- 1. Two Small Issues. Let $\mathbb{E} \supseteq \mathbb{F}$ be any field extension.
 - (a) If $f(x) \in \mathbb{F}[x]$ splits in $\mathbb{E}[x]$ and g(x)|f(x) in $\mathbb{F}[x]$, prove that g(x) also splits in $\mathbb{E}[x]$.
 - (b) Let $p(x), q(x) \in \mathbb{F}[x]$ be irreducible polynomials that are not associate. Prove that p(x) and q(x) have no common root in \mathbb{E} . [Hint: Since p(x), q(x) are coprime in $\mathbb{F}[x]$ we have p(x)f(x) + q(x)g(x) = 1 for some $f(x), g(x) \in \mathbb{F}[x]$.]

2. The Galois Group of a Finite Field. Let \mathbb{E} be a field of size p^k and recall that the *Frobenius endomorphism* $\varphi : \mathbb{E} \to \mathbb{E}$ is defined by $\varphi(\alpha) = \alpha^p$.

- (a) Use the fact that \mathbb{E} is finite to prove that $\varphi \in \operatorname{Gal}(\mathbb{E}/\mathbb{F}_p)$.
- (b) Prove that φ has order k as an element of $\operatorname{Gal}(\mathbb{E}/\mathbb{F}_p)$.
- (c) Conclude that $\operatorname{Gal}(\mathbb{E}/\mathbb{F}_p) = \langle \varphi \rangle$ is cyclic of size k.

3. Repeated Roots, Part II We say that a polynomial $f(x) \in \mathbb{F}[x]$ is *inseparable* if it has a repeated root in some field extension. Otherwise we say that f(x) is *separable*. Prove that

f(x) is separable \iff gcd(f, Df) = 1.

4. Finite Fields are Separable. Let \mathbb{E} be finite field of characteristic p. For all polynomials $f(x) \in \mathbb{E}[x]$ we will show that

f(x) is irreducible \implies f(x) is separable.

- (a) Let $f(x) \in \mathbb{F}_p[x]$ be irreducible and assume for contradiction that f(x) is inseparable. Prove that the derivative $Df(x) \in \mathbb{F}_p[x]$ is the zero polynomial.
- (b) Use part (a) to show that $f(x) = g(x^p)$ for some polynomial $g(x) \in \mathbb{F}_p[x]$.
- (c) Finally, show that $g(x^p) = h(x)^p$ for some polynomial $h(x) \in \mathbb{F}_p[x]$. Contradiction. [Hint: You showed in a previous problem that the Frobenius map $\alpha \mapsto \alpha^p$ is surjective.]

5. Cyclotomic Extensions are Abelian. Let $\omega = e^{2\pi i/n} \in \mathbb{C}$.

- (a) For all $\sigma \in \text{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})$ prove that $\sigma(\omega) = \omega^{k_{\sigma}}$ for some $\text{gcd}(k_{\sigma}, n) = 1$.
- (b) Prove that the map $\sigma \mapsto k_{\sigma}$ defines an injective group homomorphism

$$\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q}) \hookrightarrow (\mathbb{Z}/n\mathbb{Z})^{\times},$$

hence $\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q})$ is abelian.

(c) Let $\Phi_n(x) \in \mathbb{Q}[x]$ be the cyclotomic polynomial. Prove that

$$\operatorname{Gal}(\mathbb{Q}(\omega)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^{\times} \iff \Phi_n(x) \text{ is irreducible.}$$

6. Radical Implies Solvable. Consider field extensions $\mathbb{E} \supseteq \mathbb{F}(\alpha) \supseteq \mathbb{F}$ where $\alpha^n \in \mathbb{F}$ for some $n \ge 2$ and suppose that \mathbb{F} contains a primitive *n*-th root of unity.

- (a) For any $\sigma \in \text{Gal}(\mathbb{E}/\mathbb{F})$ and $\beta \in \mathbb{F}(\alpha)$ prove that $\sigma(\beta) \in \mathbb{F}(\alpha)$.
- (b) Prove that $\operatorname{Gal}(\mathbb{E}/\mathbb{F}(\alpha)) \subseteq \operatorname{Gal}(\mathbb{E}/\mathbb{F})$ is a normal subgroup. [Hint: Use part (a) to define a group homomorphism $\operatorname{Gal}(\mathbb{E}/\mathbb{F}) \to \operatorname{Gal}(\mathbb{F}(\alpha)/\mathbb{F})$ with kernel $\operatorname{Gal}(\mathbb{E}/\mathbb{F}(\alpha))$.]
- (c) Prove that the quotient group is abelian.