1. Generalities About Ideals. Let R be a ring.
(a) Let $I \subseteq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.
(b) Prove that R is a field if and only if it has exactly two ideals: $\{0\}$ and R.
(c) Given ideals $I, J \subseteq R$, prove that $I \cap J$ and $I+J$ are also ideals.
(d) Given elements $a_{1}, \ldots, a_{n} \in R$, prove that the set of R-linear combinations

$$
a_{1} R+\cdots+a_{n} R:=\left\{a_{1} r_{1}+\cdots+a_{n} r_{n}: r_{1}, \ldots, r_{n} \in R\right\}
$$

is the smallest ideal of R that contains the set $\left\{a_{1}, \ldots, a_{n}\right\}$.
(a): First suppose that $I=R$. Then we have $1 \in I$, so I contains a unit. Conversely, suppose that $u \in I$ for some unit $u \in R^{\times}$. Then for all $a \in R$ we have

$$
u \in I \text { and } u^{-1} a \in R \quad \Longrightarrow \quad a=u\left(u^{-1} a\right) \in I .
$$

This implies that $R \subseteq I$ and hence $I=R$.
(b): First suppose that R is a field and consider and consider any ideal $I \subseteq R$. If $I \neq\{0\}$ then there exists a nonzero element $a \in I$. But every nonzero element of a field is a unity, hence we have $I=R$ from part (a). Conversely, suppose R is a ring with only two ideals and consider any nonzero element $a \in R$. We will show that a is a unit. To do this, we consider the principal ideal $a R$. Since $a \neq 0$ we have $a R \neq\{0\}$, and it follows that $a R=R$. Then since $1 \in R$ we have $1 \in a R$, so that $1=a b$ for some $b \in R$. In other words, a is a unit. Finally, since every nonzero element of R is a unit we conclude that R is a field.
(c): Let $I, J \subseteq R$ be ideals and consider their sum

$$
I+J:=\{a+b: a \in I, b \in J\} .
$$

We will prove that $I+J \subseteq R$ is also an ideal. To do this, consider two elements $a+b$ and $a^{\prime}+b^{\prime}$ in $I+J$, with $a, a^{\prime} \in I$ and $b, b^{\prime} \in I$, and any element $c \in R$. Since I and J are ideals we have $a+c a^{\prime} \in I$ and $b+c b^{\prime} \in J$. But then we also have

$$
(a+b)+c\left(a^{\prime}+b^{\prime}\right)=\left(a+c a^{\prime}\right)+\left(b+c b^{\prime}\right) \in I+J .
$$

Hence $I+J$ is an ideal. [Remark: This proof also shows that $I+J$ is an additive subgroup of R. If you are already willing to accept this fact then the proof can be made simpler.]
(d): For any elements $a_{1}, \ldots, a_{n} \in R$ we consider the set

$$
a_{1} R+\cdots+a_{n} R:=\left\{a_{1} r_{1}+\cdots+a_{n} r_{n}: r_{1}, \ldots, r_{n} \in R\right\} .
$$

Note that this is an ideal since for any $b \in R$ we hav $\}^{1}$

$$
\left(a_{1} r_{1}+\cdots+a_{n} r_{n}\right) b=a_{1}\left(r_{1} b\right)+\cdots+a_{n}\left(r_{n} b\right) \in a_{1} R+\cdots+a_{n} R .
$$

And certainly this ideal contains each element a_{i} by taking $r_{i}=1$ and $r_{j}=0$ for $j \neq i$. Now let $I \subseteq R$ be an arbitrary ideal that contains the set $\left\{a_{1}, \ldots, a_{n}\right\}$. Then for any elements $r_{1}, \ldots, r_{n} \in R$ the ideal property tells us that

$$
a_{1} r_{1}+\cdots a_{n} r_{n} \in I,
$$

and it follows that $a_{1} R+\cdots a_{n} R \subseteq I$.

[^0]2. Prime and Maximal Ideals. Let $I \subseteq R$ be an ideal. We say that I is maximal when:

- $I \neq R$,
- There are no ideals of R between I and R.

We say that I is prime when for all $a, b \in R$ we have

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I
$$

For any ideal $I \subseteq R$ recall that we have a quotient $\operatorname{ring}(R / I,+, \cdot,[0],[1])$ with addition and multiplication defined by

$$
[a]+[b]:=[a+b] \quad \text { and } \quad[a][b]:=[a b],
$$

where $[a]=a+I$ denotes the additive coset generated by $a \in R$.
(a) Prove that R / I is a domain if and only if I is prime. [Hint: $[a]=[0] \Longleftrightarrow a \in I$.]
(b) Prove that R / I is a field if and only if I is maximal. [Hint: Use Problem 1.]
(c) Prove that every maximal ideal is prime.
(a): First uppose that I is a prime ideal. Then for any classes $[a],[b] \in R / I$ we have

$$
\begin{aligned}
{[a][b]=[0] } & \Longrightarrow \quad[a b]=[0] \\
& \Longrightarrow a b \in I \\
& \Longrightarrow a \in I \text { or } b \in I \\
& \Longrightarrow[a]=[0] \text { or }[b]=[0],
\end{aligned}
$$

and hence R / I is a domain. Conversely, suppose that R / I is a domain. Then for any elements $a, b \in R$ we have

$$
\begin{aligned}
a b \in I & \Longrightarrow[a b]=[0] \\
& \Longrightarrow[a][b]=[0] \\
& \Longrightarrow[a]=[0] \text { or }[b]=[0] \\
& \Longrightarrow a \in I \text { or } b \in I,
\end{aligned}
$$

and hence I is a prime ideal.
(b): First suppose that I is a maximal ideal. In order to prove that R / I is a field, we will show that every nonzero class $[a] \neq[0]$ there exists some class $[b] \in R / I$ such that $[a][b]=[1]$. So consider any nonzero class $[a] \neq[0]$, i.e., any element $a \notin I$. Now consider the ideal $J=I+a R$. Since $a \notin I$ we have $I \subsetneq J$, which, since I is maximal, implies that $I+a R=R$. Then since $1 \in R$ we also have $1 \in a R+I$ and we can write $1=a b+c$ for some $b \in R$ and $c \in I$. Finally, since $a b-1=c \in I$ we have

$$
\begin{aligned}
{[a b] } & =[1] \\
{[a][b] } & =[1],
\end{aligned}
$$

as desired. Conversely, suppose that R / I is a field. In order to prove that I is maximal, we will show that any ideal J satisfying $I \subsetneq J$ must satisfy $J=R$. So consider any ideal $I \subsetneq J$ and pick any element $a \in J \backslash I$. Since R / I is a field there exists $b \in R$ such that $[a][b]=[1]$, which implies that $a b-1 \in I$. Since $I \subseteq J$ this implies that $a b-1=c$ for some c. Furthermore, since J is an ideal, we have

$$
a \in J \text { and } b \in R \quad \Longrightarrow \quad a b \in J .
$$

We conclude that $1=a b-c \in J$. But we know from 1(a) that any ideal containing a unit is the whole ring. Hence $J=R$, as desired.

Remark: This proof can be made much simpler if we accept the correspondence theorem for ideals, which for any ideal $I \subseteq R$ gives a bijection
\{ideals J of R such that $I \subsetneq J \subsetneq R\} \leftrightarrow\left\{\right.$ ideals J^{\prime} of R / I such that $\left.\{[0]\} \subsetneq J^{\prime} \subsetneq R / I\right\}$.
From 1(b) we know that the right set is empty if and only if R / I is a field, and clearly the left set is empty if and only if I is a maximal ideal.
(c): Since every field is a domain, we have

$$
\begin{array}{rlr}
I \text { is maximal } & \Longrightarrow R / I \text { is a field } & 2(\mathrm{~b}) \\
& \Longrightarrow R / I \text { is a domain } & \\
& \Longrightarrow I \text { is prime. } & 2(\mathrm{a})
\end{array}
$$

3. Divisibility in a Domain. Let R be an integral domain with group of units R^{\times}. Given $a, b \in R$ we define the relation of divisibility:

$$
a \mid b \quad \Longleftrightarrow \quad a c=b \text { for some } c \in R .
$$

And we define the relation of association:

$$
a \sim b \quad \Longleftrightarrow \quad a u=b \text { for some } u \in R^{\times} .
$$

(a) Prove that \mid is a partial order on R.
(b) For all $a, b \in R$ prove that $a \mid b$ if and only if $b R \subseteq a R$.
(c) Prove that \sim is an equivalence relation on R.
(d) For all $a, b \in R$, prove that $a \sim b$ if and only if $a R=b R$.
(e) Sets of the form $a R \subseteq R$ are called principal ideals of R. Show that we have bijections:

$$
\begin{aligned}
& \text { principal ideals of } \mathbb{Z} \longleftrightarrow \mathbb{N}, \\
& \text { principal ideals of } \mathbb{F}[x] \longleftrightarrow \\
&\{0\} \cup\{\text { monic polynomials }\} .
\end{aligned}
$$

(A monic polynomial has leading coefficient 1.)
4. Quotient and Remainder of Polynomials. Consider the ring of polynomials $\mathbb{F}[x]$ over a field \mathbb{F}. In this problem you will prove that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, there exists a unique pair of polynomials $q(x), r(x) \in \mathbb{F}[x]$ - called the quotient and remainder of $f(x)$ modulo $g(x)$ - satisfying

$$
\left\{\begin{array}{l}
f(x)=g(x) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(g) .
\end{array}\right.
$$

(a) Existence. Consider the set $S=\{f(x)-g(x) q(x): q(x) \in \mathbb{F}[x]\} \subseteq \mathbb{F}[x]$. If $0 \in S$ then we are done, so suppose that $0 \notin S$. Let $r(x)$ be any element of S with minimal degree. In this case, prove that $\operatorname{deg}(r)<\operatorname{deg}(g)$. [Hint: Assume for contradiction that $\operatorname{deg}(r) \geq \operatorname{deg}(g)$. Let's say $g(x)=a_{m} x^{m}+\cdots$ and $r(x)=b_{n} x^{n}+\cdots$ with $m \leq n$. In this case, show that $h(x):=r(x)-\frac{b_{n}}{a_{m}} x^{n-m} g(x) \in S$ and $\operatorname{deg}(h)<\operatorname{deg}(r)$.]
(b) Uniqueness. Let $q(x), r(x)$ and $q^{\prime}(x), r^{\prime}(x)$ be two pairs satisfying the properties of quotient and remainder. In this case prove that $q(x)=q^{\prime}(x)$ and $r(x)=r^{\prime}(x)$. [Hint: By assumption we have $g(x) q(x)+r(x)=f(x)=g(x) q^{\prime}(x)+r^{\prime}(x)$, and hence $g(x)\left[q(x)-q^{\prime}(x)\right]=r^{\prime}(x)-r(x)$. If $r(x)=r^{\prime}(x)$ then we are done, so suppose that $r(x) \neq r^{\prime}(x)$. In this case, use properties of degree to show that $\operatorname{deg}(g)<\operatorname{deg}\left(r^{\prime}-r\right)$ and derive a contradiction from this.]
(a): Given $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, consider the set

$$
S=\{f(x)-g(x) q(x): q(x) \in \mathbb{F}[x]\} \subseteq \mathbb{F}[x] .
$$

If $0 \in S$ then we have $f(x)=g(x) q(x)+0$ and we are done. Other wise, if $S \neq\{0\}$, let $r(x) \in S$ be any nonzero element of minimal degree. By definition of S we have $f(x)=g(x) q(x)+r(x)$ for some $q(x) \in \mathbb{F}[x]$. Hence it remains only to show that $\operatorname{deg}(r)<\operatorname{deg}(g)$. So suppose for contradiction that $\operatorname{deg}(g) \leq \operatorname{deg}(r)$. Let's say that $\operatorname{deg}(g)=m$ and $\operatorname{deg}(r)=n$ with $m \leq n$. Let's also name the coefficients:

$$
\begin{aligned}
& g(x)=a_{m} x^{m}+\cdots+a_{1} x+a_{0}, \\
& r(x)=b_{n} x^{n}+\cdots+b_{1} x+b_{0} .
\end{aligned}
$$

Since a_{m} is a nonzero element of a field \mathbb{F} we may consider the polynomial

$$
h(x):=r(x)-\frac{b_{n}}{a_{m}} x^{n-m} g(x)=\left(b_{n}-b_{n}\right) x^{n}+\text { lower terms },
$$

which has $\operatorname{deg}(h)<\operatorname{deg}(r)$. On the other hand, since $r(x) \in S$ we have $r(x)=f(x)-g(x) s(x)$ for some $s(x) \in \mathbb{F}[x]$ and hence

$$
h(x)=f(x)-g(x) s(x)-\frac{b_{n}}{a_{m}} x^{n-m} g(x)=f(x)-\left(s(x)+\frac{b_{n}}{a_{m}} x^{n-m}\right) g(x) \in S
$$

Thus $h(x)$ is a nonzero element of S with degree strictly less than $\operatorname{deg}(r)$. Contradiction.
(b): Consider any $f(x), g(x) \in \mathbb{F}[x]$ with $g(x)$, and consider any polynomials $q(x), r(x), q^{\prime}(x), r^{\prime}(x) \in$ $\mathbb{F}[x]$ satisfying

$$
\left\{\begin{array} { l }
{ f (x) = g (x) q (x) + r (x) , } \\
{ r (x) = 0 \text { or } \operatorname { d e g } (r) < \operatorname { d e g } (g) , }
\end{array} \quad \left\{\begin{array}{l}
f(x)=g(x) q^{\prime}(x)+r^{\prime}(x), \\
r^{\prime}(x)=0 \text { or } \operatorname{deg}\left(r^{\prime}\right)<\operatorname{deg}(g) .
\end{array}\right.\right.
$$

Since $g(x) q(x)+r(x)=f(x)=g(x) q^{\prime}(x)+r^{\prime}(x)$ we have $g(x)\left[q(x)-q^{\prime}(x)\right]=\left[r^{\prime}(x)-r(x)\right]$. If $r(x)=r^{\prime}(x)$ then we have $g(x)\left[q(x)-q^{\prime}(x)\right]=0$. Since $g(x) \neq 0$ this implies that $q(x)-q^{\prime}(x)=$ 0 and hence $q(x)=q^{\prime}(x)$ as desired. So let us suppose for contradiction that $r^{\prime}(x)-r(x)$. Since $g(x) \neq 0$ this also implies that $q(x)-q^{\prime}(x)$. Then applying degrees to the equation $g(x)\left[q(x)-q^{\prime}(x)\right]=\left[r^{\prime}(x)-r(x)\right]$ gives a contradiction:

$$
\operatorname{deg}(g) \leq \operatorname{deg}(g)+\operatorname{deg}\left(q-q^{\prime}\right)=\operatorname{deg}\left(r^{\prime}-r\right) \leq \max \left\{\operatorname{deg}\left(r^{\prime}\right), \operatorname{deg}(r)\right\}<\operatorname{deg}(g)
$$

5. Euclidean Rings Have Only Principal Ideals. A ring R is called Euclidean if there exists a "size function" ${ }^{2} N: R \backslash\{0\} \rightarrow \mathbb{N}$ that satisfies the "Euclidean algorithm": For all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that

$$
\left\{\begin{array}{l}
a=b q+r, \\
r=0 \text { or } N(r)<N(b) .
\end{array}\right.
$$

If R is a Euclidean ring, prove that every ideal of R has the form $a R$ for some $a \in R$. [Hint: Consider any ideal $I \subseteq R$. If $I=\{0\}$ then we are done, so suppose $I \neq\{0\}$ and let $a \in I$ be any nonzero element of minimal "size" $N(a)$. Prove that $I=a R$.]

Proof. Let (R, N) be a Euclidean ring and consider any ideal $I \subseteq R$. If $I=\{0\}$ then we have $I=0 R$ and we are done. So suppose that $I \neq\{0\}$ and let $a \in I$ be any nonzero element of

[^1]minimal size $N(a)$ (which exists because \mathbb{N} well-ordered). In this case I claim that $I=a R$. Indeed, since I is an ideal of R that contains a we must have $a R \subseteq I$ as in Problem $1(\mathrm{~d})$. Conversely, we will show that any element $b \in I$ has the form $b=a q$ for some $q \in R$, and hence $I \subseteq a R$. So let b be any element of I and divide by the nonzero element $a \in R$ to obtain
\[

\left\{$$
\begin{array}{l}
b=a q+r \\
r=0 \text { or } N(r)<N(a)
\end{array}
$$\right.
\]

If $r \neq 0$ then we have $N(r)<N(a)$ and $r=a-b q \in I$ so that r is a nonzero element of I with size strictly less than $N(a)$, which is a contradiction. Hence we must have $r=0$ and hence $b=a q \in a R$. We have shown that $a R \subseteq I$ and $I \subseteq a R$, hence $I=a R$.
6. The Ring $\mathbb{Z}[x]$ is Not Euclidean. Prove indirectly that $\mathbb{Z}[x]$ is not Euclidean by showing that the following ideal is not principal:

$$
\begin{aligned}
2 \mathbb{Z}[x]+x \mathbb{Z}[x] & =\{2 f(x)+x g(x): f(x), g(x) \in \mathbb{Z}[x]\} \\
& =\{\text { integer polynomials whose constant term is even }\}
\end{aligned}
$$

[Hint: Suppose for contradiction that $I=c(x) \mathbb{Z}[x]=\{c(x) f(x): f(x) \in \mathbb{Z}[x]\}$ for some polynomial $c(x) \in \mathbb{Z}[x]$. If $\operatorname{deg}(c) \geq 1$ then every nonzero element of I has degree ≥ 1. But $2 \in I$. Hence $c(x)=c \in \mathbb{Z}$ is a nonzero integer. If $c= \pm 1$ then we also have $\pm 1 \in I$, which contradicts the fact that every polynomial in I has even constant term. If $|c| \geq 2$ then every polynomial in I has coefficients of absolute value ≥ 2, contradicting the fact that $x \in I$.]

Proof. Suppose for contradiction that $I=c(x) \mathbb{Z}[x]$ for some $c(x) \in \mathbb{Z}[x]$. Since $I \neq\{0\}$ we must have $c(x) \neq 0$. If $\operatorname{deg}(c) \geq 1$ then every nonzero element $f(x) \in c(x) \mathbb{Z}[x]$ has the form $f(x)=c(x) g(x)$ for some nonzero $g(x)$ and hence $\operatorname{deg}(f)=\operatorname{deg}(c)+\operatorname{deg}(g) \geq \operatorname{deg}(c) \geq 1$. But $2 \in I$ and $\operatorname{deg}(2)<1$. We have shown that $c(x)=c \in \mathbb{Z}$ is a nonzero integer. I claim that $c= \pm 1$. If not then we must have $|c| \geq 2$. But any element of $I=c \mathbb{Z}[x]$ can be expressed as $c\left(\sum_{k} a_{k} x^{k}\right)$, with coeffiients $c a_{k} \in \mathbb{Z}$. If $c a_{k} \neq 0$ then $a_{k} \neq 0$ and hence $\left|a_{k}\right| \geq 1$. But then

$$
\left|c a_{k}\right|=|c|\left|a_{k}\right| \geq 2 \cdot 1=2
$$

which shows that the nonzero coefficients of polynomials in I have absolute value ≥ 2. This contradicts the fact that $x \in I$. At this point we have shown that $I= \pm \mathbb{Z}[x]=\mathbb{Z}[x]$. But, finally, this contradicts the fact that $1 \notin I$.

Remark: A similar proof shows that the ideal $x \mathbb{F}[x, y]+y \mathbb{F}[x, y] \subseteq \mathbb{F}[x, y]$ is not principal, and hence the ring of polynomials $\mathbb{F}[x, y]$ in two variables over a field \mathbb{F} is not Euclidean. However, it is extremely difficult to describe all of the ideals in the ring of polynomials $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$ in many variables. (It is even difficult to prove that every ideal is finitely generated. This is the famous Hilbert Basis Theorem.) Euclidean domains are really special.

[^0]: ${ }^{1}$ Here I don't bother to check that this set is an additive subgroup of R.

[^1]: ${ }^{2}$ There are two main examples of size functions: absolute value of integers and degree of polynomials. However, these examples have some peculiar features that make it difficult to set up a satisfying general theory of size functions. For this reason, Euclidean rings are usually thrown away in favor of principal ideal rings, even though these two concepts are not identical. Principal ideal rings (PIRs) and principal ideal domains (PIDs) lead to a more satisfying general theory.

