
Math 562 Spring 2014
Homework 5 Drew Armstrong

1. (Finite Implies Algebraic) Consider a field extension L ⊇ K. Recall that we say α ∈ L
is algebraic over K if there exists nonzero f(x) ∈ K[x] such that f(α) = 0. We say that the
field extension K ⊆ L is algebraic if every element of L is algebraic over K. Prove that if
[L : K] <∞ (i.e. if L is finite dimensional as a vector space over K) then L ⊇ K is algebraic.
[Hint: Given any α ∈ L the set 1, α, α2, . . . is linearly dependent over K.]

2. (Algebraic Closure) Given a field extension L ⊇ K, define the set

K̄ := {α ∈ L : α is algebraic over K} ⊆ L,
called the algebraic closure of K in L. Prove that K̄ is a field. [Hint: Given α, β ∈ K̄ we want
to show that α− β, αβ−1 ∈ K̄. Since α− β, αβ−1 ∈ K(α, β) it suffices by Problem 1 to show
that K(α, β) ⊇ K is a finite dimensional extension. Use the Tower Law.]

3. (Characteristic of a Domain) Let R be a domain.

(a) Show that there exists a unique ring homomorphism ϕ : Z → R. [Hint: ϕ(2Z) =
ϕ(1Z + 1Z) = ϕ(1Z) + ϕ(1Z) = 1R + 1R.]

(b) Show that ker(ϕ) = (p) < Z, where p = 0 or p is prime. This p is called the characteristic
of the domain R.

(c) If R is finite, show that its characteristic is not 0.

4. (The Size of a Finite Field). Suppose that the field K is finite. By Problem 3, the
unique ring map ϕ : Z→ K has kernel (p) for some prime 0 6= p ∈ Z.

(a) Prove that the image ϕ(Z) ⊆ K is a subfield of K (called the prime subfield).
(b) Prove that K is a finite dimensional vector space over ϕ(Z), say [K : ϕ(Z)] = n <∞.
(c) Conclude that |K| = pn.

5. (Examples of Finite Fields) For all primes p ∈ Z we define

Fp := Z/(p).
This a field of size p. However, it is not obvious that fields of size pn exist for any n > 1.

(a) Prove that the polynomial f(x) = x2 + x+ 1 ∈ F2[x] is irreducible.
(b) Prove that the ring F2[x]/(x2 + x+ 1) is a field of size 4. We will call it F4.
(c) Let α := x+ (x2 + x+ 1) ∈ F4. Explicitly write down the addition and multiplication

tables of F4 in terms of the (“imaginary”) element α.



6. (A Special Polynomial) Let n, p ∈ N with p prime and consider the special polynomial
xp

n − x ∈ Fp[x]. If f(x) ∈ Fp[x] is irreducible of degree d, prove that

f(x) divides (xp
n − x) in Fp[x] ⇐⇒ d divides n in Z.

[Hint: The group of units of the field Fp[x]/(f(x)) has size pd−1, hence Langrange’s Theorem

implies that cp
d

= c for all c ∈ Fp/(f(x)). If n = dk then raising any c ∈ Fp[x]/(f(x)) to the

pd-th power k successive times gives

c = cp
d

= cp
2d

= · · · = cp
kd

= cp
n
.

Now let c = x + (f(x)). Conversely, assume f(x) divides xp
n − x and divide n by d to get

n = qd+ r with 0 ≤ r < d. From above we know that xp
d

= x mod f(x), and hence

x = xp
n

= (xp
qd

)p
r

= xp
r

mod f(x).

Now recall the Freshman’s Binomial Theorem which says that (a + b)p = ap + bp mod p for
a, b in any ring. It follows that g(x)p

r
= g(x) mod f(x) for any polynomial g(x) ∈ Fp[x]. Thus

every element of the field Fp[x]/(f(x)) is a root of the polynomial T pr−T ∈ Fp[x]/(f(x))[T ]. If

r 6= 0, use HW4.4 and Problem 4(b) to show that pd ≤ pr, and hence d ≤ r. This contradiction
implies that r = 0 as desired.]

7. (Gauss’ Formula for Counting Irreducible Polynomials)

(a) Let K be a field. For all f(x) =
∑

k akx
k ∈ K[x] we define the formal derivative:

f ′(x) :=
∑
k

kakx
k−1.

Prove that if f(x) has a repeated factor then f(x) and f ′(x) are not coprime. [Hint:
You can assume that the usual product rule holds.]

(b) Let Np(d) be the number of irreducible polynomials in Fp[x] of degree d and with
leading coefficient 1. Use Problem 6 to prove Gauss’ formula:

pn =
∑
d|n

dNp(d).

[Hint: Show that the special polynomial xp
n−x ∈ Fp[x] and its derivative are coprime,

so every irreducible factor of xp
n − x occurs with multiplicity 1.]


