname{Frac}(R)=\mathbb{F}^{\prime}$ and then use the First Isomorphism Theorem.]
(a): The function ι_{R} can be described as $\iota_{R}(n)=n \cdot 1_{R}$ where

$$
n \cdot 1_{R}:= \begin{cases}1_{R}+1_{R}+\cdots+1_{R} & n \geq 1 \\ 0 & n=0 \\ -1_{R}-1_{R}-\cdots-1_{R} & n \leq-1\end{cases}
$$

This notation satisfies $(m+n) \cdot 1_{R}=m \cdot 1_{R}+n \cdot 1_{R}$, which shows that $\operatorname{im} \iota_{R}$ is a subring of R. (Or just use the fact that any image is a subring.) Now let $R^{\prime} \subseteq R$ be the smallest subring of R. Since $\operatorname{im} \iota_{R}$ is a subring of R we must have $R^{\prime} \subseteq \operatorname{im} \iota_{R}$. Conversely, since $1_{R} \in R^{\prime}$ we can show by induction that $n \cdot 1_{R} \in R^{\prime}$ for all $n \in \mathbb{Z}$, and hence im $\iota_{R} \subseteq R^{\prime}$.
(b): Let R be a domain. Since $\operatorname{ker} \iota_{R}$ is an ideal of \mathbb{Z} we have $\operatorname{ker} \iota_{R}=n \mathbb{Z}$ for some unique $n \in \mathbb{N}$, and we write $n=\operatorname{char}(R)$. I claim that $n=0$ or $n=p$ for prime $p \geq 2$. Indeed, by the First Isomorphism Theorem we know that $\mathbb{Z} / n \mathbb{Z}=\mathbb{Z} / \operatorname{ker} \iota_{R} \cong \operatorname{im} \iota_{R} \subseteq R$. Since $\operatorname{im} \iota_{R}$ is a subring of a domain, it is also a domain. Then since $\mathbb{Z} / n \mathbb{Z}$ is a domain we know that $n \mathbb{Z} \subseteq \mathbb{Z}$ is a prime ideal. Hence $n=0$ or $n=p$ for prime $p \geq 2$.
(c): Let \mathbb{F} be a field with smallest subfield $\mathbb{F}^{\prime} \subseteq \mathbb{F}$ and smallest subring $R^{\prime} \subseteq \mathbb{F}$, so that $R^{\prime} \subseteq \mathbb{F}^{\prime}$. I claim that $\mathbb{F}^{\prime}=\operatorname{Frac}\left(R^{\prime}\right)$, where $\operatorname{Frac}\left(R^{\prime}\right)$ is defined as the set $\left\{a b^{-1}: a, b \in R^{\prime}, b \neq 0\right\} \subseteq \mathbb{F}$. Indeed, for all $a, b \in R^{\prime}$ with $b \neq 0$ we have $a, b \in \mathbb{F}^{\prime}$ and hence $a b^{-1} \in \mathbb{F}^{\prime}$, so that $\operatorname{Frac}\left(R^{\prime}\right) \subseteq \mathbb{F}^{\prime}$. Conversely, since $\operatorname{Frac}\left(R^{\prime}\right)$ is a subfield of \mathbb{F} and since \mathbb{F}^{\prime} is the smallest subfield we have $\mathbb{F}^{\prime} \subseteq \operatorname{Frac}\left(R^{\prime}\right)$.

Since \mathbb{F} is a domain we know from (b) that $R^{\prime} \cong \mathbb{Z} / 0 \mathbb{Z}=\mathbb{Z}$ or $R^{\prime} \cong \mathbb{Z} / p \mathbb{Z}$ for prime $p \geq 2$. Hence $\mathbb{F}^{\prime} \cong \operatorname{Frac}(\mathbb{Z})=\mathbb{Q}$ or $\mathbb{F}^{\prime} \cong \operatorname{Frac}(\mathbb{Z} / p \mathbb{Z})=\mathbb{Z} / p \mathbb{Z}$.
4. Minimal Polynomials. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ of a field extension we have a ring homomorphism $\varphi_{\alpha}: \mathbb{F}[x] \rightarrow \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$. Since $\mathbb{F}[x]$ is Euclidean we know that $\operatorname{ker} \varphi_{\alpha}=m_{\alpha}(x) \mathbb{F}[x]$ for some unique monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ called the minimal polynomial of α over \mathbb{F}. We will assume that $m_{\alpha}(x) \neq \rrbracket^{2}$ and $\operatorname{deg}\left(m_{\alpha}\right)=n$.
(a) Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F}. [Hint: Suppose for contradiction that $m_{\alpha}(x)=$ $f(x) g(x)$ with $\operatorname{deg}(f), \operatorname{deg}(g) \geq 1$. Evaluating $x \mapsto \alpha$ gives $f(\alpha) g(\alpha)=0$ so without loss of generality we can assume that $f(\alpha)=0$. But this implies that $f(x) \in \operatorname{ker} \varphi_{\alpha}$ so that $f(x)=m_{\alpha}(x) h(x)$ for some $h(x) \in \mathbb{F}[x]$.]

[^0](b) Recall that we define $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}$. Prove that every element of $\mathbb{F}[\alpha]$ can be written in the form $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}$ with $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. [Hint: By definition every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the nonzero polynomial $m_{\alpha}(x)$ and then substitute $x \mapsto \alpha$.]
(c) For any $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1} \in \mathbb{F}$ prove that
$$
\sum_{k=0}^{n-1} a_{k} \alpha^{k}=\sum_{k=0}^{n-1} b_{k} \alpha^{k} \quad \Longleftrightarrow \quad a_{k}=b_{k} \text { for all } 0 \leq k \leq n-1
$$
(a): Suppose for contradiction that $m_{\alpha}(x)=f(x) g(x)$ for some $f(x), g(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(f), \operatorname{deg}(g) \geq 1$. Since $\operatorname{deg}\left(m_{\alpha}\right)=\operatorname{deg}(f)+\operatorname{deg}(g)$ this implies that $\operatorname{deg}(f), \operatorname{deg}(g)<$ $\operatorname{deg}\left(m_{\alpha}\right)$. Now evaluating $x \mapsto \alpha$ gives $f(\alpha) g(\alpha)=m_{\alpha}(\alpha)=0$. Since \mathbb{E} is a domain this implies that $f(\alpha)=0$ or $g(\alpha)=0$. Without loss of generality, let's say $f(\alpha)=0$. By the definition of $m_{\alpha}(x)$ this means that $f(x)=m_{\alpha}(x) h(x)$ for some $h(x) \in \mathbb{F}[x]$. But since $f(x) \neq 0$ this implies that $\operatorname{deg}(f)=\operatorname{deg}\left(m_{\alpha}\right)+\operatorname{deg}(h) \geq \operatorname{deg}\left(m_{\alpha}\right)$, which contradicts the fact that $\operatorname{deg}(f)<\operatorname{deg}\left(m_{\alpha}\right)$.
(b): Let $\operatorname{deg}\left(m_{\alpha}\right)=n$ and consider any element $\beta \in \mathbb{F}[\alpha]$. By definition this means that $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the minimal polynomial $m_{\alpha}(x)$ to obtain $q(x), r(x) \in \mathbb{F}[x]$ satisfying
\[

\left\{$$
\begin{array}{l}
f(x)=m_{\alpha}(x) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<n .
\end{array}
$$\right.
\]

In any case we can write $r(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}$ for some $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. Then evaluating $x \mapsto \alpha$ gives

$$
\begin{aligned}
\beta & =f(\alpha) \\
& =m_{\alpha}(\alpha) q(\alpha)+r(\alpha) \\
& =0 q(\alpha)+r(\alpha) \\
& =r(\alpha) \\
& =a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1},
\end{aligned}
$$

as desired.
(c): Consider any two polynomials $f(x)=a_{0}+\cdots+a_{n-1} x^{n-1}$ and $g(x)=b_{0}+\cdots+b_{n-1} x^{n-1}$ in $\mathbb{F}[x]$ of degree $<n$. If $a_{k}=b_{k}$ for all k then $f(x)=g(x)$ and hence $f(\alpha)=g(\alpha)$. Conversely, suppose that $f(\alpha)=g(\alpha)$ and consider the polynomial $h(x)=f(x)-g(x) \in \mathbb{F}[x]$. Our goal is to show that $h(x)=0$, which implies that each of its coefficients $a_{k}-b_{k}$ is zero, and hence $a_{k}=b_{k}$. So suppose for contradiction that $h(x) \neq 0$. Since $h(\alpha)=f(\alpha)-g(\alpha)=0$ we have $h(x)=m_{\alpha}(x) p(x)$ for some $p(x) \in \mathbb{F}[x]$ and since $h(x) \neq 0$ this implies that $\operatorname{deg}(h)=$ $\operatorname{deg}\left(m_{\alpha}\right)+\operatorname{deg}(p) \geq \operatorname{deg}\left(m_{\alpha}\right)=n$. But this contradicts the fact that $\operatorname{deg}(h)=\operatorname{deg}(f-g) \leq$ $\max \{\operatorname{deg}(f), \operatorname{deg}(g)\}<n$.
5. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a domain and let $f(x) \in \mathbb{F}[x]$ be a polynomial of degree 2 or 3 . Prove that

$$
f(x) \text { is irreducible over } \mathbb{F} \Longleftrightarrow f(x) \text { has no root in } \mathbb{F} \text {. }
$$

[Hint: If $f(a)=0$ for some $a \in \mathbb{F}$ then Descartes' Factor Theorem says that $f(x)=(x-a) g(x)$ for some $g(x) \in \mathbb{F}[x]$. Conversely, suppose that $f(x)=g(x) h(x)$ for some $g(x), h(x)$ with $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$. Now what?]

Let $\operatorname{deg}(f)=2$ or 3 . If $f(x) \in \mathbb{F}[x]$ has a root $a \in \mathbb{F}$ then $f(x)=(x-a) g(x)$ for some $g(x) \in \mathbb{F}[x]$, which implies that $f(x)$ is not irreducible. Conversely, suppose that $f(x)$ is reducible, say $f(x)=g(x) h(x)$ for some $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$. Since $\operatorname{deg}(f)=2$ or 3 , this implies that $\operatorname{deg}(g)=1$ or $\operatorname{deg}(h)=1$. Without loss of generality, suppose that $\operatorname{deg}(g)=1$ so that $g(x)=a+b x$ with $a, b \in \mathbb{F}$ and $b \neq 0$. But then

$$
f\left(-a b^{-1}\right)=g\left(-a b^{-1}\right) h\left(-a b^{-1}\right)=0 h\left(-a b^{-1}\right)=0,
$$

which shows that $f(x)$ has a root $-a b^{-1} \in \mathbb{F}$.
6. The Rational Root Test. Let $f(x)$ be a polynomial of degree n with integer coefficients: $c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{Z}[x]$ with $c_{n} \neq 0$.
(a) Suppose that $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and $\operatorname{gcd}(a, b)=1$. In this case prove that $a \mid c_{0}$ and $b \mid c_{n}$. [Hint: Multiply both sides of $f(a / b)=0$ by b^{n} to obtain an equation involving only integers. Show that $b \mid c_{n} a^{n}$ and $a \mid c_{0} b^{n}$, then use Euclid's Lemma.]
(b) Use part (a) to show that the polynomial $x^{3}-2$ has no rational roots. It follows from Problem 5 that $x^{3}-2$ is irreducible over \mathbb{Q}.
(c) Let $\alpha:=\sqrt[3]{2}$ be the real cube root of 2 . Use part (b) to prove that $x^{3}-2$ is the minimal polynomial of α over \mathbb{Q}. [Hint: Let $m_{\alpha}(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}. Since $(\alpha)^{3}-2=0$ we know that $x^{3}-2=m_{\alpha}(x) f(x)$ for some $f(x) \in \mathbb{Q}[x]$.]
(a): Suppose that $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and $\operatorname{gcd}(a, b)=1$. Multiplying both sides of this equation by b^{n} gives

$$
\begin{aligned}
f(a / b) & =0 \\
c_{0}+c_{1}(a / b)+\cdots+c_{n}(a / b)^{n} & =0 \\
c_{0} b^{n}+c_{1} a b^{n-1}+\cdots+c_{n} a^{n} & =0 .
\end{aligned}
$$

On the one hand we have $-c_{0} b^{n}=c_{1} a b^{n-1}+\cdots+c_{n} a^{n}=a\left(c_{1} b^{n-1}+\cdots+c_{n} a^{n-1}\right)$. Then since $a \mid c_{0} b^{n}$ and $\operatorname{gcd}(a, b)=1$, Euclid's Lemma implies that $a \mid c_{0}$. On the other hand we have $-c_{n} a^{n}=c_{0} b^{n}+\cdots+c_{n-1} a^{n-1} b=b\left(c_{0} b^{n-1}+\cdots+c_{n-1} a^{n-1}\right)$. Then since $b \mid c_{n} a^{n}$ and $\operatorname{gcd}(a, b)=1$, Euclid's Lemma implies that $b \mid a_{n}$.
(b): Suppose that $(a / b)^{3}-2=0$ for some $a, b \in \mathbb{Z}$ with $\operatorname{gcd}(a, b)=1$. From part (a) this implies that $a \mid 2$ and $b \mid 1$, hence $a / b= \pm 1, \pm 2$. But $(\pm 1)^{3}-2 \neq 0$ and $(\pm 2)^{3}-2 \neq 0$. Hence this polynomial has no rational roots. Since $x^{3}-2$ has degree 3, it follows from Problem 5 that $x^{3}-2$ is irreducible over \mathbb{Q}.
(c): Let $\alpha:=\sqrt[3]{2}$ be the real cube root of 2 , so that $\alpha^{3}-2=0$. By definition this means that $x^{3}-2=m_{\alpha}(x) f(x)$ for some $f(x) \in \mathbb{Q}[x]$, where $m_{\alpha}(x) \in \mathbb{Q}[x]$ is the minimal polynomial of α over \mathbb{Q}. But we know from part (b) that $x^{3}-2$ is irreducible over \mathbb{Q}, hence we must have $x^{3}-2 \sim m_{\alpha}(x)$, and since $m_{\alpha}(x)$ is monic we must have $x^{3}-2=m_{\alpha}(x)$.

[^0]: ${ }^{1}$ A subfield is a subring that is also a field.
 ${ }^{2}$ That is, we will assume that α is algebraic over \mathbb{F}.

