Convention: All rings in this exam are commutative.

Problem 1. Ring Homomorphisms.

(a) Define ring homomorphism.

Let R and S be rings. A function $\varphi: R \rightarrow S$ is called a ring homomorphism when it satisfies the following three properties:

- $\varphi(a+b)=\varphi(a)+\varphi(b)$ for all $a, b \in R$,
- $\varphi(a b)=\varphi(a) \varphi(b)$ for all $a, b \in R$,
- $\varphi(1)=1$.
(b) Prove that kernel of a ring homomorphism is an ideal.

An ideal is an additive subgroup $I \subseteq(R,+, 0)$ satisfying the extra property that $a b \in I$ for all $a \in R$ and $b \in I$. Equivalently, an ideal is a subset $I \subseteq R$ satisfying $a+b c \in I$ for all $a, b \in I$ and $c \in R$. If $\varphi: R \rightarrow S$ is a ring homomorphism we define the kernel

$$
\operatorname{ker} \varphi:=\{a \in R: \varphi(a)=0\} .
$$

This is an ideal of R since for $a, b \in \operatorname{ker} \varphi$ and $c \in R$ we have

$$
\varphi(a+b c)=\varphi(a)+\varphi(b) \varphi(c)=0+0 c=0
$$

and hence $a+b c \in \operatorname{ker} \varphi$.
(c) Prove that image of a ring homomorphism is a subring.

A subring of S is a subset $T \subseteq S$ satisfying the following properties:

- $0 \in T$ and $1 \in T$,
- for all $a, b \in T$ we have $a+b \in T$ and $a b \in T$.

Given a ring homomorphism $\varphi: R \rightarrow S$ we define the image

$$
\operatorname{im} \varphi:=\{\varphi(a): a \in R\} .
$$

This is a subring of S since $0=\varphi(0) \in \operatorname{im} \varphi \square^{\top} 1=\varphi(1) \in \operatorname{im} \varphi$, and for any $\varphi(a), \varphi(b) \in$ $\operatorname{im} \varphi$ we have

$$
\varphi(a)+\varphi(b)=\varphi(a+b) \in \operatorname{im} \varphi \quad \text { and } \quad \varphi(a) \varphi(b)=\varphi(a b) \in \operatorname{im} \varphi .
$$

Problem 2. Fields.

(a) Let $I \subseteq R$ be an ideal of a ring. Prove that $I=R$ if and only if I contains a unit.

First suppose that $I=R$. Then I contains a unit because $1 \in I$. Conversely, suppose that I contains a unit $u \in R^{\times}$. Then for any $a \in R$ we have $a=\left(a u^{-1}\right) u \in I$ because $a u^{-1} \in R$ and $u \in I$. Hence $I=R$.

[^0](b) Let R be a ring. Prove that R is a field if and only if it has exactly two ideals.

Any ring R has the ideals $\{0\}$ and R. We will show that R is a field if and only if these are its only ideals. First suppose that R is a field and let $I \subseteq R$ be any ideal. If $I \neq\{0\}$ then there exists a nonzero element $a \in I$. But every nonzero element of a field is a unit, hence it follows from part (a) that $I=R$. Conversely, let R be a ring and suppose that $\{0\}$ and R are its only ideals. Let $a \in R$ be any nonzero element and consider the ideal $a R \subseteq R$. Since $a \in a R$ and $a \neq 0$ we have $a R \neq\{0\}$, and hence $a R=R$. Then since $1 \in a R$ it follows that $1=a b$ for some $b \in R$. Hence R is a field.

Problem 3. Minimal Polynomials. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension and let $\alpha \in \mathbb{E}$ be any element. Then we have a ring homomorphism $\varphi_{\alpha}: \mathbb{F}[x] \rightarrow \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$.
(a) Define $\mathbb{F}[\alpha]:=\operatorname{im} \varphi_{\alpha}$. Prove that $\mathbb{F}[\alpha]$ is the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup\{\alpha\}$.

From Problem 1(c) we know that $\mathbb{F}[\alpha]$ is a subring of \mathbb{E}. Now let $R \subseteq \mathbb{E}$ be any subring that contains the set $\mathbb{F} \cup\{\alpha\}$. We will show that R contains $\mathbb{F}[\alpha]$. Indeed, every element of $\mathbb{F}[\alpha]$ has the form $f(\alpha)$ for some polynomial $f(x)=a_{0}+\cdots+a_{n} x^{n}$ with $a_{0}, \ldots, a_{n} \in \mathbb{F}$. Since $\alpha, a_{0}, \ldots, a_{n} \in R$ and since R is closed under addition and multiplication, we have

$$
f(\alpha)=a_{0}+a_{1} \alpha+\cdots+a_{n} \alpha^{n} \in R .
$$

(b) You may assume that $\operatorname{ker} \varphi_{\alpha}=m_{\alpha}(x) \mathbb{F}[x]$ for some monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$. Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F}.

For any $f(x) \in \mathbb{F}[x]$ we have $f(\alpha)=0$ (i.e., $f(x) \in \operatorname{ker} \varphi_{\alpha}$) if and only $m_{\alpha}(x) \mid f(x)$ in the ring $\mathbb{F}[x]$. I claim that $m_{\alpha}(x)$ is irreducible over \mathbb{F}. To prove this, suppose for contradiction that we have $m_{\alpha}(x)=f(x) g(x)$ with $f(x), g(x) \in \mathbb{F}[x]$ and $\operatorname{deg}(f), \operatorname{deg}(g)<\operatorname{deg}\left(m_{\alpha}\right)$. Substituting $x=\alpha$ gives $0=m_{\alpha}(\alpha)=f(\alpha) g(\alpha)$, which implies that $f(\alpha)=0$ or $g(\alpha)=0$. Without loss, suppose that $f(\alpha)=0$, so that $m_{\alpha}(x)$ divides $f(x)$. But then we have $\operatorname{deg}\left(m_{\alpha}\right) \leq \operatorname{deg}(f)<\operatorname{deg}\left(m_{\alpha}\right)$.
(c) Suppose that $\operatorname{deg}\left(m_{\alpha}\right)=n$. In this case, prove that every element $\beta \in \mathbb{F}[\alpha]$ can be written in the form $\beta=a_{0}+a_{1} \alpha+a_{n-1} \alpha^{n-1}$ for some $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$.

Every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta=f(\alpha)$ for some $f(x) \in \mathbb{F}[x]$. Divide $f(x)$ by the nonzero polynomial $m_{\alpha}(x)$ to obtain $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$
\left\{\begin{array}{l}
f(x)=m_{\alpha}(x) q(x)+r(x), \\
r(x)=0 \text { or } \operatorname{deg}(r)<n
\end{array}\right.
$$

Since $r(x)=0$ or $\operatorname{deg}(r)<n$ we can write $r(x)=a_{0}+\cdots+a_{n-1} x^{n-1}$ for some $a_{0}, \ldots, a_{n-1} \in \mathbb{F}$. But then we have

$$
\begin{aligned}
\beta & =f(\alpha) \\
& =m_{\alpha}(\alpha) q(\alpha)+r(\alpha) \\
& =0 q(\alpha)+r(\alpha) \\
& =r(\alpha) \\
& =a_{0}+a_{1} \alpha+a_{n-1} \alpha^{n-1},
\end{aligned}
$$

as desired.
(d) Continuing from (c), consider any $f(x), g(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(f), \operatorname{deg}(g)<n$. In this case, prove that $f(\alpha)=g(\alpha)$ in \mathbb{E} if and only if $f(x)=g(x)$ in $\mathbb{F}[x]$.

Consider any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $\operatorname{deg}(f), \operatorname{deg}(g)<n$. If $f(x)=g(x)$ then clearly $f(\alpha)=g(\alpha)$. Conversely, suppose that $f(\alpha)=g(\alpha)$, and define the polynomial $h(x)=f(x)-g(x)$. Since $h(\alpha)=f(\alpha)-g(\alpha)=0$ we see that $m_{\alpha}(x) \mid h(x)$ in the ring $\mathbb{F}[x]$. If $h(x)$ is not the zero polynomial then we obtain the contradiction

$$
n=\operatorname{deg}\left(m_{\alpha}\right) \leq \operatorname{deg}(h)=\operatorname{deg}(f-g) \leq \max \{\operatorname{deg}(f), \operatorname{deg}(g)\}<n .
$$

It follows that $h(x)=0$, and hence $f(x)=g(x)$, in the ring $\mathbb{F}[x]$.

[^0]: ${ }^{1}$ The fact that $\varphi(0)=0$ follows from the property $\varphi(a+b)=\varphi(a)+\varphi(b)$ and the fact that φ is a homomorphism of additive groups.

