1. Let R be a ring. We say that $a \in R$ is nilpotent if $a^n = 0$ for some n. If a is nilpotent, prove that $1 + a$ and $1 - a$ are units (i.e. invertible).

Proof. Recall that in any ring we have $(-a)(-b) = -(ab)$ (see HW 3.7 from MTH 561). Thus in any ring with 1 (commutative or not) we have the following identities:

\[1 - a^n = (1 - a)(1 + a + a^2 + \cdots + a^{n-1}), \]
\[1 - (-1)^n a^n = (1 + a + a^2 + \cdots + (-1)^{n-1}a^{n-1}). \]

If $a^n = 0$ then we obtain inverses for $1 + a$ and $1 - a$.

\[\square \]

2. Let $I \subseteq R$ be an ideal. Prove that $I = R$ if and only if I contains a unit.

Proof. First suppose that $I = R$ then $1 \in I$ so I contains a unit. Conversely, suppose that I contains a unit u, say $uv = 1$ for $u,v \in R$. But since I is an ideal we have $uv = 1 \in I$. Then for any $a \in R$ we have $a = 1a \in I$. Hence $I = R$.

\[\square \]

3. Let $\varphi : R \to S$ be a ring homomorphism.

(a) Prove that $\varphi(0_R) = 0_S$.

(b) Prove that $\varphi(-a) = -\varphi(a)$ for all $a \in R$.

(c) Let $a \in R$. If $a^{-1} \in R$ exists, prove that $\varphi(a)$ is invertible with $\varphi(a)^{-1} = \varphi(a^{-1})$.

Proof. To prove (a) note that $\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$. Then subtract $\varphi(0_R)$ from both sides to get $0_S = \varphi(0_R)$. To prove (b) consider $a \in R$. Then use part (a) to write $0_S = \varphi(0_R) = \varphi(a - a) = \varphi(a) + \varphi(-a)$. Now subtract $\varphi(a)$ from both sides to get $\varphi(-a) = -\varphi(a)$. To prove (c) consider $a \in R$ and suppose that there exists a^{-1} with $aa^{-1} = a^{-1}a = 1_R$. Applying φ to the three parts of this equation and using the fact that φ is a homomorphism gives $\varphi(a)(\varphi(a)^{-1}) = \varphi(a^{-1})\varphi(a) = 1_S$. We conclude that $\varphi(a^{-1}) = \varphi(a)^{-1}$.

\[\square \]

[Note that the property $\varphi(ab) = \varphi(a)\varphi(b)$ does not imply $\varphi(1_R) = 1_S$ for rings, so we just assume $\varphi(1_R) = 1_S$ (because we want it).]

4. Let $I \subseteq R$ be an ideal and consider $a,b,c,d \in R$ with $a + I = c + I$ and $b + I = d + I$. Prove that $(a + b) + I = (c + d) + I$ and $ab + I = cd + I$. This shows that addition and multiplication of cosets is well-defined.

Proof. Since $a + I = c + I$ and $b + I = d + I$ there exist $x,y \in I$ with $a - c = x$ and $b - d = y$. To prove that $(a + b) + I = (b + d) + I$, first consider an arbitrary element $a + b + u \in (a + b) + I$ with $u \in I$. Then we have $a + b + u = (c + x) + (d + y) + u = (c + d) + (x + y + u) \in (c + d) + I$. Hence $(a + b) + I \subseteq (c + d) + I$. Similarly we find $(c + d) + I \subseteq (a + b) + I$ and hence $(a + b) + I = (c + d) + I$. To prove that $ab + I = cd + I$, first consider an arbitrary element $ab + u \in ab + I$ with $u \in I$. Then we have $ab + u = (c + x)(d + y) + u = cd + (cy + xd + xy + u)$. Since cy, xd, xy, u are all in I we conclude that $ab + u = cd + (cy + xd + xy + u) \in cd + I$, hence $ab + I \subseteq cd + I$. The proof of $cd + I \subseteq ab + I$ is similar. We conclude that $ab + I = cd + I$.

\[\square \]

[Note that $(a + b) + I = (c + d) + I$ only requires that I is closed under addition. The proof that $ab + I = cd + I$ really requires that I is an ideal. In other words, if $S \subseteq R$ is an additive subgroup we can always define R/S as an additive group, but we can only define multiplication on R/S when S is an ideal.]
5. **When does** $ab = 1$ **imply** $ba = 1$? Consider $a, b \in R$ where R is a finite ring, and suppose that $ab = 1$. Show that $b + (1 - ba)a^i$ is a right inverse of a for all $i \geq 0$. Use this and the finiteness of R to show that $ba = 1$. [Recall: We have also seen that $AB = I$ implies $BA = I$ for square matrices over a field. Now we have two results of this sort...]

Proof. Suppose that $ab = 1$ and note that for all $i \geq 0$ we have

$$a[b + (1 - ba)a^i] = ab + (a - aba)a^i = 1 + a^{i+1} - aba^{i+1} = 1 + a^{i+1} - a^{i+1} = 1.$$

Hence $b + (1 - ba)a^i$ is a right inverse of a for all $i \geq 0$. Since our ring is finite there must exist $i < j$ such that $b + (1 - ba)a^i = b + (1 - ba)a^j$. Multiply both sides on the right by b^j and use the fact that $ab = 1$ to get $b + (1 - ba)b^{j-i} = b + (1 - ba)$. Now subtract b from both sides and use the fact that $(1 - ba)b = b - bab = b - b = 0$ to find $0 = 1 - ba$. We conclude that $ba = 1$ as desired. □

6. Recall that a group G is simple if for any group homomorphism $\varphi : G \to H$ we have ker $\varphi = G$ (the whole group) or ker $\varphi = 1$ (the trivial group). We can define a simple ring similarly in terms of ring homomorphisms. **Prove** that a ring is simple if and only if it is a field. (Hence the term “simple ring” is unnecessary.) [Hint: Look in the book.]

Proof. Recall that $I \subseteq R$ is an ideal if an only if I is the kernel of a ring homomorphism. Thus we can say that a ring R is simple if it has only two ideals: $(1) = R$ and $(0) = \{0\}$.

First suppose that R is a field and let $I \subseteq R$ be an ideal. If $I \neq (0)$ then I contains a nonzero element a. But since R is a field, a is a unit, and we conclude by Problem 2 that $I = (1) = R$. Hence R is a simple ring.

Conversely, suppose that R is a simple ring and let $a \in R$ be a nonzero element (if $R = (0)$ then R is not really a field, but I forgot to worry about this silly case when I wrote the question). Since (a) is an ideal and $(a) \neq (0)$ we must have $(a) = (1)$. That is, a is a multiple of 1, which means that a is a unit. Since this is true for all nonzero $a \in R$, R is a field (or, I guess, a division ring — I also forgot to say that R is commutative (oh well); in any case, the term “simple ring” is unnecessary). □

7. **Prove Descartes’ Factor Theorem.** Let \mathbb{F} be a field and consider the ring $\mathbb{F}[x]$ of polynomials. Given $f(x) \in \mathbb{F}[x]$ and $\alpha \in \mathbb{F}$ such that $f(\alpha) = 0$, prove that $f(x) = (x - \alpha)h(x)$ where $h(x) \in \mathbb{R}[x]$ with deg $h = \text{deg}(f) - 1$. [Hint: Observe that $x^n - \alpha^n = (x - \alpha)(x^{n-1} + \alpha x^{n-2} + \cdots + \alpha^{n-2} x + \alpha^{n-1})$ for all $n \geq 0$. Consider the polynomial $f(x) - f(\alpha)$.]

Proof. To save space, we define the polynomial $[n]_{x,\alpha} := (x^{n-1} + \alpha x^{n-2} + \cdots + \alpha^{n-2} x + \alpha^{n-1})$ for each positive integer n and real number α. Suppose that $f(x) \in \mathbb{R}[x]$ has degree d and write

$$f(x) = a_dx^d + a_{d-1}x^{d-1} + \cdots + a_1x + a_0$$

for $a_0, \ldots, a_d \in \mathbb{R}$ with $a_d \neq 0$. Then applying the identity $x^n - \alpha^n = (x - \alpha)[n]_{x,\alpha}$ we can write

$$f(x) - f(\alpha) = a_d(x^d - \alpha^d) + a_{d-1}(x^{d-1} - \alpha^{d-1}) + \cdots + a_1(x - \alpha) = a_d(x - \alpha)[d]_{x,\alpha} + a_{d-1}(x - \alpha)[d-1]_{x,\alpha} + \cdots + a_1(x - \alpha)[1]_{x,\alpha} = (x - \alpha)(a_d[d]_{x,\alpha} + a_{d-1}[d-1]_{x,\alpha} + \cdots + a_1[1]_{x,\alpha})$$

If $f(\alpha) = 0$ then we obtain $f(x) = (x - \alpha)h(x)$ where $h(x) \in \mathbb{R}[x]$ has degree $d - 1$. □

8. Let \mathbb{R} and \mathbb{C} be the real and complex fields. Let $\varphi : \mathbb{R}[x] \to \mathbb{C}$ be the map that sends a polynomial $f(x)$ to its **evaluation** $f(i) \in \mathbb{C}$ at $x = i$.

(a) **Prove** that φ is a surjective ring homomorphism.

(b) **Recall** the definition of complex conjugation: $a + ib := a - ib$ for $a, b \in \mathbb{R}$. **Prove** that $f(-i) = \overline{f(i)} \in \mathbb{C}$ for all $f(x) \in \mathbb{R}[x]$.

(c) Use Descartes’ Factor Theorem to prove that the kernel of \(\varphi \) is the principal ideal generated by \(x^2 + 1 \):

\[
\ker \varphi = (x^2 + 1) := \{(x^2 + 1)g(x) : g(x) \in \mathbb{R}[x]\}.
\]

Proof. The multiplicative identity of \(\mathbb{R}[x] \) is the constant polynomial \(1(x) = 1 \), so clearly \(\varphi(1) = 1(i) = 1 \in \mathbb{C} \), which is the multiplicative identity of \(\mathbb{C} \). To prove (a) we must show that \(\varphi(f + g) = \varphi(f) + \varphi(g) \) and \(\varphi(fg) = \varphi(f)\varphi(g) \) for all \(f, g \in \mathbb{R}[x] \). To this end, let \(f(x) = \sum_k a_kx^k \) and \(g(x) = \sum_k b_kx^k \). Then we have

\[
\varphi(f) + \varphi(g) = f(i) + g(i) = \sum_k a_ki^k + \sum_k b_ki^k = \sum_k (a_k + b_k)i^k = (f + g)(i) = \varphi(f + g)
\]

and also

\[
\varphi(f)\varphi(g) = f(i)g(i) = \sum_k \left(\sum_{u+v=k} (a_u\cdot i^u)(b_v\cdot i^v) \right) = \sum_k \left(\sum_{u+v=k} a_ub_v \right) i^k = (fg)(i) = \varphi(fg).
\]

Notice that the proof of \(\varphi(f)\varphi(g) = \varphi(fg) \) uses the fact that \(\mathbb{C} \) is commutative. (For this reason we will only consider polynomials over commutative rings.) Finally, note that the map is surjective since for any \(a + ib \in \mathbb{C} \) we have \(a + ib = \varphi(f) \) with \(f(x) = a + xb \in \mathbb{R}[x] \).

Given complex numbers \(a + ib \) and \(c + id \) note that

\[
(a + ib) + (c + id) = (a + c) - i(b + d) = (a + c) + i(b + d) = (a + ib) + (c + id)
\]

and

\[
(a + ib)(c + id) = (a - ib)(c - id) = (ac - bd) - i(ad + bc) = (ac - bd) + i(ad + bc) = (a + ib)(c + id).
\]

Combined with the fact that \(\overline{1} = 1 \) we conclude that complex conjugation \(z \to \overline{z} \) is a ring isomorphism \(\mathbb{C} \to \mathbb{C} \) (we call it a **field automorphism**). Furthermore, we have \(\overline{z} = z \) for all \(z \in \mathbb{R} \subseteq \mathbb{C} \). Now we will prove (b). Let \(f(x) = \sum_k a_kx^k \) and consider any complex number \(z \in \mathbb{C} \). Then using the homomorphism properties of conjugation we have

\[
\overline{f(z)} = \sum_k a_k \overline{z}^k = \sum_k \overline{\varphi(z)}^k = \sum_k a_k \overline{z}^k = f(\overline{z}).
\]

In particular, taking \(z = i \) gives \(f(-i) = \overline{f(i)} \).

Finally consider the surjective homomorphism \(\varphi : \mathbb{R}[x] \to \mathbb{C} \) given by \(\varphi(f) = f(i) \). To prove (c) we will show that \(\ker \varphi = (x^2 + 1) \). Indeed, if \(f(x) \in (x^2 + 1) \) then we can write \(f(x) = (x^2 + 1)g(x) \) and then \(\varphi(f) = (i^2 + 1)g(i) = 0 \cdot g(x) = 0 \), hence \(f \in \ker \varphi \) and \((x^2 + 1) \subseteq \ker \varphi \). Conversely, suppose that \(f \in \ker \varphi \); i.e. \(f(i) = 0 \). By Descartes’ Factor Theorem applied to \(f(x) \in \mathbb{C}[x] \) (a slightly tricky point we have \(f(x) = (x - i)g(x) \) for some \(g(x) \in \mathbb{C}[x] \). But by part (b) we know that \(f(i) = 0 \) implies \(f(-i) = 0 \) hence \(f(-i) = -2i \cdot g(-i) = 0 \), which implies that \(g(-i) = 0 \). Then Descartes’ Factor Theorem implies that \(g(x) = (x + i)h(x) \) for some \(h(x) \in \mathbb{C}[x] \). Putting this together we get

\[
f(x) = (x - i)(x + i)h(x) = (x^2 + 1)h(x)
\]

for some \(h(x) \in \mathbb{C}[x] \). The only problem left is to show that \(h(x) \in \mathbb{R}[x] \). But since \(f(x) \) and \((x^2 + 1) \) are in \(\mathbb{R}[x] \) we must also have \(h(x) \in \mathbb{R}[x] \) (for example, we could do long division to compute \(f(x)/(x^2 + 1) = h(x) \)). We conclude that \(h(x) \in \mathbb{R}[x] \) and hence \(f(x) \) is in the ideal \((x^2 + 1) \) as desired. \(\square \)