
MTH 562/662 Spring 2024
Exam 1 Fri Mar 8

Convention: All rings in this exam are commutative.

Problem 1. Ring Homomorphisms.

(a) Define ring homomorphism.

Let R and S be rings. A function ϕ : R → S is called a ring homomorphism when it
satisfies the following three properties:
• ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R,
• ϕ(ab) = ϕ(a)ϕ(b) for all a, b ∈ R,
• ϕ(1) = 1.

(b) Prove that kernel of a ring homomorphism is an ideal.

An ideal is an additive subgroup I ⊆ (R,+, 0) satisfying the extra property that ab ∈ I
for all a ∈ R and b ∈ I. Equivalently, an ideal is a subset I ⊆ R satisfying a + bc ∈ I
for all a, b ∈ I and c ∈ R. If ϕ : R→ S is a ring homomorphism we define the kernel

kerϕ := {a ∈ R : ϕ(a) = 0}.
This is an ideal of R since for a, b ∈ kerϕ and c ∈ R we have

ϕ(a+ bc) = ϕ(a) + ϕ(b)ϕ(c) = 0 + 0c = 0,

and hence a+ bc ∈ kerϕ.

(c) Prove that image of a ring homomorphism is a subring.

A subring of S is a subset T ⊆ S satisfying the following properties:
• 0 ∈ T and 1 ∈ T ,
• for all a, b ∈ T we have a+ b ∈ T and ab ∈ T .

Given a ring homomorphism ϕ : R→ S we define the image

imϕ := {ϕ(a) : a ∈ R}.
This is a subring of S since 0 = ϕ(0) ∈ imϕ,1 1 = ϕ(1) ∈ imϕ, and for any ϕ(a), ϕ(b) ∈
imϕ we have

ϕ(a) + ϕ(b) = ϕ(a+ b) ∈ imϕ and ϕ(a)ϕ(b) = ϕ(ab) ∈ imϕ.

Problem 2. Fields.

(a) Let I ⊆ R be an ideal of a ring. Prove that I = R if and only if I contains a unit.

First suppose that I = R. Then I contains a unit because 1 ∈ I. Conversely, suppose
that I contains a unit u ∈ R×. Then for any a ∈ R we have a = (au−1)u ∈ I because
au−1 ∈ R and u ∈ I. Hence I = R.

1The fact that ϕ(0) = 0 follows from the property ϕ(a + b) = ϕ(a) + ϕ(b) and the fact that ϕ is a
homomorphism of additive groups.



(b) Let R be a ring. Prove that R is a field if and only if it has exactly two ideals.

Any ring R has the ideals {0} and R. We will show that R is a field if and only if
these are its only ideals. First suppose that R is a field and let I ⊆ R be any ideal.
If I 6= {0} then there exists a nonzero element a ∈ I. But every nonzero element of a
field is a unit, hence it follows from part (a) that I = R. Conversely, let R be a ring
and suppose that {0} and R are its only ideals. Let a ∈ R be any nonzero element
and consider the ideal aR ⊆ R. Since a ∈ aR and a 6= 0 we have aR 6= {0}, and hence
aR = R. Then since 1 ∈ aR it follows that 1 = ab for some b ∈ R. Hence R is a field.

Problem 3. Minimal Polynomials. Let E ⊇ F be a field extension and let α ∈ E be any
element. Then we have a ring homomorphism ϕα : F[x]→ E defined by f(x) 7→ f(α).

(a) Define F[α] := imϕα. Prove that F[α] is the smallest subring of E that contains F∪{α}.

From Problem 1(c) we know that F[α] is a subring of E. Now let R ⊆ E be any
subring that contains the set F ∪ {α}. We will show that R contains F[α]. Indeed,
every element of F[α] has the form f(α) for some polynomial f(x) = a0 + · · · + anx

n

with a0, . . . , an ∈ F. Since α, a0, . . . , an ∈ R and since R is closed under addition and
multiplication, we have

f(α) = a0 + a1α+ · · ·+ anα
n ∈ R.

(b) You may assume that kerϕα = mα(x)F[x] for some monic polynomial mα(x) ∈ F[x].
Prove that mα(x) is irreducible over F.

For any f(x) ∈ F[x] we have f(α) = 0 (i.e., f(x) ∈ kerϕα) if and only mα(x)|f(x)
in the ring F[x]. I claim that mα(x) is irreducible over F. To prove this, sup-
pose for contradiction that we have mα(x) = f(x)g(x) with f(x), g(x) ∈ F[x] and
deg(f), deg(g) < deg(mα). Substituting x = α gives 0 = mα(α) = f(α)g(α), which
implies that f(α) = 0 or g(α) = 0. Without loss, suppose that f(α) = 0, so that mα(x)
divides f(x). But then we have deg(mα) ≤ deg(f) < deg(mα).

(c) Suppose that deg(mα) = n. In this case, prove that every element β ∈ F[α] can be
written in the form β = a0 + a1α+ an−1α

n−1 for some a0, . . . , an−1 ∈ F.

Every element β ∈ F[α] has the form β = f(α) for some f(x) ∈ F[x]. Divide f(x) by
the nonzero polynomial mα(x) to obtain q(x), r(x) ∈ F[x] satisfying{

f(x) = mα(x)q(x) + r(x),
r(x) = 0 or deg(r) < n.

Since r(x) = 0 or deg(r) < n we can write r(x) = a0 + · · · + an−1x
n−1 for some

a0, . . . , an−1 ∈ F. But then we have

β = f(α)

= mα(α)q(α) + r(α)

= 0q(α) + r(α)

= r(α)

= a0 + a1α+ an−1α
n−1,

as desired.



(d) Continuing from (c), consider any f(x), g(x) ∈ F[x] with deg(f), deg(g) < n. In this
case, prove that f(α) = g(α) in E if and only if f(x) = g(x) in F[x].

Consider any polynomials f(x), g(x) ∈ F[x] with deg(f),deg(g) < n. If f(x) = g(x)
then clearly f(α) = g(α). Conversely, suppose that f(α) = g(α), and define the
polynomial h(x) = f(x)− g(x). Since h(α) = f(α)− g(α) = 0 we see that mα(x)|h(x)
in the ring F[x]. If h(x) is not the zero polynomial then we obtain the contradiction

n = deg(mα) ≤ deg(h) = deg(f − g) ≤ max{deg(f), deg(g)} < n.

It follows that h(x) = 0, and hence f(x) = g(x), in the ring F[x].


