Math 562 Spring 2014
Exam 3 — Thurs Apr 24 Drew Armstrong

There are 3 problems with 12 parts. Each part is worth 2 points, for a total of 24 points.

1. Let K be a field.
(a) Accurately state the Division Theorem for K[z]. [Hint: “Given two polynomials
f(z),g9(x) € K[z] with g(x) # 0 there exist ¢(z),r(x) € K[z] such that...”]

Proof. Given two polynomials f(z), g(x) € K|[z| with g(x) # 0 there exist ¢(x), r(x) €
K|[z] such that

o f(z) = q(x)g(z) +r(z),
e r(x) =0 or deg(r) < deg(g). O

(b) Consider « € K and f(z) € K[z]. If f(a) =0, prove that (x — «) divides f(z) in
K[z]. [Hint: Use part (a).]

Proof. Assume that f(a) = 0. Since 0 # = — a € KJz|, part (a) says that there
exist q(z),r(x) € K[z] such that

o f(2) = 4(@)(z — ) + r(2),

o r(x) =0 or deg(r) < deg(z —a) = 1.
The second condition says that r(z) = r € K is a constant. Then evaluating the
first condition at a gives

0=fla)=¢qla)(a—a)+r=q(a) - 0+r=0+7r=r.
We conclude that f(z) = q(x)(x — «). O

(c) Let f(x) € K[z] have degree 3. If f(x) is not irreducible in K{z|, prove that f(z)
has a root in K.

Proof. Suppose that we have f(z) = g(x)h(z) where deg(g) > 1 and deg(h) > 1
(i.e. g and h are not units). Then since

3 = deg(f) = deg(g) + deg(h)

we conclude that deg(g) = 1 or deg(h) = 1. Without loss, assume that deg(g) =1
so that g(z) = ax + b for some a,b € K with a # 0. Then we have

f(=bfa™) = g(=bja™")h(=b/a"!) = 0 h(=b/a") =0,
hence f(z) has the root —b/a™! € K. O

(d) Let F3 = {0,1,2} be the field with three elements. Prove that the polynomial
23 + 22 + 1 is irreducible in F3[z]. [Hint: Use part (c).]

Proof. By part (c) it is enough to check that 23 + 22 + 1 € F3[x] has no root in Fs.
Since 3 only has 3 elements we can check them all:

0°+2-0+1=1+#0

PB+2.141=4=1+#0

224+2.241=13=1+#0.



2. Let L O K be a field extension. Given o € L we define the evaluation homomorphism
evy : K[z] — L by sending Y, axz® — >, arak. Assume that ev, is not injective (i.e.
that « is “algebraic” over K).

(a) State the definition of the minimal polynomial m(x) € K[z] and say why it exists.

Proof. We know that ker(ev,) is a nonzero ideal of K[z|. Since K|[z] is a PID this
implies that ker(ev,) = (mq(z)) for some nonzero polynomial mg(z) € K[z]. If
we assume that the leading coefficient of m,(z) is 1 then this polynomial is unique
and we call it the minimal polynomial of o over K. U

(b) Prove that mq(z) is irreducible over K. [Hint: Suppose for contradiction that there
is a nontrivial factorization mq(z) = f(x)g(x).]

Proof. Assume for contradiction that we have mq(z) = f(x)g(z) for some f(x), g(z) €
K[z] with deg(f) < deg(mq) and deg(g) < deg(mq). Evaluating at « gives

0 =maq(a) = f(a)g(),

and since L is a domain this implies f(a) = 0 or g(a) = 0. Without loss, suppose
that f(a) = 0. This implies that f(z) € ker(evy) = (mq(z)) and hence mq(z)
divides f(z). Since f(x) # 0 this implies deg(my) < deg(f), which contradicts the
fact that deg(f) < deg(ma). O

(c) Prove that the image Ka] := im(ev,) is a field. [Hint: Use part (b).]

Proof. Since mq(x) is irreducible, the ideal (my) < Klz] is maximal among princi-
pal ideals. Since K[z] is a PID this implies that (m,) is maximal among all ideals,
which by the Correspondence Theorem implies that K[z]/(m,) is a field. Finally,
we use the First Isomorphism Theorem to conclude that

Klz] _ Klz]

Kla] = im(evy) =~ ker(eve) = (o)

is a field. O

(d) If S C L is any subring of L containing the set K U {«a}, prove that K[a] C S.

Proof. A general element of K[a]looks like f(a) = >, axa® where f(z) = >, apa® €
K|z]. Since a € S and a, € S for all a5 € S, and since S is closed under addition
and multiplication, we conclude that

fla) = Zakak €s.
k
U

3. Consider the ring F3[z] where F3 = {0, 1, 2} is the field with three elements. Kronecker’s
Theorem says that there exists a field extension L O F3 and an element o € L such that
a®+2a+1=0.

(a) Prove that the minimal polynomial of a over F3 is mq(z) = 23 + 22 + 1. [Hint:
Use Problem 1(d).]



Proof. Let f(x) = 23 + 2 + 1 € F3[z] and let my(z) € F3[z] be the minimal
polynomial of o € L over Fz[z]. Since f € ker(ev,) = (mq) we conclude that m,
divides f. Since f(z) is irreducible (by Problem 1(d)) this implies that mq(x) is a
nonzero constant or is associate to f(z). But since mq(a) = 0 we know that mq(z)
is not a nonzero constant. Hence m,(x) and f(x) are associate. Since we assume
that mq(x) has leading coefficient 1 this implies that m,(z) = f(z). O

By Problem 2(c) we know that F3[a] is a field. Prove that every element of this
field has the form a + ba + ca? for some a,b,c € F3. [Hint: A general element of
F3[a] looks like f(«) for some f(x) € F3[z].]

Proof. A general element of Fs[a] looks like f(«) for some f(x) € F3[z]. We can
divide f(z) by the minimal polynomial m,(x) to obtain
o f(z) = q(x)ma(z) +r(z),
o r(x) =0 or deg(r) < deg(mq) = 3.
Evaluating at « gives
fla) = q(@)ma(a) +r(a) = (@) - 0+ r(a) = r(a).

Since deg(r) < 3 we can write r(z) = a + bz + ca? for some a,b,c € F3. Then we
have f(a) = r(a) = a + ba + ca?. O

Compute the size of the field F3[a]. [Hint: You may assume without proof that the
set 1, , a? is linearly independent over Fs.]

Proof. We know from part (b) that every element of F3[a] can be written as a +
ba+ca? for some a, b, ¢ € F3, and we assume without proof that this representation
is unique. Thus we have a bijection between elements of F3]a] and vectors (a, b, ¢) €
(F3)3. Tt follows that

|F3[a]| = |F3)® = 3% = 27.

Compute the product of 1+ a + a? and 1 + 2« in the field F3[a].
Proof. First we note that
(1+a+a®)(1+2a)=1+3a+3a®+2a3
=1+ 0a + 0a* + 20
=1+2a%
Then we use the fact that o® = —2a — 1 = o + 2 to obtain
1420 =1+2(a+2)
=14+2a+4
=5+ 2«
=24 2a.

We conclude that (1+a+a?)(1+2a) = 2+2a. The other (227) —1 = 350 products
are left to the reader. 0



