1. Generalities About Ideals. Let R be a ring.
(a) Let $I \subseteq R$ be an ideal. Prove that $I=R$ if and only if I contains a unit.
(b) Prove that R is a field if and only if it has exactly two ideals: $\{0\}$ and R.
(c) Given ideals $I, J \subseteq R$, prove that $I \cap J$ and $I+J$ are also ideals.
(d) Given elements $a_{1}, \ldots, a_{n} \in R$, prove that the set of R-linear combinations

$$
a_{1} R+\cdots+a_{n} R:=\left\{a_{1} r_{1}+\cdots+a_{n} r_{n}: r_{1}, \ldots, r_{n} \in R\right\}
$$

is the smallest ideal of R that contains the set $\left\{a_{1}, \ldots, a_{n}\right\}$.
2. Prime and Maximal Ideals. Let $I \subseteq R$ be an ideal. We say that I is maximal when:

- $I \neq R$,
- There are no ideals of R between I and R.

We say that I is prime when for all $a, b \in R$ we have

$$
a b \in I \quad \Longrightarrow \quad a \in I \text { or } b \in I .
$$

For any ideal $I \subseteq R$ recall that we have a quotient ring $(R / I,+, \cdot,[0],[1])$ with addition and multiplication defined by

$$
[a]+[b]:=[a+b] \quad \text { and } \quad[a][b]:=[a b],
$$

where $[a]=a+I$ denotes the additive coset generated by $a \in R$.
(a) Prove that R / I is a domain if and only if I is prime. [Hint: $[a]=[0] \Longleftrightarrow a \in I$.]
(b) Prove that R / I is a field if and only if I is maximal. [Hint: Use Problem 1.]
(c) Prove that every maximal ideal is prime.
3. Divisibility in a Domain. Let R be an integral domain with group of units R^{\times}. Given $a, b \in R$ we define the relation of divisibility:

$$
a \mid b \quad \Longleftrightarrow \quad a c=b \text { for some } c \in R \text {. }
$$

And we define the relation of association:

$$
a \sim b \quad \Longleftrightarrow \quad a u=b \text { for some } u \in R^{\times} .
$$

(a) Prove that \mid is a partial order on R.
(b) For all $a, b \in R$ prove that $a \mid b$ if and only if $b R \subseteq a R$.
(c) Prove that \sim is an equivalence relation on R.
(d) For all $a, b \in R$, prove that $a \sim b$ if and only if $a R=b R$.
(e) Sets of the form $a R \subseteq R$ are called principal ideals of R. Show that we have bijections:

$$
\left.\begin{array}{rl}
\text { principal ideals of } \mathbb{Z} & \longleftrightarrow \mathbb{N}, \\
\text { principal ideals of } \mathbb{F}[x] & \longleftrightarrow
\end{array} 0\right\} \cup\{\text { monic polynomials }\} .
$$

(A monic polynomial has leading coefficient 1.)
4. Quotient and Remainder of Polynomials. Consider the ring of polynomials $\mathbb{F}[x]$ over a field \mathbb{F}. In this problem you will prove that for any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with
$g(x) \neq 0$, there exists a unique pair of polynomials $q(x), r(x) \in \mathbb{F}[x]$ - called the quotient and remainder of $f(x)$ modulo $g(x)$ - satisfying

$$
\left\{\begin{array}{l}
f(x)=g(x) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<\operatorname{deg}(g) .
\end{array}\right.
$$

(a) Existence. Consider the set $S=\{f(x)-g(x) q(x): q(x) \in \mathbb{F}[x]\} \subseteq \mathbb{F}[x]$. If $0 \in S$ then we are done, so suppose that $0 \notin S$. Let $r(x)$ be any element of S with minimal degree. In this case, prove that $\operatorname{deg}(r)<\operatorname{deg}(g)$. [Hint: Assume for contradiction that $\operatorname{deg}(r) \geq \operatorname{deg}(g)$. Let's say $g(x)=a_{m} x^{m}+\cdots$ and $r(x)=b_{n} x^{n}+\cdots$ with $m \leq n$. In this case, show that $h(x):=r(x)-\frac{b_{n}}{a_{m}} x^{n-m} g(x) \in S$ and $\operatorname{deg}(h)<\operatorname{deg}(r)$.]
(b) Uniqueness. Let $q(x), r(x)$ and $q^{\prime}(x), r^{\prime}(x)$ be two pairs satisfying the properties of quotient and remainder. In this case prove that $q(x)=q^{\prime}(x)$ and $r(x)=r^{\prime}(x)$. [Hint: By assumption we have $g(x) q(x)+r(x)=f(x)=g(x) q^{\prime}(x)+r^{\prime}(x)$, and hence $g(x)\left[q(x)-q^{\prime}(x)\right]=r^{\prime}(x)-r(x)$. If $r(x)=r^{\prime}(x)$ then we are done, so suppose that $r(x) \neq r^{\prime}(x)$. In this case, use properties of degree to show that $\operatorname{deg}(g)<\operatorname{deg}\left(r^{\prime}-r\right)$ and derive a contradiction from this.]
5. Euclidean Rings Have Only Principal Ideals. A ring R is called Euclidean if there exists a "size function" $\backslash N: R \backslash\{0\} \rightarrow \mathbb{N}$ that satisfies the "Euclidean algorithm": For all $a, b \in R$ with $b \neq 0$, there exist $q, r \in R$ such that

$$
\left\{\begin{array}{l}
a=b q+r, \\
r=0 \text { or } N(r)<N(b) .
\end{array}\right.
$$

If R is a Euclidean ring, prove that every ideal of R has the form $a R$ for some $a \in R$. [Hint: Consider any ideal $I \subseteq R$. If $I=\{0\}$ then we are done, so suppose $I \neq\{0\}$ and let $a \in I$ be any nonzero element of minimal "size" $N(a)$. Prove that $I=a R$.]
6. The Ring $\mathbb{Z}[x]$ is Not Euclidean. Prove indirectly that $\mathbb{Z}[x]$ is not Euclidean by showing that the following ideal is not principal:

$$
\begin{aligned}
2 \mathbb{Z}[x]+x \mathbb{Z}[x] & =\{2 f(x)+x g(x): f(x), g(x) \in \mathbb{Z}[x]\} \\
& =\{\text { integer polynomials whose constant term is even }\} .
\end{aligned}
$$

[Hint: Suppose for contradiction that $I=c(x) \mathbb{Z}[x]=\{c(x) f(x): f(x) \in \mathbb{Z}[x]\}$ for some polynomial $c(x) \in \mathbb{Z}[x]$. If $\operatorname{deg}(c) \geq 1$ then every nonzero element of I has degree ≥ 1. But $2 \in I$. Hence $c(x)=c \in \mathbb{Z}$ is a nonzero integer. If $c= \pm 1$ then we also have $\pm 1 \in I$, which contradicts the fact that every polynomial in I has even constant term. If $|c| \geq 2$ then every polynomial in I has coefficients of absolute value ≥ 2, contradicting the fact that $x \in I$.]

[^0]
[^0]: ${ }^{1}$ There are two main examples of size functions: absolute value of integers and degree of polynomials. However, these examples have some peculiar features that make it difficult to set up a satisfying general theory of size functions. For this reason, Euclidean rings are usually thrown away in favor of principal ideal rings, even though these two concepts are not identical. Principal ideal rings (PIRs) and principal ideal domains (PIDs) lead to a more satisfying general theory.

