
Math 562/662 Spring 2024
Homework 2 Drew Armstrong

1. Generalities About Ideals. Let R be a ring.

(a) Let I ⊆ R be an ideal. Prove that I = R if and only if I contains a unit.
(b) Prove that R is a field if and only if it has exactly two ideals: {0} and R.
(c) Given ideals I, J ⊆ R, prove that I ∩ J and I + J are also ideals.
(d) Given elements a1, . . . , an ∈ R, prove that the set of R-linear combinations

a1R + · · ·+ anR := {a1r1 + · · ·+ anrn : r1, . . . , rn ∈ R}
is the smallest ideal of R that contains the set {a1, . . . , an}.

(a): First suppose that I = R. Then we have 1 ∈ I, so I contains a unit. Conversely, suppose
that u ∈ I for some unit u ∈ R×. Then for all a ∈ R we have

u ∈ I and u−1a ∈ R =⇒ a = u(u−1a) ∈ I.

This implies that R ⊆ I and hence I = R.

(b): First suppose that R is a field and consider and consider any ideal I ⊆ R. If I 6= {0}
then there exists a nonzero element a ∈ I. But every nonzero element of a field is a unity,
hence we have I = R from part (a). Conversely, suppose R is a ring with only two ideals and
consider any nonzero element a ∈ R. We will show that a is a unit. To do this, we consider
the principal ideal aR. Since a 6= 0 we have aR 6= {0}, and it follows that aR = R. Then since
1 ∈ R we have 1 ∈ aR, so that 1 = ab for some b ∈ R. In other words, a is a unit. Finally,
since every nonzero element of R is a unit we conclude that R is a field.

(c): Let I, J ⊆ R be ideals and consider their sum

I + J := {a + b : a ∈ I, b ∈ J}.
We will prove that I + J ⊆ R is also an ideal. To do this, consider two elements a + b and
a′ + b′ in I + J , with a, a′ ∈ I and b, b′ ∈ I, and any element c ∈ R. Since I and J are ideals
we have a + ca′ ∈ I and b + cb′ ∈ J . But then we also have

(a + b) + c(a′ + b′) = (a + ca′) + (b + cb′) ∈ I + J.

Hence I + J is an ideal. [Remark: This proof also shows that I + J is an additive subgroup
of R. If you are already willing to accept this fact then the proof can be made simpler.]

(d): For any elements a1, . . . , an ∈ R we consider the set

a1R + · · ·+ anR := {a1r1 + · · ·+ anrn : r1, . . . , rn ∈ R}.
Note that this is an ideal since for any b ∈ R we have1

(a1r1 + · · ·+ anrn)b = a1(r1b) + · · ·+ an(rnb) ∈ a1R + · · ·+ anR.

And certainly this ideal contains each element ai by taking ri = 1 and rj = 0 for j 6= i. Now
let I ⊆ R be an arbitrary ideal that contains the set {a1, . . . , an}. Then for any elements
r1, . . . , rn ∈ R the ideal property tells us that

a1r1 + · · · anrn ∈ I,

and it follows that a1R + · · · anR ⊆ I.

1Here I don’t bother to check that this set is an additive subgroup of R.



2. Prime and Maximal Ideals. Let I ⊆ R be an ideal. We say that I is maximal when:

• I 6= R,
• There are no ideals of R between I and R.

We say that I is prime when for all a, b ∈ R we have

ab ∈ I =⇒ a ∈ I or b ∈ I.

For any ideal I ⊆ R recall that we have a quotient ring (R/I,+, ·, [0], [1]) with addition and
multiplication defined by

[a] + [b] := [a + b] and [a][b] := [ab],

where [a] = a + I denotes the additive coset generated by a ∈ R.

(a) Prove that R/I is a domain if and only if I is prime. [Hint: [a] = [0]⇐⇒ a ∈ I.]
(b) Prove that R/I is a field if and only if I is maximal. [Hint: Use Problem 1.]
(c) Prove that every maximal ideal is prime.

(a): First uppose that I is a prime ideal. Then for any classes [a], [b] ∈ R/I we have

[a][b] = [0] =⇒ [ab] = [0]

=⇒ ab ∈ I

=⇒ a ∈ I or b ∈ I

=⇒ [a] = [0] or [b] = [0],

and hence R/I is a domain. Conversely, suppose that R/I is a domain. Then for any elements
a, b ∈ R we have

ab ∈ I =⇒ [ab] = [0]

=⇒ [a][b] = [0]

=⇒ [a] = [0] or [b] = [0]

=⇒ a ∈ I or b ∈ I,

and hence I is a prime ideal.

(b): First suppose that I is a maximal ideal. In order to prove that R/I is a field, we will show
that every nonzero class [a] 6= [0] there exists some class [b] ∈ R/I such that [a][b] = [1]. So
consider any nonzero class [a] 6= [0], i.e., any element a 6∈ I. Now consider the ideal J = I+aR.
Since a 6∈ I we have I ( J , which, since I is maximal, implies that I + aR = R. Then since
1 ∈ R we also have 1 ∈ aR+ I and we can write 1 = ab+ c for some b ∈ R and c ∈ I. Finally,
since ab− 1 = c ∈ I we have

[ab] = [1]

[a][b] = [1],

as desired. Conversely, suppose that R/I is a field. In order to prove that I is maximal, we will
show that any ideal J satisfying I ( J must satisfy J = R. So consider any ideal I ( J and
pick any element a ∈ J \ I. Since R/I is a field there exists b ∈ R such that [a][b] = [1], which
implies that ab − 1 ∈ I. Since I ⊆ J this implies that ab − 1 = c for some c. Furthermore,
since J is an ideal, we have

a ∈ J and b ∈ R =⇒ ab ∈ J.

We conclude that 1 = ab− c ∈ J . But we know from 1(a) that any ideal containing a unit is
the whole ring. Hence J = R, as desired.



Remark: This proof can be made much simpler if we accept the correspondence theorem for
ideals, which for any ideal I ⊆ R gives a bijection

{ideals J of R such that I ( J ( R} ↔ {ideals J ′ of R/I such that {[0]} ( J ′ ( R/I}.

From 1(b) we know that the right set is empty if and only if R/I is a field, and clearly the
left set is empty if and only if I is a maximal ideal.

(c): Since every field is a domain, we have

I is maximal =⇒ R/I is a field 2(b)

=⇒ R/I is a domain

=⇒ I is prime. 2(a)

3. Divisibility in a Domain. Let R be an integral domain with group of units R×. Given
a, b ∈ R we define the relation of divisibility:

a|b ⇐⇒ ac = b for some c ∈ R.

And we define the relation of association:

a ∼ b ⇐⇒ au = b for some u ∈ R×.

(a) Prove that | is a partial order on R.
(b) For all a, b ∈ R prove that a|b if and only if bR ⊆ aR.
(c) Prove that ∼ is an equivalence relation on R.
(d) For all a, b ∈ R, prove that a ∼ b if and only if aR = bR.
(e) Sets of the form aR ⊆ R are called principal ideals of R. Show that we have bijections:

principal ideals of Z ←→ N,
principal ideals of F[x] ←→ {0} ∪ {monic polynomials}.

(A monic polynomial has leading coefficient 1.)

4. Quotient and Remainder of Polynomials. Consider the ring of polynomials F[x] over
a field F. In this problem you will prove that for any polynomials f(x), g(x) ∈ F[x] with
g(x) 6= 0, there exists a unique pair of polynomials q(x), r(x) ∈ F[x] — called the quotient and
remainder of f(x) modulo g(x) — satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

(a) Existence. Consider the set S = {f(x) − g(x)q(x) : q(x) ∈ F[x]} ⊆ F[x]. If 0 ∈ S
then we are done, so suppose that 0 6∈ S. Let r(x) be any element of S with minimal
degree. In this case, prove that deg(r) < deg(g). [Hint: Assume for contradiction that
deg(r) ≥ deg(g). Let’s say g(x) = amxm + · · · and r(x) = bnx

n + · · · with m ≤ n. In
this case, show that h(x) := r(x)− bn

am
xn−mg(x) ∈ S and deg(h) < deg(r).]

(b) Uniqueness. Let q(x), r(x) and q′(x), r′(x) be two pairs satisfying the properties
of quotient and remainder. In this case prove that q(x) = q′(x) and r(x) = r′(x).
[Hint: By assumption we have g(x)q(x) + r(x) = f(x) = g(x)q′(x) + r′(x), and hence
g(x)[q(x) − q′(x)] = r′(x) − r(x). If r(x) = r′(x) then we are done, so suppose that
r(x) 6= r′(x). In this case, use properties of degree to show that deg(g) < deg(r′ − r)
and derive a contradiction from this.]



(a): Given f(x), g(x) ∈ F[x] with g(x) 6= 0, consider the set

S = {f(x)− g(x)q(x) : q(x) ∈ F[x]} ⊆ F[x].

If 0 ∈ S then we have f(x) = g(x)q(x)+0 and we are done. Other wise, if S 6= {0}, let r(x) ∈ S
be any nonzero element of minimal degree. By definition of S we have f(x) = g(x)q(x) + r(x)
for some q(x) ∈ F[x]. Hence it remains only to show that deg(r) < deg(g). So suppose for
contradiction that deg(g) ≤ deg(r). Let’s say that deg(g) = m and deg(r) = n with m ≤ n.
Let’s also name the coefficients:

g(x) = amxm + · · ·+ a1x + a0,

r(x) = bnx
n + · · ·+ b1x + b0.

Since am is a nonzero element of a field F we may consider the polynomial

h(x) := r(x)− bn
am

xn−mg(x) = (bn − bn)xn + lower terms,

which has deg(h) < deg(r). On the other hand, since r(x) ∈ S we have r(x) = f(x)−g(x)s(x)
for some s(x) ∈ F[x] and hence

h(x) = f(x)− g(x)s(x)− bn
am

xn−mg(x) = f(x)−
(
s(x) +

bn
am

xn−m
)
g(x) ∈ S.

Thus h(x) is a nonzero element of S with degree strictly less than deg(r). Contradiction.

(b): Consider any f(x), g(x) ∈ F[x] with g(x), and consider any polynomials q(x), r(x), q′(x), r′(x) ∈
F[x] satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g),

{
f(x) = g(x)q′(x) + r′(x),
r′(x) = 0 or deg(r′) < deg(g).

Since g(x)q(x) + r(x) = f(x) = g(x)q′(x) + r′(x) we have g(x)[q(x)− q′(x)] = [r′(x)− r(x)]. If
r(x) = r′(x) then we have g(x)[q(x)−q′(x)] = 0. Since g(x) 6= 0 this implies that q(x)−q′(x) =
0 and hence q(x) = q′(x) as desired. So let us suppose for contradiction that r′(x) − r(x).
Since g(x) 6= 0 this also implies that q(x) − q′(x). Then applying degrees to the equation
g(x)[q(x)− q′(x)] = [r′(x)− r(x)] gives a contradiction:

deg(g) ≤ deg(g) + deg(q − q′) = deg(r′ − r) ≤ max{deg(r′),deg(r)} < deg(g).

5. Euclidean Rings Have Only Principal Ideals. A ring R is called Euclidean if there
exists a “size function”2 N : R \ {0} → N that satisfies the “Euclidean algorithm”: For all
a, b ∈ R with b 6= 0, there exist q, r ∈ R such that{

a = bq + r,
r = 0 or N(r) < N(b).

If R is a Euclidean ring, prove that every ideal of R has the form aR for some a ∈ R. [Hint:
Consider any ideal I ⊆ R. If I = {0} then we are done, so suppose I 6= {0} and let a ∈ I be
any nonzero element of minimal “size” N(a). Prove that I = aR.]

Proof. Let (R,N) be a Euclidean ring and consider any ideal I ⊆ R. If I = {0} then we have
I = 0R and we are done. So suppose that I 6= {0} and let a ∈ I be any nonzero element of

2There are two main examples of size functions: absolute value of integers and degree of polynomials.
However, these examples have some peculiar features that make it difficult to set up a satisfying general theory
of size functions. For this reason, Euclidean rings are usually thrown away in favor of principal ideal rings, even
though these two concepts are not identical. Principal ideal rings (PIRs) and principal ideal domains (PIDs)
lead to a more satisfying general theory.



minimal size N(a) (which exists because N well-ordered). In this case I claim that I = aR.
Indeed, since I is an ideal of R that contains a we must have aR ⊆ I as in Problem 1(d).
Conversely, we will show that any element b ∈ I has the form b = aq for some q ∈ R, and
hence I ⊆ aR. So let b be any element of I and divide by the nonzero element a ∈ R to obtain{

b = aq + r,
r = 0 or N(r) < N(a).

If r 6= 0 then we have N(r) < N(a) and r = a − bq ∈ I so that r is a nonzero element of
I with size strictly less than N(a), which is a contradiction. Hence we must have r = 0 and
hence b = aq ∈ aR. We have shown that aR ⊆ I and I ⊆ aR, hence I = aR.

6. The Ring Z[x] is Not Euclidean. Prove indirectly that Z[x] is not Euclidean by showing
that the following ideal is not principal:

2Z[x] + xZ[x] = {2f(x) + xg(x) : f(x), g(x) ∈ Z[x]}
= {integer polynomials whose constant term is even}.

[Hint: Suppose for contradiction that I = c(x)Z[x] = {c(x)f(x) : f(x) ∈ Z[x]} for some
polynomial c(x) ∈ Z[x]. If deg(c) ≥ 1 then every nonzero element of I has degree ≥ 1. But
2 ∈ I. Hence c(x) = c ∈ Z is a nonzero integer. If c = ±1 then we also have ±1 ∈ I, which
contradicts the fact that every polynomial in I has even constant term. If |c| ≥ 2 then every
polynomial in I has coefficients of absolute value ≥ 2, contradicting the fact that x ∈ I.]

Proof. Suppose for contradiction that I = c(x)Z[x] for some c(x) ∈ Z[x]. Since I 6= {0} we
must have c(x) 6= 0. If deg(c) ≥ 1 then every nonzero element f(x) ∈ c(x)Z[x] has the form
f(x) = c(x)g(x) for some nonzero g(x) and hence deg(f) = deg(c)+deg(g) ≥ deg(c) ≥ 1. But
2 ∈ I and deg(2) < 1. We have shown that c(x) = c ∈ Z is a nonzero integer. I claim that
c = ±1. If not then we must have |c| ≥ 2. But any element of I = cZ[x] can be expressed as
c(
∑

k akx
k), with coeffiients cak ∈ Z. If cak 6= 0 then ak 6= 0 and hence |ak| ≥ 1. But then

|cak| = |c||ak| ≥ 2 · 1 = 2,

which shows that the nonzero coefficients of polynomials in I have absolute value ≥ 2. This
contradicts the fact that x ∈ I. At this point we have shown that I = ±Z[x] = Z[x]. But,
finally, this contradicts the fact that 1 6∈ I.

Remark: A similar proof shows that the ideal xF[x, y] + yF[x, y] ⊆ F[x, y] is not principal, and
hence the ring of polynomials F[x, y] in two variables over a field F is not Euclidean. However,
it is extremely difficult to describe all of the ideals in the ring of polynomials F[x1, . . . , xn]
in many variables. (It is even difficult to prove that every ideal is finitely generated. This is
the famous Hilbert Basis Theorem.) Euclidean domains are really special.


