
Math 562/662 Spring 2024
Homework 2 Drew Armstrong

1. Generalities About Ideals. Let R be a ring.

(a) Let I ⊆ R be an ideal. Prove that I = R if and only if I contains a unit.
(b) Prove that R is a field if and only if it has exactly two ideals: {0} and R.
(c) Given ideals I, J ⊆ R, prove that I ∩ J and I + J are also ideals.
(d) Given elements a1, . . . , an ∈ R, prove that the set of R-linear combinations

a1R + · · ·+ anR := {a1r1 + · · ·+ anrn : r1, . . . , rn ∈ R}

is the smallest ideal of R that contains the set {a1, . . . , an}.

2. Prime and Maximal Ideals. Let I ⊆ R be an ideal. We say that I is maximal when:

• I 6= R,
• There are no ideals of R between I and R.

We say that I is prime when for all a, b ∈ R we have

ab ∈ I =⇒ a ∈ I or b ∈ I.

For any ideal I ⊆ R recall that we have a quotient ring (R/I,+, ·, [0], [1]) with addition and
multiplication defined by

[a] + [b] := [a + b] and [a][b] := [ab],

where [a] = a + I denotes the additive coset generated by a ∈ R.

(a) Prove that R/I is a domain if and only if I is prime. [Hint: [a] = [0]⇐⇒ a ∈ I.]
(b) Prove that R/I is a field if and only if I is maximal. [Hint: Use Problem 1.]
(c) Prove that every maximal ideal is prime.

3. Divisibility in a Domain. Let R be an integral domain with group of units R×. Given
a, b ∈ R we define the relation of divisibility:

a|b ⇐⇒ ac = b for some c ∈ R.

And we define the relation of association:

a ∼ b ⇐⇒ au = b for some u ∈ R×.

(a) Prove that | is a partial order on R.
(b) For all a, b ∈ R prove that a|b if and only if bR ⊆ aR.
(c) Prove that ∼ is an equivalence relation on R.
(d) For all a, b ∈ R, prove that a ∼ b if and only if aR = bR.
(e) Sets of the form aR ⊆ R are called principal ideals of R. Show that we have bijections:

principal ideals of Z ←→ N,
principal ideals of F[x] ←→ {0} ∪ {monic polynomials}.

(A monic polynomial has leading coefficient 1.)

4. Quotient and Remainder of Polynomials. Consider the ring of polynomials F[x] over
a field F. In this problem you will prove that for any polynomials f(x), g(x) ∈ F[x] with



g(x) 6= 0, there exists a unique pair of polynomials q(x), r(x) ∈ F[x] — called the quotient and
remainder of f(x) modulo g(x) — satisfying{

f(x) = g(x)q(x) + r(x),
r(x) = 0 or deg(r) < deg(g).

(a) Existence. Consider the set S = {f(x) − g(x)q(x) : q(x) ∈ F[x]} ⊆ F[x]. If 0 ∈ S
then we are done, so suppose that 0 6∈ S. Let r(x) be any element of S with minimal
degree. In this case, prove that deg(r) < deg(g). [Hint: Assume for contradiction that
deg(r) ≥ deg(g). Let’s say g(x) = amxm + · · · and r(x) = bnx

n + · · · with m ≤ n. In

this case, show that h(x) := r(x)− bn
am

xn−mg(x) ∈ S and deg(h) < deg(r).]

(b) Uniqueness. Let q(x), r(x) and q′(x), r′(x) be two pairs satisfying the properties
of quotient and remainder. In this case prove that q(x) = q′(x) and r(x) = r′(x).
[Hint: By assumption we have g(x)q(x) + r(x) = f(x) = g(x)q′(x) + r′(x), and hence
g(x)[q(x) − q′(x)] = r′(x) − r(x). If r(x) = r′(x) then we are done, so suppose that
r(x) 6= r′(x). In this case, use properties of degree to show that deg(g) < deg(r′ − r)
and derive a contradiction from this.]

5. Euclidean Rings Have Only Principal Ideals. A ring R is called Euclidean if there
exists a “size function”1 N : R \ {0} → N that satisfies the “Euclidean algorithm”: For all
a, b ∈ R with b 6= 0, there exist q, r ∈ R such that{

a = bq + r,
r = 0 or N(r) < N(b).

If R is a Euclidean ring, prove that every ideal of R has the form aR for some a ∈ R. [Hint:
Consider any ideal I ⊆ R. If I = {0} then we are done, so suppose I 6= {0} and let a ∈ I be
any nonzero element of minimal “size” N(a). Prove that I = aR.]

6. The Ring Z[x] is Not Euclidean. Prove indirectly that Z[x] is not Euclidean by showing
that the following ideal is not principal:

2Z[x] + xZ[x] = {2f(x) + xg(x) : f(x), g(x) ∈ Z[x]}
= {integer polynomials whose constant term is even}.

[Hint: Suppose for contradiction that I = c(x)Z[x] = {c(x)f(x) : f(x) ∈ Z[x]} for some
polynomial c(x) ∈ Z[x]. If deg(c) ≥ 1 then every nonzero element of I has degree ≥ 1. But
2 ∈ I. Hence c(x) = c ∈ Z is a nonzero integer. If c = ±1 then we also have ±1 ∈ I, which
contradicts the fact that every polynomial in I has even constant term. If |c| ≥ 2 then every
polynomial in I has coefficients of absolute value ≥ 2, contradicting the fact that x ∈ I.]

1There are two main examples of size functions: absolute value of integers and degree of polynomials.
However, these examples have some peculiar features that make it difficult to set up a satisfying general theory
of size functions. For this reason, Euclidean rings are usually thrown away in favor of principal ideal rings, even
though these two concepts are not identical. Principal ideal rings (PIRs) and principal ideal domains (PIDs)
lead to a more satisfying general theory.


