1. The Field of Fractions of a Domain. Let $(R,+, \cdot, 0,1)$ be an integral domain (i.e., a commutative ring in which $a b=0$ implies $a=0$ or $b=0$) and consider the set of "fractions":

$$
\operatorname{Frac}(R)=\left\{\frac{a}{b}: a, b \in R, b \neq 0\right\},
$$

At first we will think of the fraction a / b as a formal symbol.
(a) Check that the following is an equivalence relation on the set of fractions:

$$
\frac{a}{b} \sim \frac{c}{d} \quad \Longleftrightarrow \quad a d=b c
$$

(b) We define "addition" and "multiplication" of fractions as follows:

$$
\frac{a}{b}+\frac{c}{d}:=\frac{a d+b c}{b d} \quad \text { and } \quad \frac{a}{b} \cdot \frac{c}{d}:=\frac{a c}{b d} .
$$

Check that these operations are well-defined with respect to the equivalence \sim. That is, for all $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime} \in R$ with $b, d, b^{\prime}, d^{\prime} \neq 0$, show that

$$
\frac{a}{b} \sim \frac{a^{\prime}}{b^{\prime}} \text { and } \frac{c}{d} \sim \frac{c^{\prime}}{d^{\prime}} \quad \Longrightarrow \quad \frac{a}{b}+\frac{c}{d} \sim \frac{a^{\prime}}{b^{\prime}}+\frac{c^{\prime}}{d^{\prime}} \text { and } \frac{a}{b} \cdot \frac{c}{d} \sim \frac{a^{\prime}}{b^{\prime}} \cdot \frac{c^{\prime}}{d^{\prime}} .
$$

(c) One can check that the set of equivalence classes $\operatorname{Frac}(R) / \sim$ from part (b) is a field $\|^{1}$ We usually denote this field by $\operatorname{Frac}(R)$, omitting mention of the equivalence relation. Show that the function $\varphi: R \rightarrow \operatorname{Frac}(R)$ defined by $\varphi(a):=a / 1$ is an injective ring homomorphism. Thus we can think of R as a subring of $\operatorname{Frac}(R)$.

Remark: Assuming that we already have a definition of the integers \mathbb{Z}, we use this construction to define the rational numbers $\mathbb{Q}:=\operatorname{Frac}(\mathbb{Z})$. In this course we will not discuss the construction of the real numbers \mathbb{R} from \mathbb{Q}. However, we will discuss the construction of the complex numbers \mathbb{C} from \mathbb{R}. See Problem 4 below.
2. Adjoining an Element to a Field. Given a field extension $\mathbb{E} \supseteq \mathbb{F}$ and an element $\alpha \in \mathbb{E}$, one can check that the following evaluation function is a ring homomorphism ${ }^{2}$

$$
\begin{aligned}
\varphi_{\alpha}: \mathbb{F}[x] & \rightarrow \mathbb{E} \\
f(x) & \mapsto f(\alpha) .
\end{aligned}
$$

(a) We denote the image of φ_{α} by $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}=\{f(\alpha): f(x) \in \mathbb{F}[x]\} \subseteq \mathbb{E}$. Prove that $\mathbb{F}[\alpha]$ is the smallest subring of \mathbb{E} that contains the set $\mathbb{F} \cup\{\alpha\}$. [Hint: Let R be the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Show that $\mathbb{F}[\alpha]=R$.]
(b) Prove that $\mathbb{F}[\alpha]$ is a domain. [Hint: Show that any subring of a field is a domain.]
(c) We denote the field of fractions of $\mathbb{F}[\alpha]$ by

$$
\mathbb{F}(\alpha):=\operatorname{Frac}(\mathbb{F}[\alpha])=\{f(\alpha) / g(\alpha): f(x), g(x) \in \mathbb{F}[x], g(\alpha) \neq 0\} \subseteq \mathbb{E} .
$$

Prove that $\mathbb{F}(\alpha)$ is the smallest subfield of \mathbb{E} that contains the set $\mathbb{F} \cup\{\alpha\}$. [Hint: Let \mathbb{K} be the smallest subfield of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. Show that $\mathbb{F}(\alpha)=\mathbb{K}$.]

[^0]Warning: Using similar notation, we let $\mathbb{F}(x)$ denote the field of fractions of the ring of polynomials $\mathbb{F}[x]$, where x is an "indeterminate". This is the set of formal expressions $f(x) / g(x)$ with $f(x), g(x) \in \mathbb{F}[x]$ where $g(x)$ is not the zero polynomial. Given an element $\alpha \in \mathbb{E} \supseteq \mathbb{F}$ in a field extension, it is tempting to try to define an "evaluation homomorphism" $\mathbb{F}(x) \rightarrow \mathbb{E}$ by $f(x) / g(x) \mapsto f(\alpha) / g(\alpha)$. However, this function doesn't exist when α is a root of $g(x)$. "Rational functions" are more subtle than "polynomial functions" and require more sophisticated ideas 3^{3} which we will not discuss in this class.
3. Square Roots are Irrational. Let $D \in \mathbb{N}$ be a positive integer and let $\sqrt{D} \in \mathbb{R}$ be one of its two square roots. In this problem you will show that

$$
\sqrt{D} \notin \mathbb{Z} \quad \Longrightarrow \quad \sqrt{D} \notin \mathbb{Q}
$$

(a) Consider the set $S=\{n \in \mathbb{N}: n \sqrt{D} \in \mathbb{Z}\} \subseteq \mathbb{N}$. Show that

$$
S=\emptyset \quad \Longleftrightarrow \quad \sqrt{D} \notin \mathbb{Q}
$$

(b) Assuming that $\sqrt{D} \notin \mathbb{Z}$, use the well-ordering principle to prove that there exists an integer $a \in \mathbb{Z}$ such that $a<\sqrt{D}<a+1$.
(c) Continuing from part (b), suppose also that $\sqrt{D} \in \mathbb{Q}$. By part (a) and well-ordering, this means that the set S has a least element, say $m \in S$. Now use part (b) to get a contradiction. [Hint: Consider the number $m(\sqrt{D}-a)$.]
4. Quadratic Field Extensions. Consider a field extension $\mathbb{E} \supseteq \mathbb{F}$ and an element $\alpha \in \mathbb{E}$ satisfying $\alpha \notin \mathbb{F}$ and $\alpha^{2} \in \mathbb{F}$. As in Problem 2, consider the ring $\mathbb{F}[\alpha]=\{f(\alpha): f(x) \in \mathbb{F}[x]\}$, which is the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$. We can write this explicitly as

$$
\mathbb{F}[\alpha]=\left\{a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n}: a_{0}, \ldots, a_{n} \in \mathbb{F}, n \in \mathbb{N}\right\} \subseteq \mathbb{E}
$$

(a) Prove that every element $\beta \in \mathbb{F}[\alpha]$ can be expressed as $\beta=a+b \alpha$ for some $a, b \in \mathbb{F}$. [Hint: By assumption we have $\beta=f(\alpha)$ for some polynomial $f(x) \in \mathbb{F}[x]$. Since $\alpha^{2} \in \mathbb{F}$, there exist $q(x), r(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(r) \leq 1$ such that $f(x)=q(x)\left(x^{2}-\alpha^{2}\right)+r(x)$. Now substitute $x=\alpha$.]
(b) For any two elements $\beta=a+b \alpha$ and $\beta^{\prime}=a^{\prime}+b^{\prime} \alpha$ in $\mathbb{F}[\alpha]$, show that

$$
\beta=\beta^{\prime} \quad \Longleftrightarrow \quad a=a^{\prime} \text { and } b=b^{\prime} .
$$

Thus we obtain a bijection $\mathbb{F}[\alpha] \leftrightarrow \mathbb{F}^{2}$ defined by $a+b \alpha \leftrightarrow(a, b)$. [Hint: If $b=b^{\prime}$ then we are done. Otherwise, show that $\alpha=\left(a-a^{\prime}\right) /\left(b^{\prime}-b\right) \in \mathbb{F}$, which is a contradiction.]
(c) Multiplying an element $a+b \alpha \in \mathbb{F}[\alpha]$ by its "conjugate" gives $(a+b \alpha)(a-b \alpha)=$ $a^{2}-b^{2} \alpha^{2} \in \mathbb{F}$. Use this to show that

$$
a+b \alpha=0 \quad \Longleftrightarrow \quad a^{2}-b^{2} \alpha^{2}=0
$$

(d) Prove that $\mathbb{F}[\alpha]$ is actually a field. [Hint: "Rationalize the denominator".]

[^1]
[^0]: ${ }^{1}$ This is easy but tedious. You don't need to do it.
 ${ }^{2}$ This is easy and tedious. However, it does depend in a subtle way on the fact that multiplication in \mathbb{E} is commutative. The idea of "evaluation" doesn't work over noncommutative rings.

[^1]: ${ }^{3}$ This the concept of "meromorphic functions" from complex analysis.

