
Math 562/662 Spring 2024
Homework 1 Drew Armstrong

1. The Field of Fractions of a Domain. Let (R,+, ·, 0, 1) be an integral domain (i.e., a
commutative ring in which ab = 0 implies a = 0 or b = 0) and consider the set of “fractions”:

Frac(R) =
{a
b

: a, b ∈ R, b 6= 0
}
,

At first we will think of the fraction a/b as a formal symbol.

(a) Check that the following is an equivalence relation on the set of fractions:

a

b
∼ c

d
⇐⇒ ad = bc.

(b) We define “addition” and “multiplication” of fractions as follows:

a

b
+
c

d
:=

ad+ bc

bd
and

a

b
· c
d

:=
ac

bd
.

Check that these operations are well-defined with respect to the equivalence ∼. That
is, for all a, b, c, d, a′, b′, c′, d′ ∈ R with b, d, b′, d′ 6= 0, show that

a

b
∼ a′

b′
and

c

d
∼ c′

d′
=⇒ a

b
+
c

d
∼ a′

b′
+
c′

d′
and

a

b
· c
d
∼ a′

b′
· c

′

d′
.

(c) One can check that the set of equivalence classes Frac(R)/∼ from part (b) is a field.1

We usually denote this field by Frac(R), omitting mention of the equivalence relation.
Show that the function ϕ : R → Frac(R) defined by ϕ(a) := a/1 is an injective ring
homomorphism. Thus we can think of R as a subring of Frac(R).

Remark: Assuming that we already have a definition of the integers Z, we use this construction
to define the rational numbers Q := Frac(Z). In this course we will not discuss the construction
of the real numbers R from Q. However, we will discuss the construction of the complex
numbers C from R. See Problem 4 below.

2. Adjoining an Element to a Field. Given a field extension E ⊇ F and an element α ∈ E,
one can check that the following evaluation function is a ring homomorphism:2

ϕα : F[x] → E
f(x) 7→ f(α).

(a) We denote the image of ϕα by F[α] := imϕα = {f(α) : f(x) ∈ F[x]} ⊆ E. Prove that
F[α] is the smallest subring of E that contains the set F ∪ {α}. [Hint: Let R be
the smallest subring of E that contains F ∪ {α}. Show that F[α] = R.]

(b) Prove that F[α] is a domain. [Hint: Show that any subring of a field is a domain.]
(c) We denote the field of fractions of F[α] by

F(α) := Frac(F[α]) = {f(α)/g(α) : f(x), g(x) ∈ F[x], g(α) 6= 0} ⊆ E.

Prove that F(α) is the smallest subfield of E that contains the set F∪{α}. [Hint:
Let K be the smallest subfield of E that contains F ∪ {α}. Show that F(α) = K.]

1This is easy but tedious. You don’t need to do it.
2This is easy and tedious. However, it does depend in a subtle way on the fact that multiplication in E is

commutative. The idea of “evaluation” doesn’t work over noncommutative rings.



Warning: Using similar notation, we let F(x) denote the field of fractions of the ring of poly-
nomials F[x], where x is an “indeterminate”. This is the set of formal expressions f(x)/g(x)
with f(x), g(x) ∈ F[x] where g(x) is not the zero polynomial. Given an element α ∈ E ⊇ F in
a field extension, it is tempting to try to define an “evaluation homomorphism” F(x)→ E by
f(x)/g(x) 7→ f(α)/g(α). However, this function doesn’t exist when α is a root of g(x). “Ra-
tional functions” are more subtle than “polynomial functions” and require more sophisticated
ideas,3 which we will not discuss in this class.

3. Square Roots are Irrational. Let D ∈ N be a positive integer and let
√
D ∈ R be one

of its two square roots. In this problem you will show that
√
D 6∈ Z =⇒

√
D 6∈ Q.

(a) Consider the set S = {n ∈ N : n
√
D ∈ Z} ⊆ N. Show that

S = ∅ ⇐⇒
√
D 6∈ Q.

(b) Assuming that
√
D 6∈ Z, use the well-ordering principle to prove that there exists an

integer a ∈ Z such that a <
√
D < a+ 1.

(c) Continuing from part (b), suppose also that
√
D ∈ Q. By part (a) and well-ordering,

this means that the set S has a least element, say m ∈ S. Now use part (b) to get a

contradiction. [Hint: Consider the number m(
√
D − a).]

4. Quadratic Field Extensions. Consider a field extension E ⊇ F and an element α ∈ E
satisfying α 6∈ F and α2 ∈ F. As in Problem 2, consider the ring F[α] = {f(α) : f(x) ∈ F[x]},
which is the smallest subring of E that contains F ∪ {α}. We can write this explicitly as

F[α] = {a0 + a1α+ · · ·+ anα
n : a0, . . . , an ∈ F, n ∈ N} ⊆ E.

(a) Prove that every element β ∈ F[α] can be expressed as β = a + bα for some a, b ∈ F.
[Hint: By assumption we have β = f(α) for some polynomial f(x) ∈ F[x]. Since α2 ∈ F,
there exist q(x), r(x) ∈ F[x] with deg(r) ≤ 1 such that f(x) = q(x)(x2 − α2) + r(x).
Now substitute x = α.]

(b) For any two elements β = a+ bα and β′ = a′ + b′α in F[α], show that

β = β′ ⇐⇒ a = a′ and b = b′.

Thus we obtain a bijection F[α]↔ F2 defined by a+ bα↔ (a, b). [Hint: If b = b′ then
we are done. Otherwise, show that α = (a− a′)/(b′− b) ∈ F, which is a contradiction.]

(c) Multiplying an element a + bα ∈ F[α] by its “conjugate” gives (a + bα)(a − bα) =
a2 − b2α2 ∈ F. Use this to show that

a+ bα = 0 ⇐⇒ a2 − b2α2 = 0.

(d) Prove that F[α] is actually a field. [Hint: “Rationalize the denominator”.]

3This the concept of “meromorphic functions” from complex analysis.


