1. One Step Ideal Test. Let I be a subset of a commutative ring $(R,+, \cdot, 0,1)$. We say that I is an ideal of R when the following two properties hold:
(1) I is a subgroup of $(R,+, 0)$.
(2) For all $a \in R$ and $b \in I$ we have $a b \in I$.

Prove that these two properties are equivalent to the following single property:
For all $a, b \in I$ and $c \in R$ we have $a+b c \in I$.
[Hint: You may use the One Step Subgroup Test from last semester.]
2. First Isomorphism Theorem for Rings. Let $\varphi: R \rightarrow S$ be a ring homomorphism. We define the image and kernel as follows:

$$
\begin{aligned}
\operatorname{im} \varphi & =\{\varphi(a): a \in R\} \\
\operatorname{ker} \varphi & =\{a \in R: \varphi(a)=0\} .
\end{aligned}
$$

(a) Prove that $\operatorname{ker} \varphi \subseteq R$ is an ideal.
(b) Prove that $\operatorname{im} \varphi \subseteq S$ is a subring (i.e., a subset containing 0 and 1 that is closed under addition and multiplication).
(c) From last semester we know that the function $\Phi: R / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$ defined by $[a] \mapsto$ $\varphi(a)$ is an isomorphism of additive groups. Prove that Φ also preserves multiplication, hence it gives a ring isomorphism $R / \operatorname{ker} \varphi \cong \operatorname{im} \varphi$.
3. Characteristic of a Ring. For any ring R there exists a unique ring homomorphism $\iota: \mathbb{Z} \rightarrow R$ from the ring of integers. Since ker ι_{R} is an ideal of \mathbb{Z} we must have $\operatorname{ker} \iota_{R}=n \mathbb{Z}$ for some unique natural number $n \in \mathbb{N}$. We call this the characteristic of R :

$$
\operatorname{char}(R):=n .
$$

(a) Prove that $\operatorname{im} \iota_{R}$ is the smallest subring of R.
(b) If R is a domain, prove that $\operatorname{char}(R)=0$ or $\operatorname{char}(R)=p$ for some prime $p \geq 2$. [Hint: By the first isomorphism theorem, $\mathbb{Z} / \operatorname{ker} \iota_{R}$ is isomorphic to a subring of R.]
(c) Let \mathbb{F} be a field and let $\mathbb{F}^{\prime} \subseteq \mathbb{F}$ be the smallest subfield ${ }^{1}$ Since every field is a domain, we know from part (b) that $\operatorname{char}(\mathbb{F})=0$ or $\operatorname{char}(\mathbb{F})=p \geq 2$. In the first case show that $\mathbb{F}^{\prime} \cong \mathbb{Q}$. In the second case show that $\mathbb{F}^{\prime} \cong \mathbb{Z} / p \mathbb{Z}$. [Hint: From part (a) we know that $R:=\operatorname{im} \iota_{\mathbb{F}}$ is the smallest subring of \mathbb{F}. Show that $\operatorname{Frac}(R)=\mathbb{F}^{\prime}$ and then use the First Isomorphism Theorem.]
4. Minimal Polynomials. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ of a field extension we have a ring homomorphism $\varphi_{\alpha}: \mathbb{F}[x] \rightarrow \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$. Since $\mathbb{F}[x]$ is Euclidean we know that $\operatorname{ker} \varphi_{\alpha}=m_{\alpha}(x) \mathbb{F}[x]$ for some unique monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$ called the minimal polynomial of α over \mathbb{F}. We will assume that $m_{\alpha}(x) \neq \mathrm{V}^{2}$ and $\operatorname{deg}\left(m_{\alpha}\right)=n$.
(a) Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F}. [Hint: Suppose for contradiction that $m_{\alpha}(x)=$ $f(x) g(x)$ with $\operatorname{deg}(f), \operatorname{deg}(g) \geq 1$. Evaluating $x \mapsto \alpha$ gives $f(\alpha) g(\alpha)=0$ so without loss of generality we can assume that $f(\alpha)=0$. But this implies that $f(x) \in \operatorname{ker} \varphi_{\alpha}$ so that $f(x)=m_{\alpha}(x) h(x)$ for some $h(x) \in \mathbb{F}[x]$.]

[^0](b) Recall that we define $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}$. Prove that every element of $\mathbb{F}[\alpha]$ can be written in the form $a_{0}+a_{1} \alpha+\cdots+a_{n-1} \alpha^{n-1}$ with $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. [Hint: By definition every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the nonzero polynomial $m_{\alpha}(x)$ and then substitute $x \mapsto \alpha$.]
(c) For any $a_{0}, \ldots, a_{n-1}, b_{0}, \ldots, b_{n-1} \in \mathbb{F}$ prove that
$$
\sum_{k=0}^{n-1} a_{k} \alpha^{k}=\sum_{k=0}^{n-1} b_{k} \alpha^{k} \quad \Longleftrightarrow \quad a_{k}=b_{k} \text { for all } 0 \leq k \leq n-1 .
$$
5. Irreducible Polynomials of Small Degree. Let \mathbb{F} be a domain and let $f(x) \in \mathbb{F}[x]$ be a polynomial of degree 2 or 3 . Prove that
$$
f(x) \text { is irreducible over } \mathbb{F} \Longleftrightarrow f(x) \text { has no root in } \mathbb{F} \text {. }
$$
[Hint: If $f(a)=0$ for some $a \in \mathbb{F}$ then Descartes' Factor Theorem says that $f(x)=(x-a) g(x)$ for some $g(x) \in \mathbb{F}[x]$. Conversely, suppose that $f(x)=g(x) h(x)$ for some $g(x), h(x)$ with $\operatorname{deg}(g), \operatorname{deg}(h) \geq 1$. Now what?]
6. The Rational Root Test. Let $f(x)$ be a polynomial of degree n with integer coefficients: $c_{0}+c_{1} x+\cdots+c_{n} x^{n} \in \mathbb{Z}[x]$ with $c_{n} \neq 0$.
(a) Suppose that $f(a / b)=0$ for some integers $a, b \in \mathbb{Z}$ with $b \neq 0$ and $\operatorname{gcd}(a, b)=1$. In this case prove that $a \mid c_{0}$ and $b \mid c_{n}$. [Hint: Multiply both sides of $f(a / b)=0$ by b^{n} to obtain an equation involving only integers. Show that $b \mid c_{n} a^{n}$ and $a \mid c_{0} b^{n}$, then use Euclid's Lemma.]
(b) Use part (a) to show that the polynomial $x^{3}-2$ has no rational roots. It follows from Problem 5 that $x^{3}-2$ is irreducible over \mathbb{Q}.
(c) Let $\alpha:=\sqrt[3]{2}$ be the real cube root of 2 . Use part (b) to prove that $x^{3}-2$ is the minimal polynomial of α over \mathbb{Q}. [Hint: Let $m_{\alpha}(x) \in \mathbb{Q}[x]$ be the minimal polynomial of α over \mathbb{Q}. Since $(\alpha)^{3}-2=0$ we know that $x^{3}-2=m_{\alpha}(x) f(x)$ for some $f(x) \in \mathbb{Q}[x]$.]

[^0]: ${ }^{1}$ A subfield is a subring that is also a field.
 ${ }^{2}$ That is, we will assume that α is algebraic over \mathbb{F}.

