Math 562 Spring 2012
Homework 1 Drew Armstrong

1. Let R be a ring. We say that a € R is nilpotent if ¢’ = 0 for some n. If a is nilpotent, prove that
1+ a and 1 — a are units (i.e. invertible).

Proof. Recall that in any ring we have (—a)(—b) = —(ab) (see HW 3.7 from MTH 561). Thus in
any ring with 1 (commutative or not) we have the following identities:

l—a"=(1-a)(l+a+a®+---+a" "),
1—(-1)""=(14a)(1-a+a®— -+ (=1)"ta" ).

If @™ = 0 then we obtain inverses for 1 +a and 1 — a. O

2. Let I C R be an ideal. Prove that I = R if and only if I contains a unit.

Proof. First suppose that I = R then 1 € I so I contains a unit. Conversely, suppose that I contains
a unit u, say uv = 1 for u,v € R. But since [ is an ideal we have uv = 1 € I. Then for any a € R
we have a = 1a € I. Hence I = R. O

3. Let ¢ : R — S be a ring homomorphism.
(a) Prove that ¢(0g) = Os.
(b) Prove that p(—a) = —p(a) for all a € R.
(c) Let a € R. If a=! € R exists, prove that ¢(a) is invertible with ¢(a)~! = p(a™1).

Proof. To prove (a) note that ¢(0r) = ¢(0r+0gr) = ¢(0r)+¢(0r). Then subtract ¢(0r) from both
sides to get 0g = ¢(0r). To prove (b) consider a € R. Then use part (a) to write 0g = ¢(0r) = ¢(a—
a) = ¢(a)+¢(—a). Now subtract ¢(a) from both sides to get ¢(—a) = —¢(a). To prove (c) consider
a € R and suppose that there exists a~! with aa™! = a~'a = 1. Applying ¢ to the three parts of
this equation and using the fact that ¢ is a homomorphism gives p(a)p(a™t) = p(a p(a) = 15.
We conclude that p(a™1) = p(a)~t. O

[Note that the property ¢(ab) = p(a)p(b) does not imply ¢(1r) = 1g for rings, so we just assume
©(1g) = 1g (because we want it).]

4. Let I C R be an ideal and consider a,b,c,d € R witha+ 1 =c+ I and b+ 1 =d+ I. Prove
that (a+b)+ 1 = (c+d)+ I and ab+ I = cd+ I. This shows that addition and multiplication of
cosets is well-defined.

Proof. Since a+ 1 =c+ 1 and b+ I = d + I there exist x,y € [ witha —c=xz and b —d =y. To
prove that (a+b) + 1 = (b+d) + I, first consider an arbitrary element a + b +u € (a + b) + I with
w € I. Then we have a+b+u=(c+x)+(d+y)+u=(c+d)+(x+y+u) € (c+d)+ 1. Hence
(a+b)+1 C (c+d)+1. Similarly we find (¢c+d)+1 C (a+b)+ I and hence (a+b)+1 = (c+d)+1.
To prove that ab+ I = c¢d + I, first consider an arbitrary element ab+ u € ab+ I with v € I. Then
we have ab+u = (c+ z)(d+y) + v = cd + (cy + xd + zy + u). Since cy, zd, xy,u are all in I we
conclude that ab+u = e¢d + (cy + xd + xy + u) € ed + I, hence ab+ I C c¢d + I. The proof of
cd+ I C ab+ I is similar. We conclude that ab+ 1 =cd + 1. O

[Note that (a +b) + I = (¢ + d) + I only requires that I is closed under addition. The proof that
ab+ I = cd + I really requires that [ is an ideal. In other words, if S C R is an additive subgroup we

can always define R/S as an additive group, but we can only define multiplication on R/S when S is an
ideal.]



5. When does ab = 1 imply ba = 1?7 Consider a,b € R where R is a finite ring, and suppose that
ab = 1. Show that b+ (1 — ba)a’ is a right inverse of a for all i > 0. Use this and the finiteness of R
to show that ba = 1. [Recall: We have also seen that AB = I implies BA = I for square matrices
over a field. Now we have two results of this sort...]

Proof. Suppose that ab = 1 and note that for all ¢ > 0 we have
alb+ (1 —ba)a’] = ab+ (a — aba)a’ = 1+ a1 —aba’™ =1+ o — o = 1.

Hence b+ (1 —ba)a’ is a right inverse of a for all i > 0. Since our ring is finite there must exist i < j
such that b+ (1 — ba)a® = b+ (1 — ba)a’. Multiply both sides on the right by & and use the fact
that ab =1 to get b+ (1 — ba)b/~* = b+ (1 — ba). Now subtract b from both sides and use the fact
that (1 —ba)b=5b—bab=>b—b=0 to find 0 = 1 — ba. We conclude that ba = 1 as desired. O

6. Recall that a group G is simple if for any group homomorphism ¢ : G — H we have kerp = G
(the whole group) or ker ¢ = 1 (the trivial group). We can define a simple ring similarly in terms
of ring homomorphisms. Prove that a ring is simple if and only if it is a field. (Hence the term
“simple ring” is unnecessary.) [Hint: Look in the book.]

Proof. Recall that I C R is an ideal if an only if I is the kernel of a ring homomorphism. Thus we
can say that a ring R is simple if it has only two ideals: (1) = R and (0) = {0}.

First suppose that R is a field and let I C R be an ideal. If I # (0) then I contains a nonzero
element a. But since R is a field, a is a unit, and we conclude by Problem 2 that I = (1) = R.
Hence R is a simple ring.

Conversely, suppose that R is a simple ring and let a € R be a nonzero element (if R = (0) then R
is not really a field, but I forgot to worry about this silly case when I wrote the question). Since (a)
is an ideal and (a) # (0) we must have (a) = (1). That is, a is a multiple of 1, which means that a is
a unit. Since this is true for all nonzero a € R, R is a field (or, I guess, a division ring — I also forgot
to say that R is commutative (oh well); in any case, the term “simple ring” is unnecessary). O

7. Prove Descartes’ Factor Theorem. Let F be a field and consider the ring F[x] of polynomials.
Given f(x) € F[z] and a € F such that f(a) =0, prove that f(z) = (z — a)h(x) where h(x) € R|x]
with deg(h) = deg(f)—1. [Hint: Observe that 2" —a" = (r—a)(z" ' +az" 2+ - +a" 2z+a" 1)
for all n > 0. Consider the polynomial f(z) — f(«a).]

Proof. To save space, we define the polynomial [n]; o = (271 + 2" 2a + - + za™ 2 4+ a"1) for
each positive integer n and real number «. Suppose that f(z) € R[x] has degree d and write
flz) = agr? + ag_12¥ N+ a1z + ag
for ap,...,aq € R with ag # 0. Then applying the identity 2™ — a" = (x — a)[n];,« We can write
f@) = fla) = ag(z® = a®) + ag_1(a" " — ") + -+ ar(x — )

=ag(z — a)[dza + ag-1(z — @)[d =1z o+ +a1(z — @)1z

= (z — &)(agldlza + aa-1[d = pa + -+ a1[l]z,0)

=(z—-a)

(agz? + lower order terms ).
If f(a) = 0 then we obtain f(z) = (z — a)h(x) where h(x) € R[z] has degree d — 1. O

8. Let R and C be the real and complex fields. Let ¢ : R[z] — C be the map that sends a polynomial
f(z) to its evaluation f(i) € C at x = i.

(a) Prove that ¢ is a surjective ring homomorphism.
(b) Recall the definition of complex conjugation: a+ib := a — ib for a,b € R. Prove that

f(=i) = f(i) € C for all f(x) € Rx].




(c) Use Descartes’ Factor Theorem to prove that the kernel of ¢ is the principal ideal generated
by 22 4 1:
kerg = (2% + 1) 1= {(2 + 1)g(z) : g(x) € Rlal}.
Proof. The multiplicative identity of R[z] is the constant polynomial 1(z) = 1, so clearly (1) =
1(7) = 1 € C, which is the multiplicative identity of C. To prove (a) we must show that ¢(f + g) =

p(f) + ¢(g) and ¢(fg) = @(f)p(g) for all f,g € Rlz]. To this end, let f(z) = Y, arz” and
g(x) =", bra®. Then we have

o(f) +olg) = i)+ 9() =D awi® + Y bpi® = (ar +bp)i* = (f +9)(i) = o(f +9)
k k

k
and also
o(f)elg) = fi)g(i) = ( > (aui“)(bvi”)> =Y ( > aubv> i* = (f9)(i) = o(f9).
k utv=Fk k utv=~k

Notice that the proof of ¢(f)p(9) = ¢(fg) uses the fact that C is commutative. (For this
reason we will only consider polynomials over commutative rings.) Finally, note that the map is
surjective since for any a + ib € C we have a + ib = ¢(f) with f(z) = a + zb € R[z].
Given complex numbers a + ib and ¢ + id note that
a+ib+c+id= (a —1ib) + (c —id) = (a +c) —i(b+d)
=(a+c)+i(b+d) = (a+1ib)+ (c+id)

and
(a+1ib)(c+ id) = (a —ib)(c — id) = (ac — bd) — i(ad + bc)
= (ac — bd) + i(ad + bc) = (a + ib)(c + id).

Combined with the fact that T = 1 we conclude that complex conjugation z — 7 is a ring isomor-
phism C — C (we call it a field automorphism). Furthermore, we have Z = z for all z € R C C. Now
we will prove (b). Let f(x) = 3, axz* and consider any complex number z € C. Then using the
homomorphism properties of conjugation we have

&= a =Y @@ =Y @)k = f(2).
k k k

In particular, taking z =i gives f(—i) = f(3).

Finally consider the surjective homomorphism ¢ : R[z] — C given by ¢(f) = f(i). To prove (c)
we will show that ker ¢ = (22 4+ 1). Indeed, if f(x) € (224 1) then we can write f(z) = (2% +1)g(x)
and then o(f) = (i + 1)g(i) = 0- g(x) = 0, hence f € kerp and (22 + 1) C kery. Conversely,
suppose that f € kerg; i.e. f(i) = 0. By Descartes’ Factor Theorem applied to f(z) € Clz] (a
slightly tricky point) we have f(x) = (z — i)g(x) for some g(x) € C[z]. But by part (b) we know
that f(i) = 0 implies f(—i) = 0 hence f(—i) = —2i - g(—i) = 0, which implies that g(—i) = 0.
Then Descartes’ Factor Theorem implies that g(x) = (z +¢)h(x) for some h(x) € C[z]. Putting this
together we get

f(@) = (z — i) (z + Dh(z) = (2° + 1h(2)
for some h(z) € Clz]. The only problem left is to show that h(x) € R[z]. But since f(z) and
(#2 + 1) are in R[z] we must also have h(z) € R[z] (for example, we could do long division to
compute f(z)/(z? + 1) = h(z)). We conclude that h(z) € R[z] and hence f(z) is in the ideal
(22 4 1) as desired. O



