Math 562 Spring 2012
Homework 4 Drew Armstrong

Problems on Rings

1. We say that an ideal I C R is prime if for all a,b € R, ab € I implies that a € [ or b € I.

(a) Prove that I C R is prime if and only if R/I is an integral domain.
(b) Prove that every maximal ideal is prime.

Proof. First note that the zero element of the ring R/l is 0+ I = I and that a + [ = [ if and
only if a € I. Now suppose that I C R is a prime ideal and consider nonzero cosets a4+ I and b+ [
in R/I (i.e. consider a € I and b ¢ I). Since I is prime this implies that ab & I, hence ab+ I # I
and we conclude that R/I is an integral domain. Conversely, let R/I be an integral domain and
consider a,b € R with ab € I (i.e. consider ab+ I =1I). Since (a+ I)(b+1)=ab+1 =1 and R/I
is an integral domain we conclude that either a +1 =1 (i.e. a€ I)or b+ 1 =1 (i.e. b € I). Hence
I C R is a prime ideal.

Now let I C R be a maximal ideal. You showed on the previous homework that this implies
that R/I is a field. Since every field is an integral domain, we conclude that I is a prime ideal. [

[Note that this result is quite general; it is true for any commutative ring with 1. The concepts of “prime”
and “maximal” ideals are meant to generalize the concepts of “prime” and “irreducible” elements of a
ring. (The intuition for this comes from PIDs.) However, even though maximal always implies prime for
ideals, it is not always true that irreducible elements are prime. What's going on here?]

2. The following two proofs are wrong. Explain why, and fix them.

(a) Let R be an integral domain and consider a principal ideal (a) C R. If a is irreducible, then
the ideal (a) is maximal, hence the ideal (a) is prime, hence the element a is prime. We
conclude that every irreducible element is prime.

(b) Let I C R be an ideal in an integral domain. If I is a prime ideal, then I = (p) for some prime
element p € R. But every prime element of a domain is irreducible, hence p is irreducible
and the ideal I = (p) is maximal. We conclude that every prime ideal is maximal.

Proof. The problem is that these proofs fail when R is not a PID. So let R be a PID.

Claim 1: Every irreducible element of R is prime. Proof: Let a € R be irreducible and consider
the ideal (a) C R. Let J be an ideal with (a) < J C R. Since R is a PID we can write J = (b).
Then note that (b) = R since otherwise b would be a proper divisor of a. Hence (a) C R is a
maximal ideal and by Problem 1 it is also a prime ideal. That is, given a|bc (i.e. bc € (a)) it follows
that b € (a) (i.e. alb) or c € (a) (i-e. alc). We conclude that the element a € R is prime.///

Claim 2: Every prime ideal of R is maximal. Proof: Let I C R be a prime ideal. Since R is a
PID we have I = (a) for some element a € R, and since (a) is a prime ideal it follows that a € R
is a prime element (see the above proof). Then since R is an integral domain it follows that a € R
is irreducible (if you don’t remember the proof, do it now). Finally, consider an ideal J such that
(a) =1 < J C R. Since R is a PID we have J = (b) for some b € R and then we must have J = R
since otherwise b is a proper divisor of a. We conclude that I C R is a maximal ideal.///

3. Given a ring R, there exists a unique ring homomorphism ¢ : Z — R defined by ¢(17) = 1. If
ker ¢ = (n) C Z, we say the ring R has “characteristic n".

(a) Prove that the characteristic of an integral domain is 0 or prime p € Z.



(b) Prove that a field F' has characteristic 0 if and only if it contains a subfield isomorphic to Q.

Proof. To prove (a), let R be an integral domain and consider the unique homomorphism ¢ : Z — R,
which is defined defined by ¢(1z) = 1g. Since Z is a PID we know that ker p = (n) for some n.
Suppose that n has a proper factorization n = ab. In particular this means that a,b ¢ (n) = ker ¢
so that p(a), p(b) # Og. But since ¢ is a homomorphism we also have p(a)p(b) = ¢(n) = Og, which
contradicts the fact that R is an integral domain. We conclude that n must be zero or prime.

To prove (b), let F' be a field and consider the map ¢ : Z — F defined by ¢(1z) = 1p. If F has
characteristic 0 then the map ¢ is injective and we can use this to define an injective homomorphism
©:Q — F by @(a/b) := ¢(a)/e(b) whenever b # 0z. This map is well-defined since if a/b = ¢/d (i.e.
ad = bc) then we obtain ¢(a)p(d) = ¢(b)p(c), hence p(a)/p(b) = p(c)/e(d). It’s a homomorphism
because @(12/12) = (p(lz)/g@(lz) = 1F/1F =1p,
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whenever the denominators are nonzero. Finally, the map ¢ is injective because ¢(a/b) = ¢(c/d) =
w(a)/eb) = ¢(c)/e(d) = pla)p(d) = pb)p(c) = p(ad) = @(bc), and then the injectivity of
¢ implies ad = bc = a/d = b/c. Hence F contains a subfield isomorphic to Q; namely, the

homomorphic image ¢(Q) C F.

Conversely, suppose that K C F' is a subfield isomorphic to Q. Since ¢ maps 1z to lp € K C F
it follows that ¢ maps Z into K. But K is a field of characteristic 0 (why?). Hence ker ¢ = (0) and
we conclude that F' has characteristic 0. O

Cc

[In general, given any field F' we define its prime subfield F’ C F as the intersection of all subfields —
equivalently, I is the subfield generated by 1x. It's a general fact that the prime subfield is isomorphic
to either Q or Z/(p), depending on the characteristic of F'. You just proved the characteristic 0 case.]

Problems on Fields

4. Finite Implies Algebraic. Consider a field extension F' C K. We say that a € K is algebraic
over F'if f(a) = 0 for some (monic) polynomial f(x) € F[z]. We say that the extension FF C K
is algebraic if every element of K is algebraic over F. Prove that if [K : F] < oo then F C K is
algebraic. [Hint: Consider the powers 1,a,a?,... of some a € K. Are they independent over F'?]

Proof. Let F C K be an extension of fields and suppose that [K : F] = n < oo. That is, K
is a vector space of dimension n over F. Let a € K be any nonzero element and consider the set
{1,a,...,a"} C K. If this set contains any repetition, say a/ = a”, then a is a root of the polynomial
f(z) = 27 — 2% € F[z]. Otherwise the set {1,a,...,a"} contains n + 1 distinct elements. Since K
has dimension n we know that any set of > n elements must be linearly dependent. Hence there
exist cg,...,c, € I such that

co+cra+coa® + -+ cpa = 0.

We conclude that a is a root of the polynomial f(z) = ¢y + c1z + - - - cpa™ € Flx]. O

5. Given a field extension F C K, let F C F C K denote the subset gf elements that are algebraic
over F. This is called the algebraic closure of F' in K. Prove that F' is a field. [Hint: Consider



a,b € F and note that F(a,b) C K contains a + b,a — b,ab and a/b (= ab~'). By Problem 4, it
suffices to show that [F'(a,b) : F] < 00.]

Proof. For any a,b € F C K with b # 0, we wish to show that {a + b,a — b,ab,a/b} C F. We know
by definition that {a 4+ b,a — b, ab,a/b} C F(a,b) C K, thus by Problem 4 above it suffices to show
that [F'(a,b) : F] < 0.

Note that F'(a,b) = F(a)(b). Since b is algebraic over F, it is certainly algebraic over F'(a), hence
we know that [F(a)(b) : F(a)] = [F(a,b) : F(a)] equals the degree of the minimal polynomial for b
over F'(a), which is finite. Similarly since a is algebraic over F' we know that [F'(a) : F] < co. By
the Tower Law we conclude that

[F(a,b): F| =[F(a,b) : F(a)]-[F(a): F] < cc.
U

[This is quite a slick proof. We have shown that if a,b € K satisfy polynomial equations over F, say
f(a) = 0and g(b) = 0, then the elements a+b,a—b, ab, a/b also satisfy polynomial equations. However,
we didn’t say how to find these polynomials. If you tried to construct the polynomials, you probably
observed that it's not so easy. For example: We know that /2 and €27/ are algebraic over Q and we
know their minimal polynomials. Try to compute the minimal polynomial of /2 + e2mi/3 over Q]

Problems on Galois Theory

6. Give a short proof that v/2 is an element of the field Q(v/2 ++/3) C R. [Hint: By definition, the
real inverse of v/2 + /3 is also in Q(\@ + \/§) What is this inverse?]

Proof. Observe that (v/3 +v2)(vV3 —+v/2) =3 -2 =1 € R. Since Q(v/2 +1/3) is a subfield of R we
conclude that (ﬂ—i— \/5)*1 = (\f — \/5) € Q(\@—i— \/§) Finally, we get

SV 4VE) — (VB— VD) = V€ Qv + V).

7. Let Q C K C C be the splitting field of 2% + 1 € Q[x].

(a) Prove that K = Q(v/2,1).

(b) Prove that [K : Q] = 4 and hence the Galois group Gal(K/Q) has order 4.
(¢) Prove that Gal(K/F) ~V :=17Z/(2) x Z/(2), the “Klein Viergruppe”.

(d) Draw and label the lattice of fields between Q and K.

Proof. First suppose that z* = —1. Taking absolute value gives |z|* = 1, hence z = ¥ for some
angle # € R. Since —1 = €™ we obtain €% = ¢~ which implies that 40 = —x + 27k for any
integer k € Z. We conclude that the roots of 2% + 1 are

(v, as, a, az) = (€4, B37/4 G5T/4 iTR/1) _ <1 +i —14+4i —1—47 1— z>

hence the splitting field is K = Q(aq,as2,as3,a4) € C. To prove (a), first note that all of these
roots are in Q(v/2,i), hence K C Q(v/2,i). Conversely, we have /2 = a; + a4 € K and i =
(a1 + az)/(a1 + a4) € K, hence Q(v/2,i) C K. We conclude that K = Q(v/2,1).

To prove (b), note that the inclusions Q C Q(v/2) C Q(+/2,1) are strict because /2 is not rational
and i is not real. Hence the Tower Law implies that [K : Q] = [K : Q(+v/2)] - [Q(v/2) : Q] > 2-2 = 4.
On the other hand, {1,v/2,4,iv/2} is clearly a spanning set for K = Q(v/2,i), hence [K : Q] < 4



(because every spanning set contains a basis). We conclude that [K : Q] = 4, and it follows (for
general reasons, not yet proved in class) that |Gal(K/Q)| = 4.

What could this group be? Recall that there are only two groups of size 4; they are isomorphic
to Z/(4) and V :=7Z/(2) x Z/(2). To prove (c), we will show that Gal(K/Q) ~ V. Note that an
element o € Gal(K : Q) is determined by the two values o(v/2),0(i), since v/2 and i generate the
splitting field. If we apply o to the equations 22 = 2 and 22 = —1 (for any z € K) then we obtain
0(2)?2 =0(2) =2 and 0(2)? = o(—1) = —1, hence o(z) will be a root of 22 — 2 (respectively, 2%+ 1)
if and only if 2 is a root of 22 — 2 (respectively, 22+ 1). We conclude that o is one of the four maps:
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The group table is given by:
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This can’t be the group Z/(4) because there is no element of order 4 (in fact, every non-identity
element has order 2), so it must be Z/(2) x Z/(2). More directly, each of o,7 generates a group
isomorphic to Z/(2), and then Gal(K/Q) = (o) x (1) = Z/(2) x Z/(2).

Now to part (d). It is a bit, say, creative for me to ask you this since I haven’t yet given you any
theorems to this effect. It is easy to find a few intermediate fields:

Q(v'2,1)

But are there any more? I will return to this discussion in class.



