1. Generalities About Ideals. Let R be a ring.

- (a) Let $I \subseteq R$ be an ideal. Prove that I = R if and only if I contains a unit.
- (b) Prove that R is a field if and only if it has exactly two ideals: $\{0\}$ and R.
- (c) Given ideals $I, J \subseteq R$, prove that $I \cap J$ and I + J are also ideals.
- (d) Given elements $a_1, \ldots, a_n \in R$, prove that the set of *R*-linear combinations

 $a_1R + \dots + a_nR := \{a_1r_1 + \dots + a_nr_n : r_1, \dots, r_n \in R\}$

is the smallest ideal of R that contains the set $\{a_1, \ldots, a_n\}$.

2. Prime and Maximal Ideals. Let $I \subseteq R$ be an ideal. We say that I is maximal when:

- $I \neq R$,
- There are no ideals of R between I and R.

We say that I is *prime* when for all $a, b \in R$ we have

$$ab \in I \implies a \in I \text{ or } b \in I.$$

For any ideal $I \subseteq R$ recall that we have a quotient ring $(R/I, +, \cdot, [0], [1])$ with addition and multiplication defined by

$$[a] + [b] := [a + b]$$
 and $[a][b] := [ab],$

where [a] = a + I denotes the additive coset generated by $a \in R$.

- (a) Prove that R/I is a domain if and only if I is prime. [Hint: $[a] = [0] \iff a \in I$.]
- (b) Prove that R/I is a field if and only if I is maximal. [Hint: Use Problem 1.]
- (c) Prove that every maximal ideal is prime.

3. Divisibility in a Domain. Let R be an integral domain with group of units R^{\times} . Given $a, b \in R$ we define the relation of *divisibility*:

$$a|b \iff ac = b$$
 for some $c \in R$.

And we define the relation of *association*:

 $a \sim b \iff au = b$ for some $u \in R^{\times}$.

- (a) Prove that | is a partial order on R.
- (b) For all $a, b \in R$ prove that a|b if and only if $bR \subseteq aR$.
- (c) Prove that \sim is an equivalence relation on R.
- (d) For all $a, b \in R$, prove that $a \sim b$ if and only if aR = bR.
- (e) Sets of the form $aR \subseteq R$ are called *principal ideals* of R. Show that we have bijections:

principal ideals of $\mathbb{Z} \iff \mathbb{N}$,

principal ideals of $\mathbb{F}[x] \longleftrightarrow \{0\} \cup \{\text{monic polynomials}\}.$

(A monic polynomial has leading coefficient 1.)

4. Quotient and Remainder of Polynomials. Consider the ring of polynomials $\mathbb{F}[x]$ over a field \mathbb{F} . In this problem you will prove that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with

 $g(x) \neq 0$, there exists a unique pair of polynomials $q(x), r(x) \in \mathbb{F}[x]$ — called the *quotient* and *remainder* of f(x) modulo g(x) — satisfying

$$\begin{cases} f(x) = g(x)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < \deg(g). \end{cases}$$

- (a) Existence. Consider the set S = {f(x) g(x)q(x) : q(x) ∈ F[x]} ⊆ F[x]. If 0 ∈ S then we are done, so suppose that 0 ∉ S. Let r(x) be any element of S with minimal degree. In this case, prove that deg(r) < deg(g). [Hint: Assume for contradiction that deg(r) ≥ deg(g). Let's say g(x) = a_mx^m + · · · and r(x) = b_nxⁿ + · · · with m ≤ n. In this case, show that h(x) := r(x) b_nx^{n-m}g(x) ∈ S and deg(h) < deg(r).]
- (b) **Uniqueness.** Let q(x), r(x) and q'(x), r'(x) be two pairs satisfying the properties of quotient and remainder. In this case prove that q(x) = q'(x) and r(x) = r'(x). [Hint: By assumption we have g(x)q(x) + r(x) = f(x) = g(x)q'(x) + r'(x), and hence g(x)[q(x) - q'(x)] = r'(x) - r(x). If r(x) = r'(x) then we are done, so suppose that $r(x) \neq r'(x)$. In this case, use properties of degree to show that $\deg(g) < \deg(r' - r)$ and derive a contradiction from this.]

5. Euclidean Rings Have Only Principal Ideals. A ring R is called *Euclidean* if there exists a "size function"¹ $N : R \setminus \{0\} \to \mathbb{N}$ that satisfies the "Euclidean algorithm": For all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that

$$\begin{cases} a = bq + r, \\ r = 0 \text{ or } N(r) < N(b). \end{cases}$$

If R is a Euclidean ring, prove that every ideal of R has the form aR for some $a \in R$. [Hint: Consider any ideal $I \subseteq R$. If $I = \{0\}$ then we are done, so suppose $I \neq \{0\}$ and let $a \in I$ be any nonzero element of minimal "size" N(a). Prove that I = aR.]

6. The Ring $\mathbb{Z}[x]$ is Not Euclidean. Prove indirectly that $\mathbb{Z}[x]$ is not Euclidean by showing that the following ideal is not principal:

$$2\mathbb{Z}[x] + x\mathbb{Z}[x] = \{2f(x) + xg(x) : f(x), g(x) \in \mathbb{Z}[x]\}$$

= {integer polynomials whose constant term is even}.

[Hint: Suppose for contradiction that $I = c(x)\mathbb{Z}[x] = \{c(x)f(x) : f(x) \in \mathbb{Z}[x]\}$ for some polynomial $c(x) \in \mathbb{Z}[x]$. If $\deg(c) \ge 1$ then every nonzero element of I has degree ≥ 1 . But $2 \in I$. Hence $c(x) = c \in \mathbb{Z}$ is a nonzero integer. If $c = \pm 1$ then we also have $\pm 1 \in I$, which contradicts the fact that every polynomial in I has even constant term. If $|c| \ge 2$ then every polynomial in I has coefficients of absolute value ≥ 2 , contradicting the fact that $x \in I$.]

¹There are two main examples of size functions: absolute value of integers and degree of polynomials. However, these examples have some peculiar features that make it difficult to set up a satisfying general theory of size functions. For this reason, Euclidean rings are usually thrown away in favor of *principal ideal rings*, even though these two concepts are not identical. Principal ideal rings (PIRs) and principal ideal domains (PIDs) lead to a more satisfying general theory.