1. One Step Ideal Test. Let *I* be a subset of a commutative ring $(R, +, \cdot, 0, 1)$. We say that *I* is an *ideal of R* when the following two properties hold:

- (1) I is a subgroup of (R, +, 0).
- (2) For all $a \in R$ and $b \in I$ we have $ab \in I$.

Prove that these two properties are equivalent to the following single property:

For all $a, b \in I$ and $c \in R$ we have $a + bc \in I$.

[Hint: You may use the One Step Subgroup Test from last semester.]

2. First Isomorphism Theorem for Rings. Let $\varphi : R \to S$ be a ring homomorphism. We define the *image* and *kernel* as follows:

$$\begin{split} & \operatorname{im} \varphi = \{\varphi(a) : a \in R\}, \\ & \operatorname{ker} \varphi = \{a \in R : \varphi(a) = 0\} \end{split}$$

- (a) Prove that $\ker \varphi \subseteq R$ is an ideal.
- (b) Prove that im $\varphi \subseteq S$ is a *subring* (i.e., a subset containing 0 and 1 that is closed under addition and multiplication).
- (c) From last semester we know that the function $\Phi : R/\ker \varphi \to \operatorname{im} \varphi$ defined by $[a] \mapsto \varphi(a)$ is an isomorphism of additive groups. Prove that Φ also preserves multiplication, hence it gives a **ring isomorphism** $R/\ker \varphi \cong \operatorname{im} \varphi$.

3. Characteristic of a Ring. For any ring R there exists a unique ring homomorphism $\iota : \mathbb{Z} \to R$ from the ring of integers. Since ker ι_R is an ideal of \mathbb{Z} we must have ker $\iota_R = n\mathbb{Z}$ for some unique natural number $n \in \mathbb{N}$. We call this the *characteristic of* R:

$$\operatorname{char}(R) := n.$$

- (a) Prove that $\operatorname{im} \iota_R$ is the smallest subring of R.
- (b) If R is a domain, prove that $\operatorname{char}(R) = 0$ or $\operatorname{char}(R) = p$ for some prime $p \ge 2$. [Hint: By the first isomorphism theorem, $\mathbb{Z}/\ker \iota_R$ is isomorphic to a subring of R.]
- (c) Let \mathbb{F} be a field and let $\mathbb{F}' \subseteq \mathbb{F}$ be the smallest subfield.¹ Since every field is a domain, we know from part (b) that $\operatorname{char}(\mathbb{F}) = 0$ or $\operatorname{char}(\mathbb{F}) = p \geq 2$. In the first case show that $\mathbb{F}' \cong \mathbb{Q}$. In the second case show that $\mathbb{F}' \cong \mathbb{Z}/p\mathbb{Z}$. [Hint: From part (a) we know that $R := \operatorname{im} \iota_{\mathbb{F}}$ is the smallest subring of \mathbb{F} . Show that $\operatorname{Frac}(R) = \mathbb{F}'$ and then use the First Isomorphism Theorem.]

4. Minimal Polynomials. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ of a field extension we have a ring homomorphism $\varphi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$. Since $\mathbb{F}[x]$ is Euclidean we know that ker $\varphi_{\alpha} = m_{\alpha}(x)\mathbb{F}[x]$ for some unique monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ called the *minimal polynomial of* α over \mathbb{F} . We will assume that $m_{\alpha}(x) \neq 0^2$ and $\deg(m_{\alpha}) = n$.

(a) Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F} . [Hint: Suppose for contradiction that $m_{\alpha}(x) = f(x)g(x)$ with $\deg(f), \deg(g) \ge 1$. Evaluating $x \mapsto \alpha$ gives $f(\alpha)g(\alpha) = 0$ so without loss of generality we can assume that $f(\alpha) = 0$. But this implies that $f(x) \in \ker \varphi_{\alpha}$ so that $f(x) = m_{\alpha}(x)h(x)$ for some $h(x) \in \mathbb{F}[x]$.]

¹A subfield is a subring that is also a field.

²That is, we will assume that α is algebraic over \mathbb{F} .

- (b) Recall that we define $\mathbb{F}[\alpha] := \operatorname{im} \varphi_{\alpha}$. Prove that every element of $\mathbb{F}[\alpha]$ can be written in the form $a_0 + a_1 \alpha + \cdots + a_{n-1} \alpha^{n-1}$ with $a_0, \ldots, a_{n-1} \in \mathbb{F}$. [Hint: By definition every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta = f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide f(x)by the nonzero polynomial $m_{\alpha}(x)$ and then substitute $x \mapsto \alpha$.]
- (c) For any $a_0, \ldots, a_{n-1}, b_0, \ldots, b_{n-1} \in \mathbb{F}$ prove that

$$\sum_{k=0}^{n-1} a_k \alpha^k = \sum_{k=0}^{n-1} b_k \alpha^k \quad \iff \quad a_k = b_k \text{ for all } 0 \le k \le n-1$$

5. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a domain and let $f(x) \in \mathbb{F}[x]$ be a polynomial of degree 2 or 3. Prove that

f(x) is irreducible over $\mathbb{F} \iff f(x)$ has no root in \mathbb{F} .

[Hint: If f(a) = 0 for some $a \in \mathbb{F}$ then Descartes' Factor Theorem says that f(x) = (x-a)g(x) for some $g(x) \in \mathbb{F}[x]$. Conversely, suppose that f(x) = g(x)h(x) for some g(x), h(x) with $\deg(g), \deg(h) \ge 1$. Now what?]

6. The Rational Root Test. Let f(x) be a polynomial of degree n with integer coefficients: $c_0 + c_1x + \cdots + c_nx^n \in \mathbb{Z}[x]$ with $c_n \neq 0$.

- (a) Suppose that f(a/b) = 0 for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and gcd(a, b) = 1. In this case prove that $a|c_0$ and $b|c_n$. [Hint: Multiply both sides of f(a/b) = 0 by b^n to obtain an equation involving only integers. Show that $b|c_na^n$ and $a|c_0b^n$, then use Euclid's Lemma.]
- (b) Use part (a) to show that the polynomial $x^3 2$ has no rational roots. It follows from Problem 5 that $x^3 2$ is irreducible over \mathbb{Q} .
- (c) Let $\alpha := \sqrt[3]{2}$ be the real cube root of 2. Use part (b) to prove that $x^3 2$ is the minimal polynomial of α over \mathbb{Q} . [Hint: Let $m_{\alpha}(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q} . Since $(\alpha)^3 2 = 0$ we know that $x^3 2 = m_{\alpha}(x)f(x)$ for some $f(x) \in \mathbb{Q}[x]$.]