
Math 562/662 Spring 2024
Homework 1 Drew Armstrong

1. The Field of Fractions of a Domain. Let (R,+, ·, 0, 1) be an integral domain (i.e., a
commutative ring in which ab = 0 implies a = 0 or b = 0) and consider the set of “fractions”:

Frac(R) =
{a
b

: a, b ∈ R, b 6= 0
}
,

At first we will think of the fraction a/b as a formal symbol.

(a) Check that the following is an equivalence relation on the set of fractions:

a

b
∼ c

d
⇐⇒ ad = bc.

(b) We define “addition” and “multiplication” of fractions as follows:

a

b
+
c

d
:=

ad+ bc

bd
and

a

b
· c
d

:=
ac

bd
.

Check that these operations are well-defined with respect to the equivalence ∼. That
is, for all a, b, c, d, a′, b′, c′, d′ ∈ R with b, d, b′, d′ 6= 0, show that

a

b
∼ a′

b′
and

c

d
∼ c′

d′
=⇒ a

b
+
c

d
∼ a′

b′
+
c′

d′
and

a

b
· c
d
∼ a′

b′
· c
′

d′
.

(c) One can check that the set of equivalence classes Frac(R)/∼ from part (b) is a field.1

We usually denote this field by Frac(R), omitting mention of the equivalence relation.
Show that the function ϕ : R → Frac(R) defined by ϕ(a) := a/1 is an injective ring
homomorphism. Thus we can think of R as a subring of Frac(R).

Remark: Assuming that we already have a definition of the integers Z, we use this construction
to define the rational numbers Q := Frac(Z). In this course we will not discuss the construction
of the real numbers R from Q. However, we will discuss the construction of the complex
numbers C from R. See Problem 4 below.

(a): Reflexive. For any a, b ∈ R with b 6= 0 we have ab = ba and hence a/b ∼ a/b. Symmetric.
Consider any a, b, c, d ∈ R with b, d 6= 0 and suppose that a/b ∼ c/d, so that ad = bc. Then
we also have cb = ad, and hence c/d ∼ a/b. Transitive. Consider any a, b, c, d, e, f ∈ R with
b, d, f 6= 0, such that a/b ∼ c/d and c/d ∼ e/f , which means that ad = bc and cf = de. Our
goal is to show that af = be, and hence a/b ∼ e/f . To see this, first note that

daf = adf

= bcf because ad = bc

= bde because cf = de

= dbe.

Then since R is a domain and d 6= 0 we have af = be.2

1This is easy but tedious. You don’t need to do it.
2Recall that multiplicative cancellation holds in a domain. Proof. If ac = bc and c 6= 0 then since (a−b)c = 0

and c 6= 0 we must have a− b = 0 and hence a = b.

1



2

(b): Let a/b ∼ a′/b′ and c/d ∼ c′/d′, so that ab′ = a′b and cd′ = c′d. Then we have

(ac)(b′d′) = (ab′)(cd′)

= (a′b)(c′d)

= (a′c′)(bd),

so that (a/b)(c/d) ∼ (a′/b′)(c′/d′), and

(ad+ bd)(b′d′) = (ad)(b′d′) + (bd)(b′d′)

= (ab′)(dd′) + (cd′)(bb′)

= (a′b)(dd′) + (c′d)(bb′)

= (a′d′)(bd) + (b′c′)(bd)

= (a′d′ + b′c′)(bd),

so that (a/b+ c/d) ∼ (a′/b′ + c′/d′).

(c): Consider the function ϕ : R → Frac(R) defined by ϕ(a) := a/1. This is an injective
function since a/1 ∼ b/1 implies a1 = b1 and hence a = b. And it is a ring homomorphism
since ϕ(1) = 1/1 is the unit element of Frac(R) and since for all a, b ∈ R we have

ϕ(a) + ϕ(b) = a/1 + b/1 = (a1 + 1b)/1 = (a+ b)/1 = ϕ(a+ b)

and

ϕ(a)ϕ(b) = (a/1)(b/1) = (ab)/(1 · 1) = (ab)/1 = ϕ(ab).

2. Adjoining an Element to a Field. Given a field extension E ⊇ F and an element α ∈ E,
one can check that the following evaluation function is a ring homomorphism:3

ϕα : F[x] → E
f(x) 7→ f(α).

(a) We denote the image of ϕα by F[α] := imϕα = {f(α) : f(x) ∈ F[x]} ⊆ E. Prove that
F[α] is the smallest subring of E that contains the set F ∪ {α}. [Hint: Let R be
the smallest subring of E that contains F ∪ {α}. Show that F[α] = R.]

(b) Prove that F[α] is a domain. [Hint: Show that any subring of a field is a domain.]
(c) We denote the field of fractions of F[α] by

F(α) := Frac(F[α]) = {f(α)/g(α) : f(x), g(x) ∈ F[x], g(α) 6= 0} ⊆ E.

Prove that F(α) is the smallest subfield of E that contains the set F∪{α}. [Hint:
Let K be the smallest subfield of E that contains F ∪ {α}. Show that F(α) = K.]

Warning: Using similar notation, we let F(x) denote the field of fractions of the ring of poly-
nomials F[x], where x is an “indeterminate”. This is the set of formal expressions f(x)/g(x)
with f(x), g(x) ∈ F[x] where g(x) is not the zero polynomial. Given an element α ∈ E ⊇ F in
a field extension, it is tempting to try to define an “evaluation homomorphism” F(x)→ E by
f(x)/g(x) 7→ f(α)/g(α). However, this function doesn’t exist when α is a root of g(x). “Ra-
tional functions” are more subtle than “polynomial functions” and require more sophisticated
ideas,4 which we will not discuss in this class.

3This is easy and tedious. However, it does depend in a subtle way on the fact that multiplication in E is
commutative. The idea of “evaluation” doesn’t work over noncommutative rings.

4This the concept of “meromorphic functions” from complex analysis.
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(a): Let F[α] := imϕα = {f(α) : f(x) ∈ F[x]}, and let R be the smallest subring of E that
contains F∪{α}. Note that F[α] is itself a subring of E that contains F∪{α}.5. By minimality
of R this implies that R ⊆ F[α]. On the other hand, consider any element f(α) ∈ F[α], which
can be expressed as f(α) = a0 + a1α + · · · + anα

n for some n ∈ N and a0, . . . , an ∈ F. Since
R contains F ∪ {α} we must have

a0, a1, . . . , an, α ∈ R.

But then since R is closed under ring operations we must also have f(α) ∈ R. Hence F[α] ⊆ R.

(b): Let K be any field and let R ⊆ K be any subring. For any a, b ∈ R with a 6= 0 we also
have a ∈ K, which implies that a−1 ∈ K. But then in K we have

ab = 0

a−1ab = a−10

b = 0,

which must also hold in R.

(c): Consider the field of fractions6

F(α) := Frac(F[α]) = {f(α)/g(α) : f(x), g(x) ∈ F[x], g(α) 6= 0} ⊆ E.

and let K be the smallest subfield of E that contains F ∪ {α}. Note that F(α) is itself a
subfield of E that contains F ∪ {α}, hence by minimality we have K ⊇ F(α). On the other
hand, consider any element f(α)/g(α) ∈ F(α), which can be expressed as

f(α)

g(α)
=
a0 + a1α+ · · ·+ amα

m

b0 + b1α+ · · ·+ bnαn

for some a0, . . . , am, b0, . . . , bn ∈ F. Since K contains F ∪ {α} we must have

a0, a1, . . . , am, b0, b1, . . . , bn, α ∈ K.

Since K is closed under field operations, this implies that f(α)/g(α) ∈ F(α). Hence F(α) ⊆ K.

3. Square Roots are Irrational. Let D ∈ N be a positive integer and let
√
D ∈ R be one

of its two square roots. In this problem you will show that
√
D 6∈ Z =⇒

√
D 6∈ Q.

(a) Consider the set S = {n ∈ N : n
√
D ∈ Z} ⊆ N. Show that

S = ∅ ⇐⇒
√
D 6∈ Q.

(b) Assuming that
√
D 6∈ Z, use the well-ordering principle to prove that there exists an

integer a ∈ Z such that a <
√
D < a+ 1.

(c) Continuing from part (b), suppose also that
√
D ∈ Q. By part (a) and well-ordering,

this means that the set S has a least element, say m ∈ S. Now use part (b) to get a

contradiction. [Hint: Consider the number m(
√
D − a).]

5The image of a ring homomorphism is always a subring.
6There is a small subtlety here. At first the field of fractions is just an abstractly constructed field. However,

if R is a subring of a field E then there is an obvious way to view Frac(R) as a subfield of E by sending the
abstract fraction a/b to the element ab−1 ∈ E. I didn’t bother to turn this into an exercise.
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(a): Suppose that
√
D ∈ Q, so that

√
D = a/b for some a, b ∈ Z with b 6= 0. Since a/b =

(−a)/(−b), we may assume that b > 0, and hence b ∈ N.7 But then since b
√
D = a ∈ Z we

have b ∈ S, so that S 6= ∅. On the other hand, suppose that S 6= ∅, and choose some b ∈ S.
By assumption this means that b

√
D = a for some a ∈ Z. But then

√
D = a/b ∈ Q.

(b): Suppose that
√
D 6∈ Z, and let a ∈ Z be the greatest integer satisfying a <

√
D (which

exists by the well-ordering principle). Since a+ 1 is greater than a we know that a+ 1 6<
√
D,

i.e., that a+ 1 ≥
√
D. And since

√
D 6∈ Z we know that a+ 1 6=

√
D, hence a+ 1 >

√
D.

(c): Suppose that
√
D 6∈ Z and let a ∈ Z satisfy a <

√
D < a + 1. In order to prove that√

D 6∈ Q, let us assume for contradiction that
√
D ∈ Q. By part (a) this means that S 6= ∅,

so by well-ordering there exists a least element m ∈ S. By definition of S we have m
√
D ∈ Z,

and hence m(
√
D − a) = m

√
D −ma ∈ Z. On the other hand, we have

a <
√
D < a+ 1

0 <
√
D − a < 1

0 < m(
√
D − a) < m.

Finally, since m
√
D ∈ Z we have m(

√
D − a)

√
D = mD − am

√
D ∈ Z, and we see that

m(
√
D − a) is an element of S that is less than m. Contradiction. �

Remark: This proof requires a minimum of technology, but it not very pretty. Later we will
see a better proof using the theory of unique prime factorization.

4. Quadratic Field Extensions. Consider a field extension E ⊇ F and an element α ∈ E
satisfying α 6∈ F and α2 ∈ F. As in Problem 2, consider the ring F[α] = {f(α) : f(x) ∈ F[x]},
which is the smallest subring of E that contains F ∪ {α}. We can write this explicitly as

F[α] = {a0 + a1α+ · · ·+ anα
n : a0, . . . , an ∈ F, n ∈ N} ⊆ E.

(a) Prove that every element β ∈ F[α] can be expressed as β = a + bα for some a, b ∈ F.
[Hint: By assumption we have β = f(α) for some polynomial f(x) ∈ F[x]. Since α2 ∈ F,
there exist q(x), r(x) ∈ F[x] with deg(r) ≤ 1 such that f(x) = q(x)(x2 − α2) + r(x).
Now substitute x = α.]

(b) For any two elements β = a+ bα and β′ = a′ + b′α in F[α], show that

β = β′ ⇐⇒ a = a′ and b = b′.

Thus we obtain a bijection F[α]↔ F2 defined by a+ bα↔ (a, b). [Hint: If b = b′ then
we are done. Otherwise, show that α = (a− a′)/(b′− b) ∈ F, which is a contradiction.]

(c) Multiplying an element a + bα ∈ F[α] by its “conjugate” gives (a + bα)(a − bα) =
a2 − b2α2 ∈ F. Use this to show that

a+ bα = 0 ⇐⇒ a2 − b2α2 = 0.

(d) Prove that F[α] is actually a field. [Hint: “Rationalize the denominator”.]

(a): Consider any element β ∈ F[α]. By definition we can write β = f(α) for some polynomial
f(x) ∈ F[x] with coefficients in F. Since α2 ∈ F, the polynomial x2 − α2 (of degree 2) is in
F[x]. Hence by the division algorithm in F[x] there exist (unique) q(x), r(x) ∈ F[x] satisfying{

f(x) = q(x)(x2 − α2) + r(x),
r(x) = 0 or deg(r) < 2.

7For the purpose of this problem, I guess we will say that 0 6∈ N.
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Since r(x) = 0 or deg(r) < 2 we can write r(x) = a+ bx for some a, b ∈ F, possibly both zero.
Finally, substituting x = α gives

β = f(α)

= q(α)(α2 − α2) + r(α)

= q(α) · 0 + r(α)

= r(α)

= a+ bα.

(b): Consider any two elements β = a+ bα and β′ = a′+ b′β in F[α], and suppose that β = β′,
so that a − a′ = α(b′ − b). If b = b′ then we are done because a − a′ = α · 0 = 0 implies
a = a′. Otherwise we must have b 6= b′. But this implies that α = (a− a′)/(b′ − b) ∈ F, which
contradicts our assumption that α 6∈ F.

(c): Given β = a+bα, we define its conjugate β∗ := a−bα,8 and we note that ββ∗ = a2−b2α2.
Our goal is show that β = 0 if and only if ββ∗ = 0. Well, if β = 0 then certainly ββ∗ = 0. On
the other hand, suppose that ββ∗ = 0. Since F[α] is a subring of a field, it is a domain, hence
we must have β = 0 or β∗ = 0. But from part (b) we know that

β = 0 ⇐⇒ (a, b) = (0, 0) ⇐⇒ (a,−b) = (0, 0) ⇐⇒ β∗ = 0.

Hence we must have β = 0.

(d): Consider any β = a+ bα ∈ F[α]. If β 6= 0 then from part (c) we know that ββ∗ 6= 0 and
ββ∗ ∈ F. Hence we have

1

β
=

β∗
ββ∗

=

(
a

a2 − b2α2

)
+

(
−b

a2 − b2α2

)
α,

which is an element of F[α]. �

Remark: Thus we have shown that F[α] is a field, which implies that F[α] = F(α). Later
we will show that the same holds for any element α ∈ E ⊇ F that is algebraic over F, which
means that f(α) = 0 for some nonzero polynomial f(x) ∈ F[x]. The proof will depend on the
Euclidean algorithm in the ring F[x].

We say that α is transcendental over F if it is not algebraic. In this case I claim that F[α] 6=
F(α). Indeed, consider the ring homomorphism F[x]→ E defined by f(x) 7→ f(α). Note that
α is transcendental over F precisely when the kernel is trivial:

kerϕ = {f(x) ∈ F[x] : f(α) = 0} = {0}.
If α is transcendental over F then the First Isomorphism Theorem for Rings shows that F[α]
is isomorphic to the ring of polynomials:

F[x] ∼=
F[x]

{0}
=

F[x]

kerϕ
∼= imϕ = F[α].

This isomorphism just sends x 7→ α. In other words, a number that is transcendental over F
is basically the same thing as a “variable”. Finally, since F[x] is not a field,9 neither is F[α].

8Note that this definition relies on the uniqueness of a, b ∈ F in the expression β = a+ bα.
9For example, the variable x ∈ F[x] has no multiplicative inverse.


