
Math 510 Fall 2022
Notes for Homework 2 Drew Armstrong

1. Matrix Multiplication

In the last section we talked about individual vector spaces such as Rn and L2[0, 1]. Each of
these has an inner product, hence it also has a vector norm and a metric. Now we discuss
linear functions between different vector spaces. In the finite dimensional case we can encode
such functions as matrices. But matrix arithmetic does more than just encode linear functions;
it is an extremely powerful language that gives out much more than we put in.

I assume you already know the definition of matrix multiplication. Here is a reminder.

Definition of Matrix Multiplication. Consider two matrices

A =

a11 · · · a1m
...

...
a`1 · · · a`m

 and B =

 b11 · · · b1n
...

...
bm1 · · · bmn

 .

We say that A has shape ` ×m and B has shape m × n. (The number of rows comes first.)
Since the number of columns of A equals the number of rows of B (they both equal m), we
can define the product matrix AB, which has shape `× n:

AB =

c11 · · · c1n
...

...
c`1 · · · c`n

 .

The entries of A, B and AB are related as follows:

cij =
m∑
k=1

aikbkj .

I could have postponed this gory definition until it emerged naturally from the theory. But,
as I said, the mechanics of matrix arithmetic is more than the sum of its parts, so I wanted
to explore the mechanics first.

Row Times Column = Dot Product. Suppose that ` = n = 1, so that

A =
(
a11 · · · a1m

)
and B =

 b11
...
bm1

 .

Then the matrix product AB has shape 1× 1 (it is just a scalar) and corresponds to the dot
product of vectors:

(
a11 · · · a1m

) b11
...
bm1

 = a11b11 + a12b21 + · · ·+ a1mbm1.

1
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From now on we will identify vectors v = (v1, . . . , vn) ∈ Rn with column vectors:

v = (v1, . . . , vn) =

v1...
vn

 .

To talk about row vectors we will use the operation of transposition:

A =

a11 · · · a1m
...

...
a`1 · · · a`m

  AT :=

a11 · · · a`1
...

...
a1m · · · a`m

 .

Thus the transpose of a column vector is a row vector:

vT =

v1...
vn


T

=
(
v1 · · · vn

)
.

Finally, we can express the dot product of any two vectors u,v ∈ Rn in terms of matrix
multiplication:

uTv =
(
u1 · · · un

)v1...
vn

u1v1 + · · ·+ unvn = u • v.

Column Times Row = Something Else. Warning. A column times a row is not a scalar;
it is a matrix of any shape that we want. That is, for any u ∈ Rm and v ∈ Rn we obtain an
m× n matrix1

uvT =

u1
...
um

(v1 · · · vn
)

=

u1v1 · · · u1vn
...

...
umv1 · · · umvn

 .

Row times column and column times row are the two basic examples. In between there are
many different ways to think about matrix multiplication. For example:

(ij entry of AB) = (ith row of A)(jth col of B),

(ith row of AB) = (ith row of A)B,

(jth col of AB) = A(jth col of B).

If A has shape `×m and B has shape m× n then we also have

AB =

m∑
k=1

(kth col of A)(kth row of B),

where the right hand side is a sum of m matrices, each of shape `× n.

All of these rules are examples of a very general recursive property of matrix multiplication.

1Later we will call these rank one matrices.
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Theorem: Block Multiplication. Suppose that we partition two matrices into submatrices
by inserting vertical and horizontal lines:

A =


A11 · · · A1m

...
...

A`1 · · · A`m

 and B =


B11 · · · B1n

...
...

Bm1 · · · Bmn.


Let’s say that each submatrix Aij has shape λi × µj and each Bij has shape µi × νj , so

#(rows of A) = λ1 + · · ·+ λ`,

#(cols of A) = µ1 + · · ·+ µm,

#(rows of B) = µ1 + · · ·+ µm,

#(cols of B) = ν1 + · · ·+ νn.

Then I claim that that the product matrix AB can be partitioned as

AB =


C11 · · · C1n

...
...

C`1 · · · C`n

 ,

where the submatrix Cij is given by

Cij =
m∑
k=1

AikBkj .

Note that #(cols of Aik) = µk = #(rows of Bkj) so that each matrix product AikBkj is defined
and has shape `i × νj . Thus Cij is a sum of m matrices, each of shape λi × νj . In particular,
Cij has shape λi×µj . Note that the standard formula for unpartitioned matrices corresponds
to the case when each submatrix Aij and Bij has size 1× 1.

I won’t prove right this now because the notation is too hairy.2 Instead let’s see some examples
illustrating the few rules that we stated above. Let

A =

(
1 1 1
1 2 3

)
and B =

1 0
1 1
0 1

 .

Multiplying rows of A by columns of B gives

(
1 1 1

1 2 3

) 1 0
1 1
0 1

 =



(
1 1 1

)1
1
0

 (
1 1 1

)0
1
0


(
1 2 3

)1
1
0

 (
1 2 3

)0
1
0




=

(
2 2

3 5

)
.

2Later it will follow easily from properties of linear functions between direct sums of vector spaces.
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Multiplying rows of A by B gives

(
1 1 1

1 2 3

)1 0
1 1
0 1

 =



(
1 1 1

)1 0
1 1
0 1


(
1 2 3

)1 0
1 1
0 1




=

(
2 2

3 5

)
.

Multiplying A by columns of B gives(
1 1 1
1 2 3

) 1 0
1 1
0 1

 =

 (
1 1 1
1 2 3

)1
1
0

 (
1 1 1
1 2 3

)0
1
1

  =

(
2 2
3 5

)
.

Finally, multiplying columns of A by rows of B gives

(
1 1 1
1 2 3

)
1 0

1 1

0 1

 =

(
1
1

)(
1 0

)
+

(
1
2

)(
1 1

)
+

(
1
3

)(
0 1

)

=

(
1 0
1 0

)
+

(
1 1
2 2

)
+

(
0 1
0 3

)
=

(
2 2
3 5

)
.

Each of these kinds of multiplication is useful for a different purpose. It is important to know
them all.

2. Linear Functions

The ultimate goal of matrices is to hide all of the details of matrix arithmetic behind uppercase
Roman letters. This lets us ignore irrelevant details to focus on higher level structure. The
magic property that makes this work is the associative property of matrix multiplication.

Magic: Associativity of Matrix Multiplication. Consider matrices A,B,C of sizes `×m,
m × n and n × p, respectively. Then the matrices AB, BC, A(BC) and (AB)C are defined,
and we have

A(BC) = (AB)C.

This is not at all obvious from the definitions given above. A brute force proof is possible,
but not enlightening. There is a much more conceptual explanation.

Definition of Linear Functions. Consider vector spaces V and W over R (or C). A function
T : V →W is called linear when it satisfies the following three properties:

• T (0) = 0,
• T (αv) = αT (v),
• T (v1 + v2) = T (v1) + T (v2).

In other words, a linear function preserves the vector space operations of addition and scalar
multiplication. We can also summarize these properties in one step by saying that T preserves
linear combinations:

T (α1v1 + · · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn).
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Why? Many natural operations are linear:

• Differention between suitable spaces of functions is linear.
• Integration from a suitable space of functions to R is linear.
• An inner product 〈−,−〉 on V over R is bilinear. That is, for any v ∈ V , each of the

following two functions is linear:

〈v,−〉 : V → R and 〈−,v〉 : V → R

• A Hermitian inner product 〈−,−〉 on V over C is sesquilinear (one and a half times
linear). This means that for each fixed v ∈ V , the function V → C defined by
u 7→ 〈v,u〉 is linear, but the function V → C defined by u 7→ 〈u,v〉 is conjugate linear:

〈α1u1 + · · ·+ αnun,v〉 = α∗1〈u1,v〉+ · · ·+ α∗n〈un,v〉.

If V and W are finite dimensional with dimV = n and dimW = m, then choosing bases turns
linear transformations T : V → W into m × n matrices. To keep things simple, for now we
will work with Euclidean space and standard bases. Here is the big idea:

linear functions
T : Rn → Rm ! m× n matrices

The correspondence is easy to describe. First of all, let A be an m × n matrix over R. This
defines a function Rn → Rm by multiplying column vectors on the left:

v ∈ Rn  Av ∈ Rm.

Indeed, if v has shape n× 1 then the product matrix Av is defined and has shape m× 1. It
is straightforward to check that this function is linear:

A(α1v+ · · ·+ αnv1) = α1Av1 + · · ·+ αnAvn.

Conversely, let T : Rn → Rm be any linear function. In order to create an m× n matrix from
T we consider the n standard basis vectors e1, . . . , en ∈ Rn. Following our convention we will
think of these as column vectors:

e1 =


1
0
...
0

 , . . . , en =


0
0
...
1

 .

Now each basis vector ei ∈ Rn gets sent by T to a column vector T (ei) in Rm. We will record
the n column vectors T (e1), . . . , T (en) ∈ Rm as the columns of an m× n matrix:

[T ] :=

 | |
T (e1) · · · T (en)
| |

 .

Thus the linear function T : Rn → Rm becomes an m × n matrix [T ]. Furthermore, the
linear function defined by the matrix [T ] is the same as the linear function T . To see this, we
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consider any vector v ∈ Rn:

v =


v1
v2
...
vn

 = v1


1
0
...
0

+ v2


0
1
...
0

+ · · ·+ vn


0
0
...
1

 = v1e1 + v2e2 + · · ·+ vnen.

Then from the definition of [T ] and the linearity of T we have

T (v) = T (v1e1 + v2e2 + · · ·+ vnen)

= v1T (e1) + v2T (e2) + · · ·+ vnT (en)

=
∑
j

vjT (ej)

=
∑
j

vj(jth col of [T ])

= [T ]v,

where the last expression [T ]v is a matrix product. To summarize: To each linear function

T : Rn → Rn we associate an m× n matrix [T ] with the property that

T (v)︸ ︷︷ ︸
apply the function

= [T ]v︸︷︷︸
matrix multiplication

So far this is slightly interesting. It becomes very interesting when we consider functional
composition. Suppose we have linear functions T : Rn → Rm and S : Rm → R`:

Rn T //

S◦T

>>Rm S // R`

Observe that the composite function S ◦ T : Rn → R` is also linear:

(S ◦ T )
(∑

aivi

)
= S

(
T
(∑

aivi

))
= S

(∑
aiT (vi)

)
=
∑

aiS (T (vi))

=
∑

ai(S ◦ T )(vi).

Hence the function S ◦ T : Rn → R` corresponds to an ` × n matrix [S ◦ T ]. Now we have
three matrices:

[S] has shape `×m,

[T ] has shape m× n,

[S ◦ T ] has shape `× n.

The following theorem is the ultimate reason for the concept of matrix multiplication. This
theorem could also be taken as the definition of matrix multiplication.
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Matrix Multiplication = Composition of Linear Functions. For any linear functions
T : Rn → Rm and S : Rm → R`, the composite S ◦ T : Rn → R` is also linear, and we have

[S ◦ T ] = [S][T ].

Proof. The proof will use the following rule of matrix multiplication:

(jth col of AB) = A(jth col of B).

Our goal is to show that [S ◦T ] and [S][T ] have the same columns. From the definition of the
matrix [S ◦ T ] we have

(jth col of [S ◦ T ]) = (S ◦ T )(ej) = S(T (ej)).

On the other hand, from the above property of matrix multiplication we have

(jth col of [S][T ]) = [S](jth col of [T ]) = [S]T (ej) = S(T (ej)).

�

Remark: It is worth meditating on this proof. When you understand it then you can say that
you really understand the concept of matrix multiplication.

Before moving to some examples, we pause to give the correct (conceptual) proof that matrix
multiplication is associative.

Proof of Associativity. Consider matrices A,B,C of shapes ` × m, m × n and n × p,
respectively. We can use these to define linear functions R : Rm → R`, S : Rn → Rm and
T : Rp → Rn by matrix multiplication:

R(v) := Av for v ∈ R`,

S(v) := Bv for v ∈ Rn,

T (v) := Cv for v ∈ Rm.

Then, of course, the corresponding matrices are [R] = A, [S] = B and [T ] = C. Here is a
picture of the functions:

Rp T //

S◦T

>>Rn S //

R◦S

!!
Rm R // R`

Recall that composition of functions is naturally associative. That is, for any v ∈ Rp we have

(R ◦ (S ◦ T ))(v) = R(S(T (v))) = ((R ◦ S) ◦ T )(v),
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which means that R ◦ (S ◦T ) = (R ◦S) ◦T as functions Rp → R`. Then the previous theorem
tells us that

A(BC) = [R]([S][T ])

= [R][S ◦ T ]

= [R ◦ (S ◦ T )]

= [(R ◦ S) ◦ T ]

= [R ◦ S][T ]

= ([R][S])[T ]

= (AB)C.

Note that we never had to mention the entries of the matrices. Magic! �

3. Matrix Arithmetic

Let’s zoom out again. One of the strengths of matrix notation is that we can sometimes solve
a problem purely symbolically, without mentioning the entries of the matrices. In fact, by
hiding the appropriate details we can sometimes turn a difficult problem into an almost trivial
matrix computation.

Here is the context for matrix arithmetic.

Vector Spaces of Matrices. Let Rm×n denote the set of m×n with real entries. (We define
Cm×n similarly.) By convention we will write

Rn = Rn×1 = the set of n× 1 column vectors.

Matrices can be added and multiplied by scalars in an obvious way. That is, given m × n
matrices A,B ∈ Rm×n and a scalar α ∈ R we define m× n matrices A+B and αA such that

(ij entry of A+B) = (ij entry of A) + (ij entry of B),

(ij entry of αA) = α(ij entry of A).

It is easy to check that these operations make Rm×n into a vector space over R. Furthermore,
there is a standard basis of matrices Eij with 1 ≤ i ≤ m and 1 ≤ j ≤ n, with the entry 1 in
the ij position and all other entries equal to zero:

Bij =

j

i

 ...
· · · 1


(When a matrix contains many zero entries we will simply leave them blank.) Since there mn
such basis matrices it follows that

dimRm×n = mn.

In addition to the vector space structure, we have two additional operations on matrices. First
we have transposition and conjugate transposition:

Rm×n → Rn×m

A 7→ AT
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and
Cm×n → Cn×m

A 7→ A∗

Second we have the all-important operation of matrix multiplication:

R`×m × Rm×n → R`×n

(A,B) 7→ AB.

Finally, we have two special classes of matrices. For any shape m× n we have a zero matrix:

Om×n =

0 · · · 0
...

...
0 · · · 0

 .

[Note: I use the letter O for zero matrices.] And for any n we have a square identity matrix:

In =


1

1
. . .

1

 .

This identity matrix corresponds to the identity function id : Rn → Rn, which sends each
vector to itself. Indeed, for any linear function T : Rn → Rn recall that the ith column of the
corresponding matrix [T ] is T (ei). Since the ith column of [id] is id(ei) = ei we have [id] = In.

Rules of Matrix Arithmetic. The operations of matrix arithmetic satisfy the following
abstract rules. Here uppercase Roman letters represent matrices and lowercase Greek letters
are scalars. Assume that the matrices have appropriate shape so the indicated matrix sums
and products exist.

• Vector Space Rules.

A+B = B +A,

A+ (B + C) = (A+B) + C,

A+O = O +A = A,

1A = A,

0A = O,

α(βA) = (αβ)A,

(α+ β)A = αA+ βA,

α(A+B) = αA+ αB.

• Multiplication is not Commutative. In general we have

AB 6= BA,

even when both matrices are defined and have the same shape.

• Multiplication is Bilinear.

A(βB + γC) = βAB + γAC,

(αA+ βB)C = αAC + βBC.
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• Multiplication by O and I.

AO = O,

OA = O,

AI = A,

IA = A.

• Properties of Transpose and Conjugate Transpose.

(AT )T = A,

(A+B)T = AT +BT ,

(αA)T = αAT ,

(AB)T = BTAT ,

(A∗)∗ = A,
(A+B)∗ = A∗ +B∗

(αA)∗ = α∗A∗,
(AB)∗ = B∗A∗.

Remark: If A is `×m and B is m× n then AT is m× ` and BT is n×m. The matrix
BTAT always exists and is equal to AB. In general, the matrix ATBT does not exist.

In addition to arithmetic operations, we also need a way to measure the “size” of a matrix.

Axioms of Matrix Norms. Let ‖ − ‖ be a function that assigns to each matrix A a real
number ‖A‖. We call this a matrix norm when it satisfies the following axioms:

(a) ‖A‖ ≥ 0 for all A, with ‖A‖ = 0 if and only if A = O.
(b) ‖αA‖ = |α|‖A‖
(c) ‖A+B‖ ≤ ‖A‖+ ‖B‖
(d) ‖AB‖ ≤ ‖A‖‖B‖.

Here are the two main examples.

The Frobenius Norm. We define this by analogy with the standard vector norm:

‖A‖F :=


√∑

i,j a
2
ij over R,√∑

i,j |aij |2 over C.

We observe that ‖v‖F = ‖v‖ for all column vectors v. The fact that ‖ − ‖F satisfies (abc)
follows from this vector case. You will prove that ‖AB‖F ≤ ‖A‖F ‖B‖F on the homework.

The L2 Norm (Also Called the Operator Norm). The Frobenius norm only applies to
matrices. The operator norm also applies to linear functions on infinite dimensional normed
vector spaces:

‖A‖2 := max{‖Au‖ : over all unit vectors ‖u‖ = 1}.
Since ‖Au‖ ≥ 0 for all u we have ‖A‖2 ≥ 0. And if ‖A‖2 = 0 then we must have ‖Au‖ = 0
(and hence Au = 0) for all unit vectors u. In particular, letting u range of the standard basis
vectors we find that each column is A is a zero vector, hence A = O. This proves property (a).
For property (b) we observe that ‖αAu‖ = |α|‖Au‖, hence the maximum value of ‖αAu‖ is
|α| times the maximum value of ‖Au‖. For part (c) we use the triangle inequality for vector
norms to observe that3

‖(A+B)u‖ = ‖Au +Bu‖ ≤ ‖Au‖+ ‖Bu‖ for all matrices A,B and unit vectors u.

3Details: The maximum value of ‖(A+B)u‖ is ≤ the maximum value of ‖Au‖+ ‖Bu‖ which is ≤ the sum
of the maximum values of ‖Au‖ and ‖Bu‖.
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To prove part (d) we first show that ‖Av‖2 ≤ ‖A‖2‖v‖ for any nonzero vector v. Indeed if v
is nonzero then v/‖v‖ is a unit vector and hence

‖A‖2 = max{‖Au‖ : all unit vectors u} ≥ ‖A(v/‖v‖)‖ = ‖Av‖/‖v‖.
Finally, to show that ‖AB‖2 ≤ ‖A‖2‖B‖2, consider any unit vector u. Note that Bu is not
necessarily a unit vector, but from the previous remark with v = Bu we still have4

‖(AB)u‖ = ‖A(Bu)‖ ≤ ‖A‖2‖Bu‖ ≤ ‖A‖2‖B‖2.
It follows that

‖AB‖2 = max{‖ABu‖ : all unit vectors u} ≤ ‖A‖2‖B‖2.
Here is a picture of the L2 norm of a 2× 2 matrix:

The matrix A sends the unit circle to an ellipse. The operator norm ‖A‖2 is the longest axis of
the ellipse. More generally, the longest axis is called the first singular value σ1 and the smaller
axis is the second singular value σ2. We will discuss the SVD (singular value decomposition)
in a later section.

The Frobenius norm is harder to visualize.

4. Inverse Matrices

We have seen how to multiply matrices, but can we also divide? If we can then this will be
extremely useful for solving matrix equations. For example, suppose we have an equation

AX = B,

where A and B are given matrices and X is an unknown matrix. If we can find a matrix C
such that CA = I then multiplying both sides on the left by C gives

AX = B

C(AX) = CB

(CA)X = CB

IX = CB

X = CB.

4If Bu = 0 then we have ‖ABu‖ = 0 and there is nothing to show.
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Definition of Inverse Matrices. Let A be an m×n matrix. Any n×m matrix B satisfying

AB = Im

is called a right inverse of A. Any n×m matrix C satisfying

CA = In

is called a left inverse of A. Left and right inverses, if they exist, need not be unique. However,
suppose that A has both a right inverse B and a left inverse C. Then we must have

B = InB = (CA)B = C(AB) = CIm = C.

In this case B = C is the unique two-sided inverse of A, and we write

A−1 = B = C.

When A has a two-sided inverse we say that A is invertible. It will follow from the Fundamental
Theorem below that an invertible matrix must be square (i.e., have m = n) but this
theorem is surprisingly difficult to prove.

For example, consider the following non-square matrix:

A =

(
1 1 1
1 2 3

)
If B is a right inverse of A then it must have two columns b1,b2 ∈ R3 and it must satisfy the
block matrix equation

I2 = AB(
1 0
0 1

)
= A

(
b1 b2

)
(

e1 e2
)

=
(
Ab1 Ab2

)
From Linear Algebra I you know how to solve the systems Ab1 = e1 and Ab2 = e2 to obtain all
possible column vectors b1,b2. In turns out b1 = (2+s,−1−2s, s) and b2 = (−1+ t, 1−2t, t)
for any parameters s, t. Thus we obtain a two-dimensional family of right inverses:5(

1 1 1
1 2 3

) 2 + s −1 + t
−1− 2s 1− 2t

s t

 =

(
1 0
0 1

)
.

This already tells us that A has no left inverse, since if it did then any two right inverses
would be equal. Indeed, let B,B′ be any two right inverses of A and suppose that A has a
left inverse C. Then we get

I2 = I2

AB = AB′

C(AB) = C(AB′)

(CA)B = (CA)B′

I3B = I3B
′

B = B′.

Since our matrix A has many different right inverses, no left inverse can exist.

5Note: The family of right inverses of A is not a vector subspace of R3×2 because it does not contain the
zero matrix. However, it is an affine subspace of R3×2, i.e., a translation of a linear subspace.
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I mentioned above that any invertible matrix (i.e., any matrix with a two-sided inverse) must
be square. It is also true that any left inverse of a given square matrix must also be a right
inverse, and vice versa. I will state these theorems now, but the proofs are surprisingly subtle
and are postponed until the next section.

Two Subtle Theorems.

• Any invertible matrix must be square.
• For any square matrices A and B of the same size, we have

AB = I ⇐⇒ BA = I.

To be concrete, consider the matrices

A =

(
a b
c d

)
and A′ =

(
a′ b′

c′ d′

)
.

The matrix equation AA′ = I is equivalent to the following four equations:
aa′ + bc′ = 1,
ab′ + bd′ = 0,
ca′ + dc′ = 0,
cb′ + dd′ = 1.

And the matrix equation A′A = I is equivalent to the system
a′a+ b′c = 1,
a′b+ b′d = 0,
c′a+ d′c = 0,
c′b+ d′d = 1.

The second theorem above tells us that these two systems of equations have the same solutions
for the eight unknowns a, b, c, d, a′, b′, c′, d′. It is tempting to look for a direct algebraic proof
of this but you won’t be able to find one because this is the wrong approach. The correct
approach requires us to consider the dimensions of certain vector spaces associated to the
matrices. See the Fundamental Theorem in the next section.

For now we will prove some easy and purely symbolic properties of inverse matrices.

Algebraic Properties of Inverse Matrices.

(a) Suppose that A−1 exists. Then (A∗)−1 exists and is equal to (A−1)∗.
(b) Suppose that A−1, B−1 and AB exist. Then (AB)−1 exists and is equal to B−1A−1.

Proof. (a): We only need to show that A∗(A−1)∗ = I and (A−1)∗A∗ = I. For the first
identity we have6

A∗(A−1)∗ = (A−1A)∗ = I∗ = I.

The other direction is similar. (b): We only need to show that (AB)(B−1A−1) = I and
(B−1A−1)AB = I. This follows easily from the associativity of matrix multiplication:

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I.

The other direction is similar. �

6Recall that A∗B∗ = (BA)∗.
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5. Examples

It is high time for some examples.

Rotations. Consider the function Rt : R2 → R2 that rotates each point by angle t, counter-
clockwise around the origin. This function is linear because it sends the origin to itself and it
sends parallelograms to parallelograms. To determine the corresponding matrix we only need
to rotate the standard basis vectors:

Since no confusion will result, I will use the notation Rt for the function and for the corre-
sponding matrix. Thus we have

Rt =

(
Rt

(
1
0

)
Rt

(
0
1

))
=

(
cos t − sin t
sin t cos t

)
.

Once we have the matrix we can use this to rotate a general point:

Rt

(
x
y

)
=

(
cos t − sin t
sin t cos t

)(
x
y

)
=

(
x cos t− y sin t
x sin t+ y cos t

)
.

It would be much harder to solve this problem without the theory of matrices. Next we
consider the composition of two rotations. Thinking in terms of functions, it is clear that
RsRt = Rs+t = RtRs, since rotating first by one angle and then by the other angle is the same
as rotating once by the sum of the two angles. On the other hand, since matrix multiplication is
the same as functional composition, we obtain the following matrix identity, which is equivalent
to the angle sum trigonometric identities:(

cos s − sin s
sin s cos s

)(
cos t − sin t
sin t cos t

)
=

(
cos(s+ t) − sin(s+ t)
sin(s+ t) cos(s+ t)

)
.

Note that rotation clockwise by angle t is the same as rotation counterclockwise by angle −t.
Thus the functions Rt and R−t are inverses:

RtR−t = R−tRt = R0 = I.
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Note that rotation by angle zero is just the identity function. It is interesting to observe that(
cos t − sin t
sin t cos t

)−1
= (Rt)

−1 = R−t =

(
cos(−t) − sin(−t)
sin(−t) cos(−t)

)
=

(
cos t sin t
− sin t cos t

)
= (Rt)

T .

We will see below the matrices satisfying A−1 = AT are called orthogonal matrices. Finally,
let me remark that the determinant of a rotation matrix is always 1:

det(Rt) = det

(
cos t − sin t
sin t cos t

)
= cos2 t+ sin2 t = 1.

We will discuss the general theory of determinants later.

Reflections. Let Ft : R2 → R2 be the function that reflects each point across the line that
makes angle t/2 from the positive x-axis. Again, this is a linear function because it sends the
origin to itself and sends parallelograms to parallelograms. To determine the corresponding
matrix we reflect the standard basis vectors:

Thus we obtain the matrix

Ft =

(
Ft

(
1
0

)
Ft

(
0
1

))
=

(
cos t sin t
sin t − cos t

)
.

The composition of two reflections in two different lines turns out to be a rotation:

FsFt =

(
cos s sin s
sin s − cos s

)(
cos t sin t
sin t − cos t

)
=

(
cos s cos t+ sin s sin t cos s sin t− sin s cos t
sin s cos t− cos s sin t sin s sin t+ cos s cos t

)
=

(
cos(s− t) − sin(s− t)
sin(s− t) cos(s− t)

)
= Rs−t.
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This would be more difficult to see geometrically. In particular, we find that reflection matrices
do not commute in general:

FsFt = Rs−t 6= Rt−s = FtFs unless angles s− t and t− s are equal.

Taking s = t shows that the composition of a reflection with itself is the identity matrix:

F 2
t = FtFt = Rt−t = R0 = I.

In other words, reflecting in the same line twice is the same thing as doing nothing. This
implies that each reflection matrix Ft is equal to its own inverse:

(Ft)
−1 = Ft.

It also happens that (Ft)
T = Ft, so Ft is another example of an orthogonal matrix. Finally,

let me remark that the determinant of any reflection matrix is −1:

det(Ft) = det

(
cos t sin t
sin t − cos t

)
= − cos2 t− sin2 t = −1.

Projections. Consider the following matrix:

Pt =

(
cos2 t cos t sin t

cos t sin t sin2 t

)
.

As with any 2 × 2 matrix, this defines a linear function R2 → R2. What is the geometric
description of this function? It is convenient to solve this problem in greater generality.

Suppose that we want to project7 a point x ∈ Rn onto the line in Rn generated by a vector a:

Since projection is a linear function there will be some n × n matrix P that achieves this
projection. We know exactly two things about this situation:

(1) Since the projection Px is on the line generated by a we must have Px = αx for some
scalar α. This scalar will change depending on the point x.

(2) Since the projection is orthogonal we know that the blue vector Px− x is orthogonal
to the red vector a.

7Here we are talking about orthogonal projection, i.e., projection at right angles. Later we will talk about
more general kinds of projection.
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Putting these two facts together gives8

aT (Px− x) = 0 (2)

aT (αa− x) = 0 (1)

αaTa− aTx = 0

α = aTx/aTa

α = aTx/‖a‖2.
Hence the projection of x is given by

Px = αa =

(
aTx

‖a‖2

)
︸ ︷︷ ︸

scalar

a︸︷︷︸
vector

.

To find a formula for the n × n projection matrix P we simply rearrange using the fact that
matrix multiplication is associative:9

Px =

(
aTx

‖a‖2

)
a

= a

(
aTx

‖a‖2

)
scalars commute with matrices

=
1

‖a‖2
a(aTx)

=
1

‖a‖2
(aaT )︸ ︷︷ ︸

n× n matrix

x︸︷︷︸
vector

.

Since this identity holds for any vector x10 we conclude that the projection matrix is given by

P =
1

‖a‖2
aaT .

If a = u is a unit vector then the formula is particularly simple:

P = uuT = the projection onto the line in Rn spanned by unit vector u.

Now we go back to two dimensions. Consider the line in R2 that makes angle t counterclockwise
from the positive x-axis. This line is generated by the unit vector u = (cos t, sin t). Hence the
matrix that projects onto this line is

Pt = uuT =

(
cos t
sin t

)(
cos t sin t

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)
.

The image of a general point x = (x, y) under this projection is

Pt

(
x
y

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)(
x
y

)
=

(
x cos2 t+ y cos t sin t

x cos t sin t+ y sin2 t

)
.

Here is a picture:

8I will express this using inner products because the ideas generalize beyond Euclidean space.
9The associativity of matrix multiplication is behind many clever proofs like this.
10Let A,B be two n×n matrices such that Ax = Bx for all x ∈ Rn. If x = ej then the identity Aej = Bej

tells us that the jth columns of A and B are the same. Since this holds for any j we conclude that A and B
are the same matrix.
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Note that this projection is not invertible. To see this, let’s consider the point (− sin t, cos t).
This point gets projected to the origin:

Pt

(
− sin t
cos t

)
=

(
cos2 t cos t sin t

cos t sin t sin2 t

)(
− sin t
cos t

)
=

(
− cos2 t sin t+ cos2 t sin t

− cos t sin2 t+ cos t sin2 t

)
=

(
0
0

)
.

But the origin gets projected to itself: Pt0 = 0. If Pt had an inverse matrix (Pt)
−1 then this

would imply that

Pt

(
− sin t
cos t

)
= Pt

(
0
0

)
(Pt)

−1Pt

(
− sin t
cos t

)
= (Pt)

−1Pt

(
0
0

)
(
− sin t
cos t

)
=

(
0
0

)
.

Contradiction.11 More generally, let P = uuT be the matrix that projects onto the line in Rn

generated by some unit vector u and let v ∈ Rn be any vector that is perpendicular to u, so
that uTv = 0. Then we have

Pv = (uuT )v = u(uTv) = u(0) = 0.

This shows that the projection onto a line in Rn is never invertible. Finally, let me note that
the matrix Pt has determinant zero:

detPt = det

(
cos2 t cos t sin t

cos t sin t sin2 t

)
= cos2 t sin2 t− cos2 t sin2 t = 0.

11More generally, a linear function that is not injective cannot have a left inverse.
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Later we will see that a square matrix A is invertible if and only if detA 6= 0.

The Group of Orthogonal Matrices. I mentioned above that a square matrix A satisfying
A−1 = AT is called an orthogonal matrix. We denote the set of all such matrices by

On(R) = {A ∈ Rn×n : ATA = I and AAT = I}.
Sometimes the set On(R) is called the orthogonal group, because it satisfies the three group
axioms from abstract algebra:

• The identity matrix is in On(R). Indeed, we have IT = I and II = I, so that
IT I = II = I and IIT = II = I.
• If A is in On(R) then A is invertible and A−1 is also in On(R). Indeed, the conditions
ATA = I and AAT = I just tell us that A is invertible with A−1 = AT . But then we
also have

(A−1)−1 = A = (AT )T = (A−1)T ,

which tells us that A−1 is in On(R).
• If A and B are in On(R) (i.e., if A−1 = AT and B−1 = BT ) then so is their product
AB. Indeed, we have

(AB)−1 = B−1A−1 = BTAT = (AB)T .

Remark: Particle physicists are particularly interested in matrix groups but they prefer the
complex version of orthogonal matrices, which are called unitary matrices:

Un(C) = {A ∈ Cn×n : A∗A = I and AA∗ = I}.

It is worth mentioning a geometric interpretation of orthogonal matrices:12

ATA = I ⇐⇒ the columns of A are orthonormal.

Indeed, suppose that A ∈ Rn×n has column vectors a1, . . . ,an ∈ Rn, so that AT has row
vectors aT

1 , . . . ,a
T
n . Then the i, j entry of the matrix ATA is the dot product of ai and aj :

(i, j entry of ATA) = (ith row of AT )(jth col of A)

= aT
i aj

= ai • aj .

On the other hand, the i, j entry of the identity matrix is the Kronecker delta δij . Hence we
have ATA = I if and only if

ai • aj = δij ,

i.e., if and only if the column vectors a1, . . . ,an ∈ Rn are orthonormal. This is one reason for
the term “orthogonal matrix”. On the homework you used this fact to prove that every 2× 2
orthogonal matrix is either a rotation or a rotation.

The Fundamental Theorem, which we will prove in the next section, tells us that the equations
ATA = I and AAT = I are equivalent when A is square, which means that the columns of a
square matrix are orthonormal if and only if the rows are orthonormal. I find this mysterious.

12The same result holds for unitary matrices, with respect to the Hermitian inner product.


	1. Matrix Multiplication
	2. Linear Functions
	3. Matrix Arithmetic
	4. Inverse Matrices
	5. Examples

