1. The Field of Fractions of a Domain. Let $(R,+, \cdot, 0,1)$ be an integral domain (i.e., a commutative ring in which $a b=0$ implies $a=0$ or $b=0$) and consider the set of "fractions":

$$
\operatorname{Frac}(R)=\left\{\frac{a}{b}: a, b \in R, b \neq 0\right\}
$$

At first we will think of the fraction a / b as a formal symbol.
(a) Check that the following is an equivalence relation on the set of fractions:

$$
\frac{a}{b} \sim \frac{c}{d} \quad \Longleftrightarrow \quad a d=b c
$$

(b) We define "addition" and "multiplication" of fractions as follows:

$$
\frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}:=\frac{a c}{b d} .
$$

Check that these operations are well-defined with respect to the equivalence \sim. That is, for all $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in R$ with $b, d, b^{\prime}, d^{\prime} \neq 0$, show that

$$
\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} \text { and } \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}} \Longrightarrow \frac{a}{b}+\frac{c}{d} \sim \frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}} \text { and } \frac{a}{b} \cdot \frac{c}{d} \sim \frac{a^{\prime}}{b^{\prime}} \cdot \frac{c^{\prime}}{d^{\prime}} .
$$

(c) One can check that the set of equivalence classes $\operatorname{Frac}(R) / \sim$ from part (b) is a field ${ }^{\top}$ We usually denote this field by $\operatorname{Frac}(R)$, omitting mention of the equivalence relation. Show that the function $\varphi: R \rightarrow \operatorname{Frac}(R)$ defined by $\varphi(a):=a / 1$ is an injective ring homomorphism. Thus we can think of R as a subring of $\operatorname{Frac}(R)$.

Remark: Assuming that we already have a definition of the integers \mathbb{Z}, we use this construction to define the rational numbers $\mathbb{Q}:=\operatorname{Frac}(\mathbb{Z})$. In this course we will not discuss the construction of the real numbers \mathbb{R} from \mathbb{Q}. However, we will discuss the construction of the complex numbers \mathbb{C} from \mathbb{R}. See Problem 4 below.
(a): Reflexive. For any $a, b \in R$ with $b \neq 0$ we have $a b=b a$ and hence $a / b \sim a / b$. Symmetric. Consider any $a, b, c, d \in R$ with $b, d \neq 0$ and suppose that $a / b \sim c / d$, so that $a d=b c$. Then we also have $c b=a d$, and hence $c / d \sim a / b$. Transitive. Consider any $a, b, c, d, e, f \in R$ with $b, d, f \neq 0$, such that $a / b \sim c / d$ and $c / d \sim e / f$, which means that $a d=b c$ and $c f=d e$. Our goal is to show that $a f=b e$, and hence $a / b \sim e / f$. To see this, first note that

$$
\begin{aligned}
d a f & =a d f & & \\
& =b c f & & \text { because } a d=b c \\
& =b d e & & \text { because } c f=d e \\
& =d b e . & &
\end{aligned}
$$

Then since R is a domain and $d \neq 0$ we have $a f=b e \bigsqcup^{2}$

[^0](b): Let $a / b \sim a^{\prime} / b^{\prime}$ and $c / d \sim c^{\prime} / d^{\prime}$, so that $a b^{\prime}=a^{\prime} b$ and $c d^{\prime}=c^{\prime} d$. Then we have
\[

$$
\begin{aligned}
(a c)\left(b^{\prime} d^{\prime}\right) & =\left(a b^{\prime}\right)\left(c d^{\prime}\right) \\
& =\left(a^{\prime} b\right)\left(c^{\prime} d\right) \\
& =\left(a^{\prime} c^{\prime}\right)(b d),
\end{aligned}
$$
\]

so that $(a / b)(c / d) \sim\left(a^{\prime} / b^{\prime}\right)\left(c^{\prime} / d^{\prime}\right)$, and

$$
\begin{aligned}
(a d+b d)\left(b^{\prime} d^{\prime}\right) & =(a d)\left(b^{\prime} d^{\prime}\right)+(b d)\left(b^{\prime} d^{\prime}\right) \\
& =\left(a b^{\prime}\right)\left(d d^{\prime}\right)+\left(c d^{\prime}\right)\left(b b^{\prime}\right) \\
& =\left(a^{\prime} b\right)\left(d d^{\prime}\right)+\left(c^{\prime} d\right)\left(b b^{\prime}\right) \\
& =\left(a^{\prime} d^{\prime}\right)(b d)+\left(b^{\prime} c^{\prime}\right)(b d) \\
& =\left(a^{\prime} d^{\prime}+b^{\prime} c^{\prime}\right)(b d),
\end{aligned}
$$

so that $(a / b+c / d) \sim\left(a^{\prime} / b^{\prime}+c^{\prime} / d^{\prime}\right)$.
(c): Consider the function $\varphi: R \rightarrow \operatorname{Frac}(R)$ defined by $\varphi(a):=a / 1$. This is an injective function since $a / 1 \sim b / 1$ implies $a 1=b 1$ and hence $a=b$. And it is a ring homomorphism since $\varphi(1)=1 / 1$ is the unit element of $\operatorname{Frac}(R)$ and since for all $a, b \in R$ we have

$$
\varphi(a)+\varphi(b)=a / 1+b / 1=(a 1+1 b) / 1=(a+b) / 1=\varphi(a+b)
$$

and

$$
\varphi(a) \varphi(b)=(a / 1)(b / 1)=(a b) /(1 \cdot 1)=(a b) / 1=\varphi(a b) .
$$

2. Adjoining an Element to a Field. Given a field extension $\mathbb{E} \supseteq \mathbb{F}$ and an element $\alpha \in \mathbb{E}$, one can check that the following evaluation function is a ring homomorphism 3^{3}

$$
\begin{aligned}
\varphi_{\alpha}: \mathbb{F}[x] & \rightarrow \mathbb{E} \\
f(x) & \mapsto f(\alpha) .
\end{aligned}
$$

(a) We denote the image of φ_{α} by $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}=\{f(\alpha): f(x) \in \mathbb{F}[x]\} \subseteq \mathbb{E}$. Prove that $\mathbb{F}[\alpha]$ is the smallest subring of \mathbb{E} that contains the set $\mathbb{F} \cup\{\alpha\}$. [Hint: Let R be the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Show that $\mathbb{F}[\alpha]=R$.]
(b) Prove that $\mathbb{F}[\alpha]$ is a domain. [Hint: Show that any subring of a field is a domain.]
(c) We denote the field of fractions of $\mathbb{F}[\alpha]$ by

$$
\mathbb{F}(\alpha):=\operatorname{Frac}(\mathbb{F}[\alpha])=\{f(\alpha) / g(\alpha): f(x), g(x) \in \mathbb{F}[x], g(\alpha) \neq 0\} \subseteq \mathbb{E} .
$$

Prove that $\mathbb{F}(\alpha)$ is the smallest subfield of \mathbb{E} that contains the set $\mathbb{F} \cup\{\alpha\}$. [Hint: Let \mathbb{K} be the smallest subfield of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Show that $\mathbb{F}(\alpha)=\mathbb{K}$.]

Warning: Using similar notation, we let $\mathbb{F}(x)$ denote the field of fractions of the ring of polynomials $\mathbb{F}[x]$, where x is an "indeterminate". This is the set of formal expressions $f(x) / g(x)$ with $f(x), g(x) \in \mathbb{F}[x]$ where $g(x)$ is not the zero polynomial. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ in a field extension, it is tempting to try to define an "evaluation homomorphism" $\mathbb{F}(x) \rightarrow \mathbb{E}$ by $f(x) / g(x) \mapsto f(\alpha) / g(\alpha)$. However, this function doesn't exist when α is a root of $g(x)$. "Rational functions" are more subtle than "polynomial functions" and require more sophisticated ideas, 4^{4} which we will not discuss in this class.

[^1](a): Let $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}=\{f(\alpha): f(x) \in \mathbb{F}[x]\}$, and let R be the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Note that $\mathbb{F}[\alpha]$ is itself a subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}{ }^{5}$. By minimality of R this implies that $R \subseteq \mathbb{F}[\alpha]$. On the other hand, consider any element $f(\alpha) \in \mathbb{F}[\alpha]$, which can be expressed as $f(\alpha)=a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}$ for some $n \in \mathbb{N}$ and $a_{0}, \ldots, a_{n} \in \mathbb{F}$. Since R contains $\mathbb{F} \cup\{\alpha\}$ we must have
$$
a_{0}, a_{1}, \ldots, a_{n}, \alpha \in R .
$$

But then since R is closed under ring operations we must also have $f(\alpha) \in R$. Hence $\mathbb{F}[\alpha] \subseteq R$.
(b): Let \mathbb{K} be any field and let $R \subseteq \mathbb{K}$ be any subring. For any $a, b \in R$ with $a \neq 0$ we also have $a \in \mathbb{K}$, which implies that $a^{-1} \in \mathbb{K}$. But then in \mathbb{K} we have

$$
\begin{aligned}
a b & =0 \\
a^{-1} a b & =a^{-1} 0 \\
b & =0,
\end{aligned}
$$

which must also hold in R.
(c): Consider the field of fractions ${ }^{6}$

$$
\mathbb{F}(\alpha):=\operatorname{Frac}(\mathbb{F}[\alpha])=\{f(\alpha) / g(\alpha): f(x), g(x) \in \mathbb{F}[x], g(\alpha) \neq 0\} \subseteq \mathbb{E} .
$$

and let \mathbb{K} be the smallest subfield of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Note that $\mathbb{F}(\alpha)$ is itself a subfield of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$, hence by minimality we have $\mathbb{K} \supseteq \mathbb{F}(\alpha)$. On the other hand, consider any element $f(\alpha) / g(\alpha) \in \mathbb{F}(\alpha)$, which can be expressed as

$$
\frac{f(\alpha)}{g(\alpha)}=\frac{a_{0}+a_{1} \alpha+\cdots+a_{m} \alpha^{m}}{b_{0}+b_{1} \alpha+\cdots+b_{n} \alpha^{n}}
$$

for some $a_{0}, \ldots, a_{m}, b_{0}, \ldots, b_{n} \in \mathbb{F}$. Since \mathbb{K} contains $\mathbb{F} \cup\{\alpha\}$ we must have

$$
a_{0}, a_{1}, \ldots, a_{m}, b_{0}, b_{1}, \ldots, b_{n}, \alpha \in \mathbb{K} .
$$

Since \mathbb{K} is closed under field operations, this implies that $f(\alpha) / g(\alpha) \in \mathbb{F}(\alpha)$. Hence $\mathbb{F}(\alpha) \subseteq \mathbb{K}$.
3. Square Roots are Irrational. Let $D \in \mathbb{N}$ be a positive integer and let $\sqrt{D} \in \mathbb{R}$ be one of its two square roots. In this problem you will show that

$$
\sqrt{D} \notin \mathbb{Z} \quad \Longrightarrow \quad \sqrt{D} \notin \mathbb{Q}
$$

(a) Consider the set $S=\{n \in \mathbb{N}: n \sqrt{D} \in \mathbb{Z}\} \subseteq \mathbb{N}$. Show that

$$
S=\emptyset \quad \Longleftrightarrow \quad \sqrt{D} \notin \mathbb{Q} .
$$

(b) Assuming that $\sqrt{D} \notin \mathbb{Z}$, use the well-ordering principle to prove that there exists an integer $a \in \mathbb{Z}$ such that $a<\sqrt{D}<a+1$.
(c) Continuing from part (b), suppose also that $\sqrt{D} \in \mathbb{Q}$. By part (a) and well-ordering, this means that the set S has a least element, say $m \in S$. Now use part (b) to get a contradiction. [Hint: Consider the number $m(\sqrt{D}-a)$.]

[^2](a): Suppose that $\sqrt{D} \in \mathbb{Q}$, so that $\sqrt{D}=a / b$ for some $a, b \in \mathbb{Z}$ with $b \neq 0$. Since $a / b=$ $(-a) /(-b)$, we may assume that $b>0$, and hence $b \in \mathbb{N}]^{7}$ But then since $b \sqrt{D}=a \in \mathbb{Z}$ we have $b \in S$, so that $S \neq \emptyset$. On the other hand, suppose that $S \neq \emptyset$, and choose some $b \in S$. By assumption this means that $b \sqrt{D}=a$ for some $a \in \mathbb{Z}$. But then $\sqrt{D}=a / b \in \mathbb{Q}$.
(b): Suppose that $\sqrt{D} \notin \mathbb{Z}$, and let $a \in \mathbb{Z}$ be the greatest integer satisfying $a<\sqrt{D}$ (which exists by the well-ordering principle). Since $a+1$ is greater than a we know that $a+1 \nless \sqrt{D}$, i.e., that $a+1 \geq \sqrt{D}$. And since $\sqrt{D} \notin \mathbb{Z}$ we know that $a+1 \neq \sqrt{D}$, hence $a+1>\sqrt{D}$.
(c): Suppose that $\sqrt{D} \notin \mathbb{Z}$ and let $a \in \mathbb{Z}$ satisfy $a<\sqrt{D}<a+1$. In order to prove that $\sqrt{D} \notin \mathbb{Q}$, let us assume for contradiction that $\sqrt{D} \in \mathbb{Q}$. By part (a) this means that $S \neq \emptyset$, so by well-ordering there exists a least element $m \in S$. By definition of S we have $m \sqrt{D} \in \mathbb{Z}$, and hence $m(\sqrt{D}-a)=m \sqrt{D}-m a \in \mathbb{Z}$. On the other hand, we have
\[

$$
\begin{array}{ccccc}
a & < & \sqrt{D} & < & a+1 \\
0 & < & \sqrt{D}-a & < & 1 \\
0 & < & m(\sqrt{D}-a) & < & m
\end{array}
$$
\]

Finally, since $m \sqrt{D} \in \mathbb{Z}$ we have $m(\sqrt{D}-a) \sqrt{D}=m D-a m \sqrt{D} \in \mathbb{Z}$, and we see that $m(\sqrt{D}-a)$ is an element of S that is less than m. Contradiction.

Remark: This proof requires a minimum of technology, but it not very pretty. Later we will see a better proof using the theory of unique prime factorization.
4. Quadratic Field Extensions. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and an element $\alpha \in \mathbb{E}$ satisfying $\alpha \notin \mathbb{F}$ and $\alpha^{2} \in \mathbb{F}$. As in Problem 2 , consider the ring $\mathbb{F}[\alpha]=\{f(\alpha): f(x) \in \mathbb{F}[x]\}$, which is the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. We can write this explicitly as

$$
\mathbb{F}[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}: a_{0}, \ldots, a_{n} \in \mathbb{F}, n \in \mathbb{N}\right\} \subseteq \mathbb{E}
$$

(a) Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed as $\beta=a+b \alpha$ for some $a, b \in \mathbb{F}$. [Hint: By assumption we have $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Since $\alpha^{2} \in \mathbb{F}$, there exist $q(x), r(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(r) \leq 1$ such that $f(x)=q(x)\left(x^{2}-\alpha^{2}\right)+r(x)$. Now substitute $x=\alpha$.]
(b) For any two elements $\beta=a+b \alpha$ and $\beta^{\prime}=a^{\prime}+b^{\prime} \alpha$ in $\mathbb{F}[\alpha]$, show that

$$
\beta=\beta^{\prime} \quad \Longleftrightarrow \quad a=a^{\prime} \text { and } b=b^{\prime}
$$

Thus we obtain a bijection $\mathbb{F}[\alpha] \leftrightarrow \mathbb{F}^{2}$ defined by $a+b \alpha \leftrightarrow(a, b)$. [Hint: If $b=b^{\prime}$ then we are done. Otherwise, show that $\alpha=\left(a-a^{\prime}\right) /\left(b^{\prime}-b\right) \in \mathbb{F}$, which is a contradiction.]
(c) Multiplying an element $a+b \alpha \in \mathbb{F}[\alpha]$ by its "conjugate" gives $(a+b \alpha)(a-b \alpha)=$ $a^{2}-b^{2} \alpha^{2} \in \mathbb{F}$. Use this to show that

$$
a+b \alpha=0 \quad \Longleftrightarrow \quad a^{2}-b^{2} \alpha^{2}=0
$$

(d) Prove that $\mathbb{F}[\alpha]$ is actually a field. [Hint: "Rationalize the denominator".]
(a): Consider any element $\beta \in \mathbb{F}[\alpha]$. By definition we can write $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$ with coefficients in \mathbb{F}. Since $\alpha^{2} \in \mathbb{F}$, the polynomial $x^{2}-\alpha^{2}$ (of degree 2) is in $\mathbb{F}[x]$. Hence by the division algorithm in $\mathbb{F}[x]$ there exist (unique) $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=q(x)\left(x^{2}-\alpha^{2}\right)+r(x) \\
r(x)=0 \text { or } \operatorname{deg}(r)<2
\end{array}\right.
$$

[^3]Since $r(x)=0$ or $\operatorname{deg}(r)<2$ we can write $r(x)=a+b x$ for some $a, b \in \mathbb{F}$, possibly both zero. Finally, substituting $x=\alpha$ gives

$$
\begin{aligned}
\beta & =f(\alpha) \\
& =q(\alpha)\left(\alpha^{2}-\alpha^{2}\right)+r(\alpha) \\
& =q(\alpha) \cdot 0+r(\alpha) \\
& =r(\alpha) \\
& =a+b \alpha .
\end{aligned}
$$

(b): Consider any two elements $\beta=a+b \alpha$ and $\beta^{\prime}=a^{\prime}+b^{\prime} \beta$ in $\mathbb{F}[\alpha]$, and suppose that $\beta=\beta^{\prime}$, so that $a-a^{\prime}=\alpha\left(b^{\prime}-b\right)$. If $b=b^{\prime}$ then we are done because $a-a^{\prime}=\alpha \cdot 0=0$ implies $a=a^{\prime}$. Otherwise we must have $b \neq b^{\prime}$. But this implies that $\alpha=\left(a-a^{\prime}\right) /\left(b^{\prime}-b\right) \in \mathbb{F}$, which contradicts our assumption that $\alpha \notin \mathbb{F}$.
(c): Given $\beta=a+b \alpha$, we define its conjugate $\beta^{*}:=a-b \alpha,{ }^{8}$ and we note that $\beta \beta^{*}=a^{2}-b^{2} \alpha^{2}$. Our goal is show that $\beta=0$ if and only if $\beta \beta^{*}=0$. Well, if $\beta=0$ then certainly $\beta \beta^{*}=0$. On the other hand, suppose that $\beta \beta^{*}=0$. Since $\mathbb{F}[\alpha]$ is a subring of a field, it is a domain, hence we must have $\beta=0$ or $\beta^{*}=0$. But from part (b) we know that

$$
\beta=0 \quad \Longleftrightarrow \quad(a, b)=(0,0) \quad \Longleftrightarrow \quad(a,-b)=(0,0) \quad \Longleftrightarrow \quad \beta^{*}=0
$$

Hence we must have $\beta=0$.
(d): Consider any $\beta=a+b \alpha \in \mathbb{F}[\alpha]$. If $\beta \neq 0$ then from part (c) we know that $\beta \beta^{*} \neq 0$ and $\beta \beta^{*} \in \mathbb{F}$. Hence we have

$$
\frac{1}{\beta}=\frac{\beta *}{\beta \beta^{*}}=\left(\frac{a}{a^{2}-b^{2} \alpha^{2}}\right)+\left(\frac{-b}{a^{2}-b^{2} \alpha^{2}}\right) \alpha,
$$

which is an element of $\mathbb{F}[\alpha]$.
Remark: Thus we have shown that $\mathbb{F}[\alpha]$ is a field, which implies that $\mathbb{F}[\alpha]=\mathbb{F}(\alpha)$. Later we will show that the same holds for any element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ that is algebraic over \mathbb{F}, which means that $f(\alpha)=0$ for some nonzero polynomial $f(x) \in \mathbb{F}[x]$. The proof will depend on the Euclidean algorithm in the ring $\mathbb{F}[x]$.

We say that α is transcendental over \mathbb{F} if it is not algebraic. In this case I claim that $\mathbb{F}[\alpha] \neq$ $\mathbb{F}(\alpha)$. Indeed, consider the ring homomorphism $\mathbb{F}[x] \rightarrow \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$. Note that α is transcendental over \mathbb{F} precisely when the kernel is trivial:

$$
\operatorname{ker} \varphi=\{f(x) \in \mathbb{F}[x]: f(\alpha)=0\}=\{0\} .
$$

If α is transcendental over \mathbb{F} then the First Isomorphism Theorem for Rings shows that $\mathbb{F}[\alpha]$ is isomorphic to the ring of polynomials:

$$
\mathbb{F}[x] \cong \frac{\mathbb{F}[x]}{\{0\}}=\frac{\mathbb{F}[x]}{\operatorname{ker} \varphi} \cong \operatorname{im} \varphi=\mathbb{F}[\alpha] .
$$

This isomorphism just sends $x \mapsto \alpha$. In other words, a number that is transcendental over \mathbb{F} is basically the same thing as a "variable". Finally, since $\mathbb{F}[x]$ is not a field ${ }^{9}$ neither is $\mathbb{F}[\alpha]$.

[^4]
[^0]: ${ }^{1}$ This is easy but tedious. You don't need to do it.
 ${ }^{2}$ Recall that multiplicative cancellation holds in a domain. Proof. If $a c=b c$ and $c \neq 0$ then since $(a-b) c=0$ and $c \neq 0$ we must have $a-b=0$ and hence $a=b$.

[^1]: ${ }^{3}$ This is easy and tedious. However, it does depend in a subtle way on the fact that multiplication in \mathbb{E} is commutative. The idea of "evaluation" doesn't work over noncommutative rings.
 ${ }^{4}$ This the concept of "meromorphic functions" from complex analysis.

[^2]: ${ }^{5}$ The image of a ring homomorphism is always a subring.
 ${ }^{6}$ There is a small subtlety here. At first the field of fractions is just an abstractly constructed field. However, if R is a subring of a field \mathbb{E} then there is an obvious way to view $\operatorname{Frac}(R)$ as a subfield of \mathbb{E} by sending the abstract fraction a / b to the element $a b^{-1} \in \mathbb{E}$. I didn't bother to turn this into an exercise.

[^3]: ${ }^{7}$ For the purpose of this problem, I guess we will say that $0 \notin \mathbb{N}$.

[^4]: ${ }^{8}$ Note that this definition relies on the uniqueness of $a, b \in \mathbb{F}$ in the expression $\beta=a+b \alpha$.
 ${ }^{9}$ For example, the variable $x \in \mathbb{F}[x]$ has no multiplicative inverse.

