Convention: All rings in this exam are commutative.

Problem 1. Ring Homomorphisms.

(a) Define ring homomorphism.

Let R and S be rings. A function $\varphi : R \to S$ is called a *ring homomorphism* when it satisfies the following three properties:

- $\varphi(a+b) = \varphi(a) + \varphi(b)$ for all $a, b \in R$,
- $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in R$,
- $\varphi(1) = 1.$
- (b) Prove that kernel of a ring homomorphism is an ideal.

An *ideal* is an additive subgroup $I \subseteq (R, +, 0)$ satisfying the extra property that $ab \in I$ for all $a \in R$ and $b \in I$. Equivalently, an ideal is a subset $I \subseteq R$ satisfying $a + bc \in I$ for all $a, b \in I$ and $c \in R$. If $\varphi : R \to S$ is a ring homomorphism we define the kernel

$$\ker \varphi := \{ a \in R : \varphi(a) = 0 \}.$$

This is an ideal of R since for $a, b \in \ker \varphi$ and $c \in R$ we have

$$\varphi(a+bc)=\varphi(a)+\varphi(b)\varphi(c)=0+0c=0,$$

and hence $a + bc \in \ker \varphi$.

- (c) Prove that image of a ring homomorphism is a subring.
 - A subring of S is a subset $T \subseteq S$ satisfying the following properties:
 - $0 \in T$ and $1 \in T$,
 - for all $a, b \in T$ we have $a + b \in T$ and $ab \in T$.

Given a ring homomorphism $\varphi: R \to S$ we define the *image*

$$\operatorname{im} \varphi := \{\varphi(a) : a \in R\}$$

This is a subring of S since $0 = \varphi(0) \in \operatorname{im} \varphi$, $1 = \varphi(1) \in \operatorname{im} \varphi$, and for any $\varphi(a), \varphi(b) \in \operatorname{im} \varphi$ we have

$$\varphi(a) + \varphi(b) = \varphi(a+b) \in \operatorname{im} \varphi$$
 and $\varphi(a)\varphi(b) = \varphi(ab) \in \operatorname{im} \varphi$.

Problem 2. Fields.

(a) Let $I \subseteq R$ be an ideal of a ring. Prove that I = R if and only if I contains a unit.

First suppose that I = R. Then I contains a unit because $1 \in I$. Conversely, suppose that I contains a unit $u \in R^{\times}$. Then for any $a \in R$ we have $a = (au^{-1})u \in I$ because $au^{-1} \in R$ and $u \in I$. Hence I = R.

¹The fact that $\varphi(0) = 0$ follows from the property $\varphi(a + b) = \varphi(a) + \varphi(b)$ and the fact that φ is a homomorphism of additive groups.

(b) Let R be a ring. Prove that R is a field if and only if it has exactly two ideals.

Any ring R has the ideals $\{0\}$ and R. We will show that R is a field if and only if these are its only ideals. First suppose that R is a field and let $I \subseteq R$ be any ideal. If $I \neq \{0\}$ then there exists a nonzero element $a \in I$. But every nonzero element of a field is a unit, hence it follows from part (a) that I = R. Conversely, let R be a ring and suppose that $\{0\}$ and R are its only ideals. Let $a \in R$ be any nonzero element and consider the ideal $aR \subseteq R$. Since $a \in aR$ and $a \neq 0$ we have $aR \neq \{0\}$, and hence aR = R. Then since $1 \in aR$ it follows that 1 = ab for some $b \in R$. Hence R is a field.

Problem 3. Minimal Polynomials. Let $\mathbb{E} \supseteq \mathbb{F}$ be a field extension and let $\alpha \in \mathbb{E}$ be any element. Then we have a ring homomorphism $\varphi_{\alpha} : \mathbb{F}[x] \to \mathbb{E}$ defined by $f(x) \mapsto f(\alpha)$.

(a) Define $\mathbb{F}[\alpha] := \operatorname{im} \varphi_{\alpha}$. Prove that $\mathbb{F}[\alpha]$ is the smallest subring of \mathbb{E} that contains $\mathbb{F} \cup \{\alpha\}$.

From Problem 1(c) we know that $\mathbb{F}[\alpha]$ is a subring of \mathbb{E} . Now let $R \subseteq \mathbb{E}$ be any subring that contains the set $\mathbb{F} \cup \{\alpha\}$. We will show that R contains $\mathbb{F}[\alpha]$. Indeed, every element of $\mathbb{F}[\alpha]$ has the form $f(\alpha)$ for some polynomial $f(x) = a_0 + \cdots + a_n x^n$ with $a_0, \ldots, a_n \in \mathbb{F}$. Since $\alpha, a_0, \ldots, a_n \in R$ and since R is closed under addition and multiplication, we have

$$f(\alpha) = a_0 + a_1\alpha + \dots + a_n\alpha^n \in R.$$

(b) You may assume that ker $\varphi_{\alpha} = m_{\alpha}(x)\mathbb{F}[x]$ for some monic polynomial $m_{\alpha}(x) \in \mathbb{F}[x]$. Prove that $m_{\alpha}(x)$ is irreducible over \mathbb{F} .

For any $f(x) \in \mathbb{F}[x]$ we have $f(\alpha) = 0$ (i.e., $f(x) \in \ker \varphi_{\alpha}$) if and only $m_{\alpha}(x)|f(x)$ in the ring $\mathbb{F}[x]$. I claim that $m_{\alpha}(x)$ is irreducible over \mathbb{F} . To prove this, suppose for contradiction that we have $m_{\alpha}(x) = f(x)g(x)$ with $f(x), g(x) \in \mathbb{F}[x]$ and $\deg(f), \deg(g) < \deg(m_{\alpha})$. Substituting $x = \alpha$ gives $0 = m_{\alpha}(\alpha) = f(\alpha)g(\alpha)$, which implies that $f(\alpha) = 0$ or $g(\alpha) = 0$. Without loss, suppose that $f(\alpha) = 0$, so that $m_{\alpha}(x)$ divides f(x). But then we have $\deg(m_{\alpha}) \leq \deg(f) < \deg(m_{\alpha})$.

(c) Suppose that $\deg(m_{\alpha}) = n$. In this case, prove that every element $\beta \in \mathbb{F}[\alpha]$ can be written in the form $\beta = a_0 + a_1\alpha + a_{n-1}\alpha^{n-1}$ for some $a_0, \ldots, a_{n-1} \in \mathbb{F}$.

Every element $\beta \in \mathbb{F}[\alpha]$ has the form $\beta = f(\alpha)$ for some $f(x) \in \mathbb{F}[x]$. Divide f(x) by the nonzero polynomial $m_{\alpha}(x)$ to obtain $q(x), r(x) \in \mathbb{F}[x]$ satisfying

$$\begin{cases} f(x) = m_{\alpha}(x)q(x) + r(x), \\ r(x) = 0 \text{ or } \deg(r) < n. \end{cases}$$

Since r(x) = 0 or $\deg(r) < n$ we can write $r(x) = a_0 + \cdots + a_{n-1}x^{n-1}$ for some $a_0, \ldots, a_{n-1} \in \mathbb{F}$. But then we have

$$\beta = f(\alpha)$$

= $m_{\alpha}(\alpha)q(\alpha) + r(\alpha)$
= $0q(\alpha) + r(\alpha)$
= $r(\alpha)$
= $a_0 + a_1\alpha + a_{n-1}\alpha^{n-1}$,

as desired.

(d) Continuing from (c), consider any $f(x), g(x) \in \mathbb{F}[x]$ with $\deg(f), \deg(g) < n$. In this case, prove that $f(\alpha) = g(\alpha)$ in \mathbb{E} if and only if f(x) = g(x) in $\mathbb{F}[x]$.

Consider any polynomials $f(x), g(x) \in \mathbb{F}[x]$ with $\deg(f), \deg(g) < n$. If f(x) = g(x) then clearly $f(\alpha) = g(\alpha)$. Conversely, suppose that $f(\alpha) = g(\alpha)$, and define the polynomial h(x) = f(x) - g(x). Since $h(\alpha) = f(\alpha) - g(\alpha) = 0$ we see that $m_{\alpha}(x)|h(x)$ in the ring $\mathbb{F}[x]$. If h(x) is not the zero polynomial then we obtain the contradiction

$$n = \deg(m_{\alpha}) \le \deg(h) = \deg(f - g) \le \max\{\deg(f), \deg(g)\} < n.$$

It follows that h(x) = 0, and hence f(x) = g(x), in the ring $\mathbb{F}[x]$.