
Math 510 Fall 2022
Notes for Homework 4 Drew Armstrong
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1 Linear and Bilinear Forms

1.1 Linear Forms

Let V be a vector space over R (or C). A linear function

ϕ : V → R

is called a linear form. If V is an infinite dimensional space of functions such as L2 then a
linear form is usually called a linear functional.

Linear forms on Rn are particularly simple. Let ϕ : Rn → R be a linear form and for each
basis vector ei define the scalar

bi := ϕ(ei).

Then for any vector x = x1e1 + · · ·+ xnen ∈ Rn we have

ϕ(x) = ϕ(x1e1 + · · ·+ xnen)

= x1ϕ(e1) + · · ·+ xnϕ(en)

= x1b1 + · · ·+ xnbn.

If we write b = (b1, . . . , bn) then this becomes

ϕ(x) = bTx.

1



We will denote the function x 7→ bTx by ϕb : Rn → R. Thus we obtain a bijection between
vectors and linear forms:

Rn → linear forms on Rn
b 7→ ϕb.

Indeed, the function ϕb(x) = bTx is linear, and we have just seen that every linear function
ϕ : Rn → R is equal to ϕb for some b ∈ Rn.

More abstractly, let V be an inner product space over R (or a Hermitian space over C). Then
for any vector u ∈ V we can define a linear form

ϕu(v) := 〈u,v〉.

Again, this gives a map1 from V to the set of linear forms on V :

V → linear forms on V
u 7→ ϕu.

But this need not be a bijection in general. To investigate this, suppose that vectors u1,u2 ∈ V
correspond to the same functional, so that for all v ∈ V we have

ϕu1(v) = ϕu2(v)

〈u1,v〉 = 〈u2,v〉
〈u1,v〉 − 〈u2,v〉 = 0

〈u1 − u2,v〉 = 0.

Since this applies to any v we can take v = u1 − u2 to obtain

〈u1 − u2,u1 − u2〉 = 0.

But it is an axiom of (Hermitian) inner products that 〈x,x〉 = 0 implies x = 0, hence we must
have

u1 − u2 = 0

u1 = u2.

This shows that the map from V to the set of linear forms on V is always injective. However,
it is not necessarily surjective. This is the subject of the Riesz Representation Theorem.

Theorem (Riesz Representation). Let V be a Hilbert space. This means that V is an
inner product space over R (or a Hermitian space over C), and that Cauchy sequences with
respect to the norm ‖ − ‖ =

√
〈−,−〉 converge.2 Let ϕ : V → R be a linear functional. Then

ϕ = ϕu for some u ∈ V ⇐⇒ ϕ is continuous with respect to ‖ − ‖.
1So many different words for “function”. The purpose is to avoid confusion when discussing many different

kinds of functions at the same time.
2Recall: We say that v1,v2, . . . is a Cauchy sequence if for all k ≥ ` ≥ N we have ‖vk−v`‖ → 0 as N →∞.
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If V is finite dimensional then every linear functional is continuous. If V is infinite dimensional
then there exist discontinuous functionals, but they are often ignored.

Let me introduce a some jargon. Given a vector space V over R (or C) we define its dual space
as the set of linear forms:3

V ∨ = the dual space

= {all linear forms V → R}.

As the name suggests, the set V ∨ is also a vector space over R. For a given list of forms
ϕi : V → R and scalars ai ∈ F we define the form

∑
aiϕi : V → R “pointwise”:(∑

aiϕi

)
(v) :=

∑
aiϕi(v) for all v ∈ V .

I claim that this definition makes the map V → V ∨ into a linear map. To see this, let’s give
the map a name. Let Φ denote the map that sends the vector u ∈ V to the form ϕu ∈ V ∨:

Φ : V → V ∨

u 7→ ϕu

Then for any linear combination of vectors
∑
aiui ∈ V , I claim that

Φ
(∑

aiui

)
=
∑

aiΦ(ui),

where each side of the equation is a linear form. To show that two forms are equal we must
show that they define the same function V → R. So consider any vector v ∈ V . Then since
Φ(u) is just another name for ϕu, we have[

Φ
(∑

aiui

)]
(v) = ϕ∑

aiui(v)

=
〈∑

aiui,v
〉

=
∑

ai〈ui,v〉

=
∑

aiϕui(v)

=
[∑

aiΦ(ui)
]

(v).

Thus Φ : V → V ∨ is an injective linear map, and if V is finite dimensional then it is also
surjective, hence it is an isomorphism V ∼= V ∨. When V is infinite dimensional then Φ is not
surjective, however it is common to restrict the definition of V ∨ as follows:

V ∨ = {the set of continuous linear functionals V → R}.

Then from the Riesz Reprentation Theorem we will still have V ∼= V ∨.

3It is more common to write V ∗ for the dual space, but I am already using that notation for the conjugate
transpose.
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Another piece of jargon is the Dirac bra-ket notation from quantum physics. To motivate this,
consider the isomorphism between Rn and its dual:

Rn ∼= (Rn)∨

b ↔ ϕb,

where the form ϕb : Rn → R corresponding to the column vector b is defined by ϕb(x) = bTx.
But every linear function corresponds to a matrix, and the linear function ϕb : Rn → R
corresponds to the 1× n row vector bT . In the language of Chapter 2, we have

[ϕb] = bT .

Thus it makes sense to identify the dual space (Rn)∨ with the space of row vectors, and the
isomorphism Rn ∼= (Rn)∨ with transposition:4

Rn ∼= (Rn)∨

b ↔ bT .

For infinite dimensional spaces we can no longer use matrices. However, if V is an infinite
dimensional Hilbert space of functions, such as L2(C), and V ∨ is its dual space of continuous
functionals, Dirac introduced the following notation:

V ∼= V ∨

|f〉 ↔ 〈f |.

This notation is compatible with the inner product notation 〈−,−〉 since, by definition, the
functional 〈f | ∈ V ∨ acts on the vector |g〉 ∈ V by

〈f | acting on |g〉 = 〈f, g〉.

Hence in the physics notation the inner product is written as 〈f |g〉.

1.2 Bilinear Forms

Let V be a vector space over R (or C). A bilinear form is a function

ϕ : V × V → R

that is linear in each coordinate:

• ϕ(u,
∑
aivi) =

∑
aiϕ(u,vi),

• ϕ(
∑
aiui,v) =

∑
aiϕ(ui,v).

4Another piece of jargon: Sometimes the elements of (Rn)∨ are called co-vectors.
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Remark: Over C we want one of the coordinates to be conjugate linear. In this course I have
picked the first coordinate:

ϕ(
∑

aiui,v) =
∑

a∗iϕ(ui,v).

In this case we say that ϕ is sesquilinear (one-and-a-half times linear) instead of bilinear. For
example, an inner product is a bilinear function and a Hermitian inner product is a sesquilinear
function.

As with linear forms, we begin with the case of Euclidean space. Let ϕ : Rn × Rn → R be a
bilinear form, and for any two basis vectors ei, ej ∈ Rn define the scalar

bij := ϕ(ei, ej).

Then for any vectors x = x1e1 + · · ·+ xnen and y = y1e1 + · · ·+ ynen we have

ϕ(x,y) = ϕ(x1e1 + · · ·+ xnen, y1e1 + · · ·+ ynen)

=
∑

xiyjϕ(ei, ej)

=
∑

xiyibij .

If we let B be the n× n matrix with ij entry bij then this becomes

ϕ(x,y) = xTBy =
(
x1 · · · xn

)b11 · · · b1n
...

...
bn1 · · · bnn


y1...
yn

 .

Exercise: Verify this. Conversely, for any n×n matrix B we can define a bilinear form ϕB by

ϕB(x,y) := xTBy.

If B has ij entry bij then it follows that

ϕB(ei, ej) = eTi Bej = (ith row of B)ej = bij .

Hence for any n× n matrices B and C we have

ϕB = ϕC =⇒ ϕB(x,y) = ϕC(x,y) for all x,y ∈ Rn

=⇒ ϕB(ei, ej) = ϕC(ei, ej) for all i, j

=⇒ bij = cij for all i, j

=⇒ B = C.

In summary, we obtain a bijection between n× n matrices and bilinear forms:

square matrices Rn×n ↔ bilinear forms Rn × Rn → R
B ↔ ϕB.
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We can also view this as an isomorphism of vector spaces, since bilinear forms can be added
and multiplied by scalars, as can any kind of functions with values in R. The following result
compares properties of the form ϕB to properties of the matrix B.

Theorem (Properties of Bilinear Forms). Let B be an n× n matrix over R (or C) and
consider the bilinear (or sesquilinear) form ϕB defined by5

ϕB(x,y) = xTBy over R or ϕB(x,y) = x∗By over C.

(a) Symmetric. We have

ϕB(x,y) = ϕB(y,x) for all x,y ⇐⇒ BT = B,

ϕB(x,y)∗ = ϕB(y,x) for all x,y ⇐⇒ B∗ = B.

In the first case we say that the form ϕB and the matrix B are symmetric. In second
case we say they are Hermitian.

(b) Positive Semi-Definite. We have

ϕB(x,x) ≥ 0 for all x ⇐⇒ B = ATA (or B = A∗A) for some matrix A.

In this case the form ϕB and the matrix B are called positive semi-definite.6

(c) Positive Definite. Let ϕB be positive semi-definite, so that B = ATA (or B = A∗A)
as in part (b). Then we have

ϕB(x,x) = 0 implies x = 0 ⇐⇒ the matrix A has independent columns.

In this case the form ϕB and the matrix B are called positive definite.

(d) Negative. If B = −ATA (or B = −A∗A) for some matrix A then we have

ϕB(x,x) ≤ 0 for all x,

in which case we say that ϕB and B are negative semi-definite. If, in addition, the
matrix A has independent columns then

ϕB(x,x) = 0 implies x = 0,

in which case we say that ϕB and B are negative definite.

(e) Indefinite. If B is not of the form ±ATA (or ±A∗A) for some matrix A, then there
exist points x and y such that

ϕB(x,x) > 0 and ϕB(y,y) < 0.

In this case we say that ϕB and B are indefinite.

5Recall: For any matrix A with complex entries, A∗ denotes the conjugate transpose matrix. If x is a column
vector then x∗ is a row vector.

6Some books use the alternate term non-positive definite.
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Example: The identity matrix I corresponds to the standard dot product ϕI(x,y) = xTy on
Rn and the standard Hermitian product ϕI(x,y) = x∗y on Cn, both of which are positive
definite. Indeed, we can write I = IT I, where I has independent columns.

Remark: Many problems in applied mathematics seek to minimize an expression of the form
xTBx (or x∗Bx). If we know that B = ATA (or B = A∗A) for some matrix A with indepen-
dent columns then we are guaranteed that a unique minimum exists. Indeed, from part (b)
we know that xTBx ≥ 0 for all x and from part (c) we know that xTBx > 0 for all x 6= 0.

Proof. We only prove the complex versions, since the real versions are just a special case.
Furthermore, we will only prove one direction of (b) and (c). The other directions are harder
and we will prove them after discussing the Spectral Theorem.

(a): If bij is the ij entry of the matrix B then we have seen that ϕB(ei, ej) = bij where ei and
ej are standard basis vectors. Suppose that ϕB(x,y)∗ = ϕB(y,x) for all x,y ∈ Cn, then in
particular we must have

b∗ij = ϕB(ei, ej)
∗ = ϕB(ej , ej) = bij ,

and hence B∗ = B. Conversely, suppose that B∗ = B. Then for all x,y ∈ Cn we have

ϕB(x,y)∗ = (x∗By)∗

= y∗B∗(x∗)∗

= y∗Bx

= ϕB(y,x).

(b): Suppose that B = A∗A for some matrix A, and let ‖v‖ =
√

v∗v be the standard Hermitian
norm on Cn. Then for all x ∈ Cn we have

ϕB(x,x) = x∗Bx

= x∗A∗Ax

= (Ax)∗(Ax)

= ‖Ax‖2 ≥ 0.

(c): Continuing from (b), suppose that ϕB(x,x) = 0, so that ‖Ax‖2 = 0. This implies that
Ax = 0 because of properties of the standard Hermitian norm.7 But if A has independent
columns then this implies that x = 0. There are many ways to see this. One method uses the
fact that (ATA)−1 exists to get

Ax = 0

ATAx = AT0

7Recall that ‖v‖2 = |v1|2 + · · ·+ |vn|2, so that ‖v‖ = 0 if and only if |vi| = 0 (and hence vi = 0) for all i.

7



ATAx = 0

x = (ATA)−10

x = 0.

(d): This follows from (b) and (c), and the fact that

ϕ−B(x,x) = xT (−B)x = −xTBx = −ϕB(x,x).

(e): This follows from (b), (c) and (d). �

As with linear forms, it is also possible to define bilinear (sesquilinear) forms on infinite
dimensional vector spaces. Let V be any Hermitian inner product space over C and let
B : V → V be any linear operator.8 Then we can define a function ϕB : V × V → C by

ϕB(x,y) = 〈x, By〉.

In the finite dimensional case this corresponds to 〈x, By〉 = x∗By, where B is a matrix. If
B∗ is the conjugate transpose matrix, then we observe that

〈B∗x,y〉 = (B∗x)∗y = x∗(B∗)∗y = x∗By = 〈x, By〉.

This computation suggests a way to define a “conjugate transpose operator” B∗ : V → V ,
even when V is infinite dimensional. The definition is really a theorem.

Theorem (Adjoint Operators). Let V be a complex Hilbert space and consider a linear
operator B : V → V . If B is continuous with respect to the standard norm ‖−‖ =

√
〈−,−〉

then there exists a unique linear operator B∗ : V → V , which is also continuous, satisfying

〈B∗u,v〉 = 〈u, Bv〉 for all u,v ∈ V .

The operator B∗ is called the adjoint of B.9

These ideas are particularly important in quantum mechanics. In the standard statistical
interpretation, a nonzero vector in Hilbert space ψ ∈ V corresponds to the state of a quantum
system. An operator Q : V → V satisfyiing Q∗ = Q corresponds to an observable quantity.
The outcome of a measurement is random but the expected value of quantity Q on state ψ is

〈ψ,Qψ〉 or 〈ψ|Q|ψ〉 in Dirac notation.

Those who study quantum mechanics will notice that it is mostly linear algebra, but the
notation is different and the vectors and operators are sometimes just pretend.10

8Yet another fancy word that just means “function”.
9An operator is continuous if and only if it is bounded

10Indeed, we have seen that the “functions” δ(x) and e2πix are treated as elements of L2(C), even though
e2πix is not square integrable and δ(x) doesn’t really exist. Furthermore, the theorem on adjoints applies to
continuous operators, but many operators of interest in quantum mechanics, such as position and momentum,
are not continuous.
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1.3 Quadratic Forms

Let V be a vector space over R. Given a bilinear form ϕ : V × V → R we define the
corresponding quadratic form Q : V → R by

Q(x) := ϕ(x,x).

In the case of Euclidean space V = Rn suppose that ϕ(x,y) = ϕB(x,y) = xTBy for a square
matrix B. Then the corresponding quadratic form is

QB(x) = xTBx.

Quadratic forms give a relationship between polynomials of degree 2 and linear algebra. For
example, consider a polynomial in two variables:

f(x, y) = 2 + x− y + 3x2 + 2xy + 4y2.

We can express this in terms of linear algebra as follows:

f(x, y) = 2 +
(
1 −1

)(x
y

)
+
(
x y

)(3 2
0 4

)(
x
y

)
.

Indeed, for any 2× 2 matrix B we observe that

xTBx =
(
x y

)(a b
c d

)(
x
y

)
=
(
x y

)(ax+ by
cx+ dy

)
= x(ax+ by) + y(cx+ dy)

= ax2 + bxy + cyx+ dy2

= ax2 + (b+ c)xy + dy2.

This formula shows that the choice of b and c is not unique. It is common to choose b = c
so that the corresponding matrix B is symmetric. Thus we can express any polynomial
αx2 + βxy + γy2 in terms of a symmetric matrix:

αx2 + βxy + γy2 =
(
x y

)( α β/2
β/2 γ

)(
x
y

)
.

And we can rewrite the polynomial f(x, y) above using a symmetric matrix:

f(x, y) = 2 +
(
1 −1

)(x
y

)
+
(
x y

)(3 1
1 4

)(
x
y

)
.

More generally, let x = (x1, . . . , xn) be a vector of n unknowns. Then any polynomial f(x) =
f(x1, . . . , xn) of degree 2 has a unique expression of the form

f(x) = b+ bTx + xTBx,
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where b is a scalar, bT is a row vector and B is a symmetric matrix. For example, in the case
n = 3 it is common to write x = (x, y, z) instead of x = (x1, x2, x3). Then we have

f(x, y, z) = b+ b1x+ b2y + b3z + b11x
2 + b22y

2 + b33z
2 + b12xy + b13xz + b23yz

= b+
(
b1 b2 b3

)xy
z

+
(
x y z

) b11 b12/2 b13/2
b12/2 b22 b23/2
b13/2 b23/2 b33

xy
z


= b+ bTx + xTBx.

Thus the degree zero terms correspond to a scalar b, the degree 1 terms correspond to a
vector bT ,11 and the degree 2 terms correspond to a matrix B. To describe higher degree
polynomials we would need cubes of numbers, hypercubes of numbers, etc. Such objects are
called “tensors” and they are more difficult to work with. Luckily, degree 2 polynomials are
sufficient for most applications.12

Here are three simplest examples of quadratic forms. Let

B =

(
1 0
0 1

)
so that QB(x) = xTBx = x2 + y2.

The graph of QB(x, y) in R3 looks like a paraboloid with a unique minimum at (0, 0):

Indeed, this matrix is positive definite because it can be factored as B = IT I, where I is the
identity matrix, which has independent columns. Next, let

B =

(
1 0
0 0

)
so that QB(x) = xTBx = x2.

11It doesn’t matter whether we write the degree 1 terms as bTx or xTb. I am simply following the convention
from Section 1.1, where linear forms correspond to row vectors.

12It is a curious fact that most physical laws can be expressed in terms of first and second derivatives. Higher
derivatives are almost never useful.
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The graph of QB(x, y) in R3 is a parabolic cylinder:

This time the minimum is not unique, since QB(0, y) = 0 for any value of y. Indeed, this
matrix can be factored as

B = ATA =

(
1
0

)(
1 0

)
,

where the matrix A does not have independent columns. Finally, let

B =

(
1 0
0 −1

)
so that QB(x) = xTBx = x2 − y2.

This time the graph of QB(x, y) in R3 is a saddle:
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Since QB takes both positive and negative values, it follows from the previous section that B
cannot be factored as B = ATA for any matrix A, although this is a bit hard to see directly.

In the next chapter we will prove the Spectral Theorem, which makes the analysis of quadratic
forms much easier. As a preview, we will prove the following results. Let B be a square matrix
satisfying BT = B. Then:

• The eigenvalues of B are real.

• B is positive semi-definite if and only if all eigenvalues are ≥ 0.

• B is positive definite if and only if all eigenvalues are > 0.

• B if indefinite if and only if there exist both positive and negative eigenvalues.

1.4 Multivariable Taylor Expansion

From calculus we are familiar with the idea of a Taylor series. Suppose that a function
f : R→ R is differentiable k times at the point p ∈ R. Then for small values of x we have

f(p+ x) = f(p) + f ′(p)x+
1

2
f ′′(p)x2 + · · ·+ 1

k!
f (k)(p)xk + higher terms,

where the higher terms are vanishingly small.13

The concept of Taylor series can be generalized to higher dimensions using a little bit of linear
algebra. Consider a real valued function f : Rn → R written as

f(x) = f(x1, . . . , xn),

where x ∈ Rn is the input vector. We will denote first partial derivatives by

fi =
∂

∂xi
f,

and second partial derivatives by

fij =
∂

∂xj

∂

∂xi
f.

Note that fi and fij are themselves functions from Rn to R. Suppose that the first and second
partials exist and are continuous at some point p ∈ Rn. Then Clairaut’s theorem tells us that

fij(p) = fji(p) for all i, j.

Furthermore, we define the gradient vector at p:

(∇f)p =

f1(p)
...

fn(p)


13The exact nature of the higher terms will not concern us; we don’t do analysis in this course.
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and the Hessian matrix at p:

(Hf)p =

f11(p) · · · f1n(p)
...

...
fn1(p) · · · fnn(p)

 .

Note that the Hessian matrix is symmetric. Then for small vectors x ∈ Rn, the multivariable
Taylor series tells us that

f(p + x) = f(p) + (∇f)Tp x +
1

2
xT (Hf)px + higher terms,

where the higher terms are vanishingly small. Note the relationship to linear and bilinear
forms. The linear part of the Taylor series is a linear form

x 7→ (∇f)Tpx = f1(p)x1 + f2(p)x2 + · · ·+ fn(p)xn,

and the quadratic part of the Taylor series is a quadratic form

x 7→ 1

2
xT (Hf)px =

1

2

∑
fij(p)xixj .

Higher terms of the Taylor series can be described by multilinear forms, but, as I said, these
don’t come up much in applications.

For example, consider again the polynomial function, with (x1, x2) = (x, y):

f(x, y) = 2 + x− y + 3x2 + 2xy + 4y2.

We compute the first and second partial derivatives:

f1 = 1 + 6x+ 2y,

f2 = −1 + 2x+ 8y,

f11 = 6,

f12 = 2,

f21 = 2,

f22 = 8.

This gives the following gradient vector and Hessian matrix:

∇f =

(
1 + 6x+ 2y
−1 + 2x+ 8y

)
and Hf =

(
6 2
2 4

)
.

The Taylor expansion at p = (0, 0) is

f(0 + x, 0 + y) = f(0, 0) + (∇f)T(0,0)x +
1

2
xT (Hf)(0,0)x
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= 2 +
(
1 −1

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
,

which we already computed in the previous section. The Taylor expansion at p = (1, 1) is

f(1 + x, 1 + y) = f(1, 1) + (∇f)T(1,1)x +
1

2
xT (Hf)(1,1)x

= 11 +
(
9 9

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
.

And the Taylor expansion at p =
(−10

44 ,
8
44

)
is

f

(
−10

44
+ x,

8

44
+ y

)
= f

(
−10

44
,

8

44

)
+ (∇f)T(−10

44
, 8
44)x +

1

2
xT (Hf)(−10

44
, 8
44)x

=
79

44
+
(
0 0

)(x
y

)
+

1

2

(
x y

)(6 2
2 8

)(
x
y

)
=

79

44
+
(
x y

)(3 1
1 4

)(
x
y

)
.

Note that p =
(−10

44 ,
8
44

)
is a critical point of f , since the gradient vector vanishes: (∇f)p = 0.

Recall that (∇f)p is the direction of greatest increase of f near the point p. If (∇f)p = 0 then
the function is in equilibrium because it can’t decide which way is “up”. Here is a picture:
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A multivariable function f : Rn → R near a critical point p is approximately a quadratic form:

f(p + x) = f(p) +
1

2
xT (Hf)px + higher terms.

Thus we have the following facts, which are sometimes called the multivariable second deriva-
tive test. Assume that (∇f)p = 0. Then:

• f has a local minimum at p if and only if (Hf)p is positive definite.

• f has a local maximum at p if and only if (Hf)p is negative definite.

Indeed, if (Hf)p is positive definite then we have

xT (Hf)px ≥ 0 for all x, and xT (Hf)px = 0 if and only if x = 0.

so that14

f(p + x) ≥ f(p) for all x, and f(p + x) = f(p) if and only if x = 0,

If (Hf)p is positive (or negative) semi-definite then there is a local minimum (or maximum)
in some directions, but in some directions the function is constant. Otherwise, if (Hf)p is
indefinite then there exist small x and y such that f(p + x) > f(p) and f(p + y) < f(p).
Geometrically, this is a higher dimensional saddle point.

In the previous example, it happens that

the matrix B =

(
3 1
1 4

)
is positive definite,

so the function f(x, y) = f(x, y) = 2 + x − y + 3x2 + 2xy + 4y2 has a local minimum at
p =

(−10
44 ,

8
44

)
. To verify that B is positive definite, I computed the eigenvalues 7 +

√
5 and

7−
√

5, which are both positive. Later I will show you how to find a matrix A with independent
columns such that B = ATA. Such a matrix is not unique; here is one example, called the
Cholesky decomposition:

A =

(√
3
√

3/3

0
√

33/3

)
.

Check:

ATA =

( √
3 0√

3/3
√

33/3

)(√
3
√

3/3

0
√

33/3

)
=

(
3 1
1 4

)
.

14Remember, the higher order terms are vanishingly small, so they don’t affect the inequality.
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2 Determinants

2.1 Multilinear Forms

We have studied linear and bilinear forms. Now we discuss the general situation. Let V be a
vector space over R, and recall the notation for Cartesian product:

V k := V × V × · · · × V = {(x1, . . . ,xk) : xi ∈ Rn for all i}.

A multilinear k-form is a function
ϕ : V k → R

that is linear in each input. In other words, for any index i we have

ϕ
(
v1, . . . ,vi−1,

∑
ajuj ,vi+1, . . . ,vk

)
=
∑

aiϕ(v1, . . . ,vi−1,uj ,vi+1, . . . ,vk).

(This time we don’t bother with Hermitian forms, since it’s not clear where to put the complex
conjugates.) Just as with linear and bilinear forms, k-forms can be added and multiplied by
scalars. That is, given k-forms ϕ,ψ and scalar a, we define the k-form ϕ+ aψ by

(ϕ+ aψ)(v1, . . . ,vk) = ϕ(v1, . . . ,vk) + aψ(v1, . . . ,vk).

Thus we obtain a vector space of multilinear k-forms:15

T k(V ) = {multilinear k-forms ϕ : V k → R}.

In the case k = 1 we also use the notation of the dual space

V ∨ = T 1(V ) = {linear forms V → R}.

For example, consider Euclidean space V = Rn. In the previous section we proved that T 1(Rn)
is isomorphic to the vector space of row vectors:

T 1(Rn) ∼= {1× n row vectors} = R1×n,

and hence
dim T 1(Rn) = n.

We also proved that T 2(Rn) is isomorphic to the vector space of n× n matrices:

T 2(Rn) ∼= {n× n matrices} = Rn×n,

and hence16

dim T 1(Rn) = n2.

15The letter T is for “tensor”.
16An n×n matrix is uniquely determined by its n2 entries. More formally, let Eij the the n×n matrix with

1 in the ij position and zeros elsewhere. Then the set of matrices Eij with 1 ≤ i, j ≤ n is a basis for Rn×n.
More generally, one can show that Rm×n has dimension mn.

16



More generally, I claim that
dim T k(Rn) = nk.

In order to prove this we will construct a “standard basis” for T k(Rn).

Theorem (The Dual Standard Basis). Let e1, . . . , en be the standard basis for Rn. Now
we will construct a corresponding “standard basis” for the dual space (Rn)∨ = T 1(Rn). For
all 1 ≤ i ≤ n, let εi : Rn → R be the linear form defined by picking out the ith coordinate:

εi(x) = εi

x1...
xn

 = xi.

To see that this εi is linear, consider any linear combination
∑
ajxj ∈ Rn, where xij is the

ith entry of the vector xj ∈ Rn. Then we have

εi

(∑
ajxj

)
= εi


∑
ajx1j
...∑
ajxnj

 =
∑

ajxij =
∑

ajεi(xj).

In the previous section we showed that every linear form ϕ : Rn → R can be expressed as
ϕ(x) = bTx for some unique vector b = (b1, . . . , bn). Equivalently, each linear form ϕ can be
expressed as

ϕ = b1ε1 + · · ·+ bnεn,

for some unique scalars b1, . . . , bn. This shows that ε1, . . . , ε2 is indeed a basis for (Rn)∨. In
terms of matrices, note that

εi(x) = εi

x1...
xn

 = xi =
(
0 · · · 0 1 0 · · · 0

)x1...
xn

 ,

which shows that the linear function εi corresponds to a standard row vector:

[εi] =
(
0 · · · 0 1 0 · · · 0

)
.

Finally, we say that the bases e1, . . . , en ∈ Rn and ε1, . . . , εn ∈ (Rn)∨ are “dual” because

εi(ej) =

{
1 i = j,

0 i 6= j.

If we were only going to talk about row vectors and column vectors then this level of abstraction
is completely unnecessary. However, it becomes necessary when we talk about k-forms.

Tensor Product of Forms. Let V be a vector space over R. Consider a k-form ϕ : V k → R
and an `-form ψ : V ` → R. Then the tensor product ϕ⊗ψ is a (k+ `)-form defined as follows:

(ϕ⊗ ψ)(v1, . . . ,vk,vk+1, . . . ,vk+`) := ϕ(v1, . . . ,vk) · ψ(vk+1, . . . ,vk+`).
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It is straightforward to check that this function is linear, and hence ϕ⊗ψ ∈ T k+`(V ). One can
also check that the tensor product is associative, hence if ϕ,ψ, ω are k, `,m-forms, respectively,
then we obtain a (k + `+m)-form:

ϕ⊗ ψ ⊗ ω = (ϕ⊗ ψ)⊗ ω = ϕ⊗ (ψ ⊗ ω).

For example, for any standard 1-forms εi and εj we obtain a 2 form εi⊗ εj defined as follows:

(εi ⊗ εj)(v1,v2) = εi(v1) · εj(v2).

And for any standard 1-forms εi, εj , εk we obtain a 3-form εi ⊗ εj ⊗ εk by

(εi ⊗ εj ⊗ εk)(v1,v2,v3) = εi(v1) · εj(v2) · εk(v3).

To be more explicit let’s consider an example with V = R3. Then we have

(ε1 ⊗ ε2)

 1
−1
1

 ,

2
3
4

 = ε1

 1
−1
1

 · ε2
2

3
4

 = (1)(3) = 3

and

(ε2 ⊗ ε1)

 1
−1
1

 ,

2
3
4

 = ε2

 1
−1
1

 · ε1
2

3
4

 = (−1)(2) = −2,

which shows that ε1 ⊗ ε2 and ε2 ⊗ ε1 define different bilinear functions. In other words, we
see that the tensor product is not commutative.

Theorem (The Standard Basis of k-Forms). Let e1, . . . , en be the standard basis of Rn
and let ε1, . . . , εn be the dual standard basis of T 1(Rn). Then I claim that the following set
is a basis for the vector space of k-forms:

{εi1 ⊗ εi2 ⊗ · · · ⊗ εik : i1, i2, . . . , ik ∈ {1, 2, . . . , n}} .

Note that this basis contains nk elements, and hence

dim T k(Rn) = nk.

We won’t bother to prove this since we have already proved the cases k = 1 and k = 2 in the
previous section. The general proof is similar, but with more horrible notation. To see how
this works, we will repeat our proof for k = 2 in the new language. Let B be an n× n matrix
with ij entry bij and consider the 2-form

ϕB(x,y) = xTBy.

Note that for any basis vectors ei, ej we have

ϕB(ei, ej) = eTi Bej = bij .

18



Furthermore, for any vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) we have

ϕB(x,y) = xTBy =
∑

bijxiyj .

On the other hand, since (εi ⊗ εj)(x,y) = xiyj , we can express this as

ϕB(x,y) = xTBy =
∑

bijxiyj =
∑

bij(εi ⊗ εj)(x,y) =
(∑

bij(εi ⊗ εj)
)

(x,y),

and hence
ϕB =

∑
bij(εi ⊗ εj).

More generally, any 3-form ϕ ∈ T 3(Rn) corresponds to an n× n× n cube of numbers bijk:

ϕ =
∑

bijk(εi ⊗ εj ⊗ εk).

These are some kind of “higher dimensional matrices”, but they are much harder to work
with. In this course we will focus only on very special kinds of k-forms.

Symmetric and Alternating k-Forms. We say that a k-form ϕ ∈ T k(V ) is symmetric if
switching any two inputs leaves the output unchanged. For example, if ϕ is symmetric then

ϕ(v2,v1,v3, . . . ,vk) = ϕ(v1,v2,v3, . . . ,vk).

We say that a k-form ϕ is alternating if switching any two inputs multiplies the output by −1.
For example, if ϕ is alternating then

ϕ(v2,v1,v3, . . . ,vk) = −ϕ(v1,v2,v3, . . . ,vk).

To be more explicit, let’s consider V = R3. I claim that the 2-form ϕ = ε1 ⊗ ε2 + ε2 ⊗ ε1 is
symmetric. Indeed, for any vectors x,y ∈ R3 we observe that

ϕ(x,y) = (ε1 ⊗ ε2 + ε2 ⊗ ε1)

x1x2
x3

 ,

y1y2
y3


= (ε1 ⊗ ε2)

x1x2
x3

 ,

y1y2
y3

+ (ε2 ⊗ ε1)

x1x2
x3

 ,

y1y2
y3


= ε1

x1x2
x3

 · ε2
y1y2
y3

+ ε2

x1x2
x3

 · ε1
y1y2
y3


= x1y2 + x2y1

is equal to

ϕ(y,x) = (ε1 ⊗ ε2 + ε2 ⊗ ε1)

y1y2
y3

 ,

x1x2
x3


19



= (ε1 ⊗ ε2)

y1y2
y3

 ,

x1x2
x3

+ (ε2 ⊗ ε1)

y1y2
y3

 ,

x1x2
x3


= ε1

y1y2
y3

 · ε2
x1x2
x3

+ ε2

y1y2
y3

 · ε1
x1x2
x3


= y1x2 + y2x1

= x1y2 + x2y1.

On the other hand, the 2-form ψ = ε1 ⊗ ε2 − ε2 ⊗ ε1 is alternating since

ψ(x,y) = (ε1 ⊗ ε2 − ε2 ⊗ ε1)(x,y) = x1y2 − x2y1

and

ψ(y,x) = (ε1 ⊗ ε2 − ε2 ⊗ ε1)(y,x) = y1x2 − y2x1 = −(x1y2 − x2y1) = −ψ(x,y).

Since the sum of symmetric forms is symmetric, and the sum of alternating forms is alternating,
we can define the following vector spaces17

Sk(V ) = the space of symmetric k-forms V k → R,
Ak(V ) = the space of alternating k-forms V k → R.

For small k and n, it is not too hard to write down a basis for Sk(Rn) in terms of the standard
basis of T k(Rn). To save space, let’s write

εij = εi ⊗ εj , εijk = εi ⊗ εj ⊗ εk, etc.

Then, for example, we have

S1(R2) = span{ε1, ε2},
S2(R2) = span{ε11, ε12 + ε21, ε22},
S3(R2) = span{ε111, ε112 + ε121 + ε211, ε122 + ε212 + ε211, ε222},

and

S1(R3) = span{ε1, ε2, ε3},
S2(R3) = span{ε11, ε22, ε33, ε12 + ε21, ε13 + ε31, ε23 + ε32},
S3(R3) = span{ε111, ε222, ε333,

ε112 + ε121 + ε211, ε113 + ε131 + ε311, ε223 + ε232 + ε322,

ε221 + ε212 + ε122, ε331 + ε313 + ε133, ε332 + ε323 + ε233,

17Alternating forms are also called anti-symmetric. In advanced calculus, a differential form is an alternating
k-form whose coefficients can change from point to point. More precisely, a differential form on a k-dimensional
manifold assigns an alternating k-form to the tangent space at each point.
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ε123 + ε132 + ε213 + ε231 + ε312 + ε321}.

In particular, we have

dimS1(R3) = 2, dimS2(R3) = 6, dimS3(R3) = 10.

Maybe you can see a pattern here. In general, one can use a combinatorial argument18 to
show that

dimSk(Rn) =

(
n+ k − 1

k

)
.

Let’s test this on the special case k = 2. Recall from the previous section that a symmetric
bilinear form is the same thing as a symmetric n× n matrix, hence S2(Rn) can be identified
with the space of symmetric n × n matrices. A symmetric matrix is uniquely determined by
the n diagonal elements and the n(n− 1)/2 elements above the diagonal. (We don’t need to
specify the entries below the diagonal because they are equal to the above-diagonal elements.)
Hence we must have

dimS2(Rn) = n+
n(n− 1)

2
=

2n+ n(n− 1)

2
=
n2 + n

2
=

(n+ 1)n

2
,

which agrees with the formula(
n+ 2− 1

2

)
=

(
n+ 1

2

)
=

(n+ 1)n

2
.

It is trickier to find a basis for the space of alternating k-forms. Here are some small examples:

A1(R2) = span{ε1, ε2},
A2(R2) = span{ε12 − ε21},
Ak(R2) = {0} for k > 2,

A1(R3) = span{ε1, ε2, ε3},
A2(R3) = span{ε12 − ε21, ε13 − ε31, ε23 − ε32},
A3(R3) = span{ε123 + ε231 + ε312 − ε132 − ε213 − ε321},
Ak(R3) = {0} for k > 3.

You will prove on the homework that dimAk(Rn) = 0 for all k > n. That is, if k > n then
any alternating k-form on Rn must be the zero function that sends any k-tuple of vectors in
Rn to zero. For 0 ≤ k ≤ n I claim that19

dimAk(Rn) =

(
n

k

)
.

18There is one basis element of Sk(Rn) for each weakly increasing sequence 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n of k
numbers between 1 and n. Such a weakly increasing sequence can be encoded as a word of length n + k − 1
containing k “stars” and n−1 “bars”. For example, the word ∗∗|∗ ||∗∗∗ corresponds to 1 ≤ 1 ≤ 2 ≤ 4 ≤ 4 ≤ 4.
Such a word has length k + (n − 1) = n + k − 1. The number of such words is

(
n+k−1

k

)
since from n + k − 1

possible positions, we must choose k positions to place the stars.
19The definition of “alternating” doesn’t really apply to 0-forms and 1-forms. However, it is convenient to

define A0 := T 0 := {0} and A1 := T 1, so the dimension formula is still correct when k = 0 and k = 1.
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We won’t prove this theorem in general, but we will prove the special case when k = n:

dimAn(Rn) =

(
n

n

)
= 1.

In other words, there exists a unique (up to scalar multiplication) alternating n-form on Rn.
At the risk of spoiling the surprise, I will tell you right now that this unique form is called the
determinant.

According to the examples listed above, we have

A2(R2) = span{ε12 − ε21},
A3(R3) = span{ε123 + ε231 + ε312 − ε132 − ε213 − ε321}.

Recall that ε12− ε21 represents the 2-form ε1⊗ ε2− ε2⊗ ε1, which we have already discussed.
When applied to two vectors x = (x1, x2) and y = (y1, y2) in R2 it gives

(ε12 − ε21)(x,y) = ε12(x,y)− ε21(x,y) = x1y2 − x2y1.

In general, if ϕ ∈ T k(Rn) is a k-form on Rn and if A is a n × k matrix with columns
a1, . . . ,ak ∈ Rn, it is convenient to define

ϕ(A) := ϕ(a1, . . . ,ak).

Thus for any 2× 2 matrix we have

(ε12 − ε21)(A) = (ε12 − ε21)
(
a1 b1
a2 b2

)
= ε12

(
a1 b1
a2 b2

)
− ε21

(
a1 b1
a2 b2

)
= a1b2 − a2b1,

and for any 3× 3 matrix

A =

a1 b1 c1
a2 b2 c2
a3 b3 c3


we have

(ε123 + ε231 + ε312 − ε132 − ε213 − ε321)(A)

= ε123(A) + ε231(A) + ε312(A)− ε132(A)− ε231(A)− ε321(A),

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b3c1 − a3b2c1.

You may recognize these formulas from your previous linear algebra course. But where do
they come from? And how do we know that there are no other alternating 2-forms on R2 and
no other alternating 3-forms on R3?
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2.2 Uniqueness of the Determinant

As we have seen, the formula for the determinant of a 3 × 3 matrix is rather complicated.
I could give a general formula right now, but it is actually more useful to work with the
properties of the determinant. Explicit formulas for the determinant are messy, but the
properties of the determinant are easy to describe.

As before, we will think of a k-form ϕ ∈ T k(Rn) as a function sending n × k matrices to
scalars. That is, for any matrix A with columns a1, . . . ,ak ∈ Rn we will write

ϕ(A) := ϕ(a1, . . . ,ak).

This function is “multilinear in the columns of A”. For example, consider some n×3 matrices

A =
(

u v a
)
, B =

(
u v b

)
, C =

(
u v a + λb

)
,

with u,v,a,b ∈ Rn and λ ∈ R. Then for any 3-form ϕ ∈ T 3(R3) we have

ϕ(C) = ϕ(A) + λ · ϕ(B).

Warning: Multilinear functions are not linear. For example, consider any bilinear
function ϕ ∈ T 2(Rn), and consider any two n× 2 matrices

A =
(

a1 a2

)
and B =

(
b1 b2

)
, hence A+B =

(
a1 + b1 a2 + b2

)
.

Then we have

ϕ(A+B) = ϕ(a1 + b1,a2 + b2)

= ϕ(a1,a2) + ϕ(b1,b2) + ϕ(a1,b2) + ϕ(b1,a2)

= ϕ(A) + ϕ(B) + ϕ(a1,b2) + ϕ(b1,a2),

which is not equal to ϕ(A) + ϕ(B).20

As mentioned in the previous section, there exists a unique (up to scalar multiplication)
alternating n-form on Rn, which can be interpreted as the determinant of an n × n matrix.
In this section we will prove that there is no more than one such function, so that

dimAn(Rn) ≤ 1,

and in the next section we will show that there is at least one such function, so that

dimAn(Rn) ≥ 1.

Theorem (Uniqueness of the Determinant). Let ϕ be a function sending n×n matrices
to scalars. We say that ϕ is a determinant function if it satisfies the following three properties:

20For the same reason, we will have det(A+B) 6= det(A) + det(B).
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(1) Multilinear. The function ϕ is linear in each individual column.

(2) Alternating. If A′ is obtained from A by swapping two columns, then ϕ(A′) = −ϕ(A).

(3) Normalized. The function ϕ sends the identity matrix In to 1.

In other words, a determinant function is an alternating n-form ϕ ∈ An(Rn) that is appropri-
ately normalized so that

ϕ(In) = ϕ(e1, . . . , en) = 1.

I claim that

there is at most one determinant function.

In order to streamline the proof I will isolate several lemmas, which have independent interest.

Lemma A. Let ϕ be a determinant function. If A has a repeated column then

ϕ(A) = 0.

Proof. Suppose that the ith and jth columns are equal and let A′ be the matrix obtained
from A by switching the ith and jth columns. On the one hand we have A′ = A. On the
other hand, property (2) tells us that

ϕ(A′) = −ϕ(A)

ϕ(A) = −ϕ(A)

2ϕ(A) = 0

ϕ(A) = 0.

�

Lemma B. Let ϕ be a determinant function. If A has dependent columns then

ϕ(A) = 0.

Proof. Let A have columns a1, . . . ,an ∈ Rn. If these columns are dependent then there exists
some i such that ai can be expressed as a linear combination of the other columns. Without
loss of generality,21 suppose that i = 1, so we can write

a1 = b1a2 + · · ·+ bnan,

for some scalars b2, . . . , bn. Now let Â1(aj) denote the matrix A with the first column replaced
by aj . From property (1) we have

ϕ(A) = b1 · ϕ(Â1(a2)) + · · ·+ bn · ϕ(Â1(an)).

21By applying property (2) we can swap the 1st and ith columns, which does not affect whether the deter-
minant is zero or nonzero.

24



But each matrix Â1(aj) with j 6= 1 has a repeated column, so from Lemma A we must have

ϕ(A) = b1 · ϕ(Â1(a2)) + · · ·+ bn · ϕ(Â1(an))

= b1 · 0 + b2 · 0 + · · ·+ bn · 0
= 0.

�

The next lemma refers to the elementary matrices, which we discussed in the previous chapter:

Di(λ) =


1

1
λ

1
1

 ,

Lij(λ) =


1

1 · · · λ

1
...
1

1

 ,

Tij =


1

0 · · · 1
... 1

...
1 · · · 0

1

 .

Lemma C. Let ϕ be a determinant function. Then for any square matrix A we have

ϕ(ADi(λ)) = λ · ϕ(A),

ϕ(ALij(λ)) = ϕ(A),

ϕ(ATij) = −ϕ(A).

Proof. First, note that ADi(λ) has the same columns as A except that the ith column has
been scaled by λ, hence ϕ(ADi(λ)) = λ ·ϕ(A) follows from property (1). Next, note that ATij
is obtained from A by switching columns i and j, hence the identity ϕ(ATij) = −ϕ(A) is just
a restatement of (2). Finally, note that kth column of ALij(λ) is equal to the kth column of
A, except in the case k = j, in which case

(jth column of ALij(λ)) = (jth column of A) + λ · (ith column of A).

To simplify notation, let a1, . . . ,an be the columns of A and let Âj(v) denote the matrix A
with the jth column replaced by vector v. Then from property (1) we have

ϕ(ALij(λ)) = ϕ(A) + λ · ϕ(Âj(ai)).
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But the matrix Âj(ai) has a repeated column, so it follows from Lemma A that

ϕ(ALij(λ)) = ϕ(A) + λ · 0 = ϕ(A).

�

Lemma D. Let ϕ be a determinant function. Then we have

ϕ(Di(λ)) = λ, ϕ(Lij(λ)) = 1, ϕ(Tij) = −1.

Proof. Taking A = I in Lemma C and using property (3) gives22

ϕ(Di(λ)) = ϕ(IDi(λ)) = λ · ϕ(I) = λ,

ϕ(Lij(λ)) = ϕ(ILij(λ)) = ϕ(I) = 1,

ϕ(Tij) = ϕ(ITij) = −ϕ(I) = −1.

�

Lemma E. Let ϕ be a determinant function. For elementary matrices E1, . . . , Ek we have

ϕ(E1E2 · · ·Ek) = ϕ(E1)ϕ(E2) · · ·ϕ(Ek).

Proof. By applying Lemma D, we can rephrase Lemma C as saying that

ϕ(AE) = ϕ(A)ϕ(E) for any elementary matrix E.

If E1, . . . , Ek are elementary matrices, then it follows by induction that

ϕ(E1 · · ·Ek) = ϕ(E1 · · ·Ek−1)ϕ(Ek)

= ϕ(E1) · · ·ϕ(Ek−1)ϕ(Ek).

�

Proof of the Theorem. Let δ1 and δ2 be any two determinant functions. Our goal is to
show that δ1 = δ2. If A is not invertible then the columns of A are dependent and it follows
from Lemma B that δ1(A) = 0 = δ2(A). So let us suppose that A is invertible. In this case
we can apply column operations to reduce A to the identity matrix:

AE1E2 · · ·Ek = I.

Since elementary matrices are invertible, this becomes

A = E−1k · · ·E
−1
1 .

22This is our first and only use of property (3).
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If E is elementary then E−1 is also elementary, so Lemma D implies that δ1(E
−1) = δ2(E

−1).
Finally, by Lemma E we have

δ1(A) = δ1(E
−1
k · · ·E

−1
1 )

= δ1(E
−1
k ) · · · δ1(E−11 )

= δ2(E
−1
k ) · · · δ2(E−11 )

= δ2(E
−1
k · · ·E

−1
1 )

= δ2(A).

�

Thus we have proved that there exists at most one determinant function. From this point on,
we will use the notation det(A) to refer to this function.

We end this section by giving a new criterion for invertibility of square matrices.

Theorem. For any square matrix A we have

A is invertible ⇐⇒ det(A) 6= 0.

Proof. If A is not invertible then A has dependent columns and it follows from Lemma B
that det(A) = 0. Conversely, suppose that A is invertible. In the previous chapter we showed
that a square matrix is invertible if and only if its Reduced Row Echelon Form is an identity
matrix, so that

Ek · · ·E2E1A = I

for some elementary matrices E1, . . . , Ek. From Lemma E it follows that

A = E−11 E−12 · · ·E
−1
k

det(A) = det(E−11 )det(E−12 ) · · · det(E−1k ) 6= 0.

�

Note that we only use elementary matrices Di(λ) with λ 6= 0 so that det(E) 6= 0 for every
elementary matrix E.

2.3 Algebraic Properties of the Determinant

In the previous section we studied the application of determinant functions to elementary
matrices, and we used this to prove that there exists at most one determinant function. In
this section we will apply the same lemmas to prove some interesting algebraic properties of
determinants. Only in the next section will we finally prove that determinants exist!

Theorem. For any square matrices A and B we have
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(a) det(AT ) = det(A),

(b) det(AB) = det(A)det(B),

(c) det(A−1) = 1/det(A).

Proof. (a): Note that AT is invertible if and only if A is invertible, hence det(AT ) = 0 if and
only if det(A) = 0. If det(A) 6= 0 then A is invertible and we can write

A = E1 · · ·Ek
for some elementary matrices E1, . . . , Ek. Note that the transpose ET of an elementary matrix
E is also elementary, and from Lemma C we have det(ET ) = det(E). It follows that

AT = ETk · · ·ET1
det(AT ) = det(ETk · · ·ET1 )

= det(ETk ) · · · det(ET1 )

= det(Ek) · · · det(E1)

= det(E1) · · · det(Ek)

= det(E1 · · ·Ek)
= det(A).

(b): Note that AB is invertible if and only if both of A and B are invertible, so that det(AB) =
0 if and only if det(A)det(B) = 0. If det(A) 6= 0 and det(B) 6= 0 then A and B are both
invertible, hence we can write

A = E1 · · ·Ek,
B = F1 · · ·F`,

for some elementary matrices E1, . . . , Ek and F1, . . . , F`. It follows that

det(AB) = det(E1 · · ·EkF1 · · ·F`)
= det(E1) · · · det(Ek)det(F1) · · · det(F`)

= [det(E1) · · · det(Ek)][det(F1) · · · det(F`)]

= det(E1 · · ·Ek)det(F1 · · ·F`)
= det(A)det(B).

(c): If A is invertible then det(A) 6= 0 and from (b) we obtain

A−1A = I

det(A−1A) = det(I)

det(A−1)det(A) = 1

det(A−1) = 1/det(A).

�

As you see, the elementary matrices are quite useful.
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2.4 Formulas for the Determinant

I hope you have developed an appreciation for the remarkable properties of determinants. In
this section I will prove that determinants actually exist, and in the next section I will finally
tell you what determinants “really are”. I guess I could have told you that first, but it didn’t
fit the narrative.

There are several equivalent ways to define the determinant of an n × n matrix. If A is not
invertible then we must have det(A) = 0, so let us suppose that A is invertible. In this case
we can perform row (or column) operations to transform A into the identity matrix, which
allows us to write A as a product of elementary matrices:

A = E1 · · ·Ek.

Then from Lemma E in Section 2.2 we must have

det(A) = det(E1) · · · det(Ek),

where the determinants of elementary matrices are trivial to compute. You might think we
could use this formula to define the determinant, but the factorization of A into elementary
matrices is not unique, and it’s not clear that we wouldn’t get different values of det(A) from
different factorizations of A. Essentially this has to do with the uniqueness of the RREF, but
I don’t want to prove this. Instead I’ll just give an example computation.

Computing the Determinant by Elimination. Consider again the matrix

A =

1 2 3
1 1 1
2 4 1

 .

First we perform down-elimination steps to put A in upper triangular form:

L31(−2)L21(−1)A =

1 2 3
0 −1 −2
0 0 −5

 . (∗)

Then we scale the rows to turn the pivots into ones:

D3(−1/5)D2(−1)L31(−2)L21(−1)A =

1 2 3
0 1 2
0 0 1

 .

Then we perform up-elimination to obtain an identity matrix:

L12(−2)L13(−3)L23(−1)D3(−1/5)D2(−1)L31(−2)L21(−1)A =

1 0 0
0 1 0
0 0 1

 .
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Taking the elementary matrices to the other side gives

A = L21(−1)−1L31(−2)−1D2(−1)−1D3(−1/5)−1L23(−1)−1L13(−3)−1L12(−2)−1

= L21(1)L31(2)D2(−1)D3(−5)L23(1)L13(3)L12(2),

and taking the determinant of each side gives

det(A) = 1 · 1 · (−1) · (−5) · 1 · 1 · 1
= 5.

Note that this is the product of the pivot entries in step (∗). Hence we could have stopped
there. In general, if no row transpositions are required, then the determinant is just the
product of the diagonal entries after down-elimination.

Next I will give the traditional definition of the determinant, which expresses it as an “al-
ternating sum” over permutations. After that I will give a recursive formula, which is more
useful.

Permutation Definition of the Determinant. Let Sn denote the set of permutations, i.e.,
the set of bijective functions {1, . . . , n} → {1, . . . , n}. It is convenient to express a permutation
by listing the sequence of values:

σ = (σ(1), σ(2), . . . , σ(n)).

Each permutation σ ∈ Sn has a well-defined sign, or parity:

sgn(σ) ∈ {1,−1}.

Essentially this tells us the number of swaps necessary to obtain the list (σ(1), . . . , σ(n)) from
the list (1, . . . , n), or vice versa. The number of swaps is not unique, but it turns out that it is
always even, or always odd. For example, we can get from (1, 2, 3) to (3, 2, 1) using 3 swaps:

(1, 2, 3)→ (2, 1, 3)→ (2, 3, 1)→ (3, 2, 1),

Or we can get there using 5 swaps:

(1, 2, 3)→ (1, 3, 2)→ (3, 1, 2)→ (2, 1, 3)→ (2, 3, 1)→ (3, 2, 1).

But we could never get there using an even number of swaps.23 Since we can get from (1, 2, 3)
to (3, 2, 1) using only odd numbers of swaps, we define

sgn(3, 2, 1) = −1.

23It is a bit tricky to prove this so we won’t bother. It fits better in a course on “group theory”.
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Of the n! permutations in Sn, it turns out that exactly half are “even” and half are “odd”.
For example, here is the sign table for S3:

σ sgn(σ)

(1, 2, 3) +1
(2, 3, 1) +1
(3, 1, 2) +1
(1, 3, 2) −1
(2, 1, 3) −1
(3, 2, 1) −1

Finally, recall the standard basis of k-forms:

εi1 ⊗ εi2 ⊗ · · · ⊗ εik for all i1, . . . , ik ∈ {1, . . . , n}.

Then we define the determinant function det ∈ An(Rn) as follows:

det =
∑
σ∈Sn

sgn(σ) · εσ(1) ⊗ εσ(2) ⊗ · · · ⊗ εσ(n).

For example, when n = 3, the above table of signs gives

det = ε1 ⊗ ε2 ⊗ ε3 + ε2 ⊗ ε3 ⊗ ε1 + ε3 ⊗ ε1 ⊗ ε2
− ε1 ⊗ ε3 ⊗ ε2 − ε2 ⊗ ε1 ⊗ ε3 − ε3 ⊗ ε2 ⊗ ε1.

Equivalently, if A is an n× n matrix with ij entry aij then we define

det(A) =
∑
σ∈Sn

sgn(σ) · aσ(1),1aσ(2),2 · · · aσ(n),n.

One can check that this function satisfies the three properties of a determinant function, but
to do so requires a more thorough study of permutations than we have time for.

Laplace Expansion. The permutation definition of the determinant is explicit but it’s mostly
useless. Another, recursive, definition called Laplace expansion or expansion by cofactors has
many applications.

For any n × n matrix A we let Âij denote the (n − 1) × (n − 1) matrix obtained from A by
deleting the ith row and the jth column. To expand along the ith row, we fix some i and
then compute

det(A) =
∑
j

(−1)i+jaij det(Âij).

To expand along the jth column we fix some j and compute

det(A) =
∑
i

(−1)i+jaij det(Âij).
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One must check that these formulas agree with the permutation definition of the determi-
nant. Alternatively, one could prove that these formulas obey the three rules for determinant
functions. But I’m not going to do this. Instead I will just give some examples.

First we compute a general 3× 3 determinant by expanding along the second row:

det

a1 b1 c1
a2 b2 c2
a3 b3 c3

 = −a2 · det

(
b1 c1
b3 c3

)
+ b2 · det

(
a1 c1
a3 c3

)
− c2 · det

(
a1 b1
a3 b3

)
= −a2(b1c3 − b3c1) + b2(a1c3 − a3c1)− c2(a1b3 − a3b1)
= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1.

Next we expand a specific our favorite matrix along the second column:

det

1 2 3
1 1 1
2 4 1

 = −2 · det

(
1 1
2 1

)
+ 1 · det

(
1 3
2 1

)
− 4 · det

(
1 3
1 1

)
= −2(1− 2) + 1(1− 6)− 4(1− 3)

= −2(−1) + 1(−5)− 4(−2)

= 2− 5 + 8

= 5.

And also along the first row:

det

1 2 3
1 1 1
2 4 1

 = 1 · det

(
1 1
4 1

)
− 2 · det

(
1 1
2 1

)
+ 3 · det

(
1 1
2 4

)
= 1(1− 4)− 2(1− 2) + 3(4− 2)

= 1(−3)− 2(−1) + 3(2)

= −3 + 2 + 6

= 5.

2.5 Cramer’s Rule (Optional)

While we’re on the subject, there is a famous trick relating determinants to solutions of linear
systems. Let A be a square n× n matrix and consider the linear system

Ax = ba11 · · · a1n
...

...
an1 · · · ann


x1...
xn

 =

b1...
bn

 .
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Assume that A is invertible, so the system has a unique solution x = (x1, . . . , xn). Then the
ith coordinate of the solution is given by

xi =
det(Âi(b))

det(A)
,

where Âi(b) is the matrix obtained from A by replacing its ith column with b:

Âi(b) =
(

a1 · · · ai−1 b ai+1 · · · an
)
.

Proof. Consider the matrix

Xi := Îi(x) =
(

e1 · · · ei−1 x ei+1 · · · en
)

=


1 x1

1
...
xi
... 1
xn 1

 .

By Laplace expansion along the ith column, we observe that24

det(Xi) = (−1)i+ixidet(In−1) = xi.

Next we observe that

AXi = A
(

e1 · · · ei−1 x ei+1 · · · en
)

=
(
Ae1 · · · Aei−1 Ax Aei+1 · · · Aen

)
=
(

a1 · · · ai−1 b ai+1 · · · an
)

= Âi(b),

and hence

AXi = Âi(b)

det(A)det(Xi) = det(Âi(b))

det(Xi) = det(Âi(b))/det(A)

xi = det(Âi(b))/det(A).

�

For example, let A be the 3×3 matrix from the previous section and consider the linear system1 2 3
1 1 1
2 4 1

x1x2
x3

 =

1
0
0

 .

24The matrix obtained by deleting the ith row and column of Xi is the (n−1)× (n−1) identity matrix In−1.
Every other (n− 1)× (n− 1) matrix in the expansion has a row (also a column) of zeros, hence its determinant
is zero.
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Then we have

x1 = det

1 2 3
0 1 1
0 4 1

/det

1 2 3
1 1 1
2 4 1

 =
−3

5
,

x2 = det

1 1 3
1 0 1
2 0 1

/det

1 2 3
1 1 1
2 4 1

 =
1

5
,

x3 = det

1 2 1
1 1 0
2 4 0

/det

1 2 3
1 1 1
2 4 1

 =
2

5
.

Cramer’s Rule is useful when we want to pick out a specific coordinate of the solution. We
can use this idea to give an explicit formula for the entries of an inverse matrix. Let A be
an invertible n × n square matrix and let X =

(
x1 · · · xn

)
be a matrix whose columns

x1, . . . ,xn ∈ Rn are unknown vectors. If X is the inverse of A then we must have

AX = I

A
(

x1 · · · xn
)

=
(

e1 · · · en
)(

Ax1 · · · Axn
)

=
(

e1 · · · en
)
,

which is equivalent to n matrix equations: Axi = ei for each i. Let xij be the ij entry of the
unknown matrix X, which is the ith entry of the jth column vector xj . Then Cramer’s Rule
says that

xij = ith coordinate of xj

= ith coordinate of the solution to Axj = ej

= det(Âi(ej))/det(A),

where Âi(ej) is the matrix obtained from A by replacing its ith column with ej . By Laplace
expansion along the ith column we have

det(Âi(ej)) = (−1)i+j det(Âji),

where Âji is the (n − 1) × (n − 1) matrix obtained from A by deleting the jth row and ith
column. If det(A) 6= 0 then we conclude that

(ij entry of A−1) =
1

det(A)
(−1)i+j det(Âji).

Warning: Note that the positions of i and j are switched in this formula!25

25I have forgotten this many times.
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For example, suppose that

AX = I,(
a11 a12
a21 a22

)(
x11 x12
x21 x22

)
=

(
1 0
0 1

)
.

Then we have

x11 = (−1)1+1det(Â11)/det(A) = a22/det(A),

x12 = (−1)1+2det(Â21)/det(A) = −a12/det(A),

x21 = (−1)2+1det(Â12)/det(A) = −a21/det(A),

x22 = (−1)2+2det(Â22)/det(A) = a11/det(A),

which is just the usual formula for the inverse of a 2× 2 matrix:(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
.

2.6 Geometric Interpretation

My bias is that algebra is based on geometry,26 hence for me the “true meaning” of the
determinant is its geometric interpretation.

Consider two vectors in the plane, u,v ∈ R2 with angle θ between them. The area of the
parallelogram they generate is ‖u‖‖v‖| sin θ|.27 Indeed, in the following picture the red par-
allelogram and the blue rectangle have the same area:

26And geometry is based on physics. I believe that physics is the true foundation of mathematics, not
axiomatic set theory.

27The absolute value accounts for negative angles.
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On the other hand, we can interpret this area as a determinant. Let A be the 2 × 2 matrix
with columns u and v:

A =
(

u v
)
.

I claim that the area of the parallelogram equals (the absolute value of) the determinant of
A. To prove this we use a clever trick. First we observe that√

det(ATA) =
√

det(AT )det(A) =
√

det(A)det(A) =
√

det(A)2 = |det(A)|.

But the determinant of ATA can also be computed as follows:

ATA =

(
uT

vT

)(
u v

)
ATA =

(
‖u‖2 u • v

u • v ‖v‖2
)

det(ATA) = ‖u‖2‖v‖2 − (u • v)2

= ‖u‖2‖v‖2 − (‖u‖‖v‖ cos θ)2

= ‖u‖2‖v‖2(1− cos2 θ)

= ‖u‖2‖v‖2 sin2 θ.

So we conclude that

|det(A)| =
√

det(ATA) =

√
‖u‖2‖v‖2 sin2 θ = ‖u‖‖v‖| sin θ|.

This trick is much more important than it looks. Suppose now that our parallelogram lives in
n-dimensional space, generated by vectors u,v ∈ Rn with angle θ:
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For geometric reasons, the area of the parallelogram is still ‖u‖‖v‖| sin θ|, but now the n× 2
matrix A =

(
u v

)
is not square, so det(A) is not defined. However, the matrix ATA is

still square, so we may still consider det(ATA), and the same calculation as above shows that√
det(ATA) = ‖u‖‖v‖| sin θ|.

In general, we have the following theorem.

Theorem (Geometric Interpretation of the Determinant). Let A be an n× k matrix
with columns a1, . . . ,ak ∈ Rn, which generate a k-parallelotope living in n-dimensional space:
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Let Volk(A) denote the volume of this k-parallelotope, measured within the k-dimensional
subspace that it spans. We call this the k-volume of the k-parallelotope. Then we have28

Volk(A) =
√

det(ATA).

If k = n, then we are measuring the full n-dimensional volume of an n-parallelotope in Rn. In
this case the matrix A is square, and we obtain

Voln(A) = |det(A)|.

Note that we already proved this theorem in the case k = 2. The proof of the general case
proceeds in four steps:

(1) For n× n matrices A we have Voln(A) = |det(A)|.

(2) For n× n matrices A we have |det(A)| =
√

det(ATA).

(3) It follows from (1) and (2) that the n-volume of an n-parallelotope in Rn depends only
on the lengths and angles between its generating vectors.

(4) Hence we also have Volk(A) =
√

det(ATA), even when k 6= n.

28This volume can very well be zero, which happens when the columns of A are not independent. In this case,
the k-parallelotope generated by a1, . . . ,ak is “flat”, i.e., it lives in a smaller-dimensional subspace of Rn. For
example, a 3-parallelogram generated by dependent vectors is actually some kind of 2-dimensional hexagon. I
guess there is a recursive formula for the lower-dimensional volume but I don’t want to work it out.
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The hardest part is (1), which we will prove below. The proof of (2) is a simple
calculation, which was given above. For the proof of (3) let A be n× n. We observe that the
ij entry of the n× n matrix ATA is

aTi aj = ai • aj = ‖ai‖‖aj‖ cos θij ,

where θij is the angle between ai and aj . Since from (1) we have

Voln(A) = |det(A)| =
√

det(ATA),

and since the entries of ATA only depend on the lengths ‖ai‖ and angles θij , it follows that
the volume Voln(A) only depends on the lengths and angles. But now suppose that A is k×n
with columns a1, . . . ,ak ∈ Rn. In this case the ij entry of ATA is still given by

aTi aj = ai • aj = ‖ai‖‖aj‖ cos θij ,

hence det(ATA) has exactly the same formula in terms of ‖ai‖ and θij as it does when A is a
k × k square matrix. Then from the square case we conclude that

Volk(A) = some formula involving the lengths ‖ai‖ and angles θij =
√

det(ATA).

This completes the proof, except for part (1). �

Before diving into the proof of (1), we consider the case k = 3. The technical name for a
3-parallelogram is a parallelepiped.

Volume of a Parallelepiped. Let A be an n× 3 matrix with columns a1,a2,a3 ∈ Rn, and
let θij be the angle between vectors ai and aj , which can be computed via the dot product:

θij = arccos

(
ai • aj
‖ai‖‖aj‖

)
.

Then the volume (i.e., the 3-volume) of the parallelepiped generated by a1,a2,a3 is given by

Vol3(A)2 = det(ATA)

= det

 ‖a1‖2 a1 • a2 a1 • a3

a1 • a2 ‖a2‖2 a2 • a3

a1 • a3 a2 • a3 ‖a3‖2


= det

 ‖a1‖2 ‖a1‖‖a2‖ cos θ12 ‖a1‖‖a3‖ cos θ13
‖a1‖‖a2‖ cos θ12 ‖a2‖2 ‖a2‖‖a3‖ cos θ23
‖a1‖‖a3‖ cos θ13 ‖a2‖‖a3‖ cos θ23 ‖a3‖2

 ,

which after some simplification becomes

Vol3(A) = ‖a1‖‖a2‖‖a3‖
√

(1 + 2 cos θ12 cos θ13 cos θ23 − (cos2 θ12 + cos2 θ13 + cos2 θ23)).
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This formula is much more difficult to derive without determinants.29

Proof of (1). For an n× n matrix A we need to prove that

|det(A)| = Voln(A).

Actually, we will prove that
det(A) = ±Voln(A),

where the sign depends on the ordering of the columns, and is not relevant to the geometry.
Thus we will show that the determinant can be interpreted as a “signed volume”.30 According
to Section 2.2, we only need to show that the function Voln from (Rn)n to R satisfies the three
rules of a determinant function:

• Multilinear. The function Voln(A) is linear in each individual column of A.

• Alternating. If A′ is obtained from A by switching two columns, then

Voln(A′) = −Voln(A).

• Normalized. We have Voln(In) = 1.

The third property is part of the definition of volume. It just says that the unit n-cube has
n-volume 1. And we can just assume that the second property is true, since we don’t care
about the sign of the volume. Thus we only need to show that Voln is multilinear.

There is a subtle difficulty here, since to prove a theorem about volume, one must have a
formal definition of volume, which we don’t. In fact, the most common formal definition of
volume is based the determinant! But any proof using this formalization would be circular.

Instead of developing a rigorous “measure theory”,31 we will proceed intuitively. It is intu-
itively obvious that scaling one of the columns scales the volume by the same amount. For
example, doubling one side of a parallelogram doubles the area:

29If n = 3 then we can also express the volume in terms of the cross product, but doing so breaks the
symmetry, and the cross product doesn’t generalize to higher dimensions.

30This should be familiar from Calculus, since the area under a curve is actually a “signed area”, with regions
below the x-axis having “negative area”. See the next section.

31Measure theory is the term for the modern, rigorous, theory of integration.
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Thus we only need to show that Voln preserves addition in each column. In the case of
parallelograms, we need to show that the areas of the parallelograms generated by u,w and
v,w add to the area of the parallelogram generated by u + v and w. For example, in the
following picture we need to show that the areas of the red and green parallelograms add to
the area of the blue parallelogram:

The proof uses the dotted line, which is parallel to w. This line divides the blue parallelogram
into two pieces, which have the same areas as the red and green parallelograms. This follows
because parallelograms with the same base and height have the same area.

In higher dimensions the scaling argument is still plausible but the addition argument is harder
to visualize. Instead of trying to generalize the above picture, we will base our argument on
a general geometric principle called Cavalieri’s Principle, which we take as an axiom.32

Cavalieri’s Principle. An n-prism in Rn has the following form. Let V ⊆ Rn be an (n− 1)-
dimensional subspace. For any subset S ⊆ V and for any vector a ∈ Rn that is not in V , we
define the “prism over S generated by a”:

PrismS(a) = {p + ta : p ∈ S and 0 ≤ t ≤ 1}.

Then Cavalieri’s principle says that

Voln(PrismS(a)) = Voln(PrismS(a + v)) for any vector v ∈ V .

More colloquially:

two prisms with the same base and the same height have the same volume.

Here is a picture:

32This principle is often taken as an axiom, for example when deriving the volume of a sphere in R3 without
calculus.
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For any n× n matrix A we will show that applying an elementary matrix of the form Lij(λ)
to A does not change the volume of the n-parallelotope:

Voln(ALij(λ)) = Voln(A).

To be precise, let A have columns a1, . . . ,an ∈ Rn and let Sj be the (n − 1)-parallelogram
living in the (n−1)-dimensional subspace V ⊆ Rn generated by the vectors a1, . . . ,an, except
for aj . We can view the n-parallelotope generated by A as PrismSj (aj). If A′ is obtained from
A by replacing column aj by itself plus any vector v ∈ V , then Cavalieri’s principle says

Voln(A′) = Voln(PrismSj (aj + v)) = Voln(PrismSj (aj)) = Voln(A).

We are interested in the special case when v = λai for some i 6= j, in which case A′ = ALij(λ).

And that’s enough about that.

2.7 Application to Calculus

In the previous section we showed that the a determinant can be viewed as the n-volume of
an n-parallelotope living in Rn. Now we apply this idea to volumes of arbitrary shapes.

Scaling Factor. Consider an n × n matrix A with columns a1, . . . ,an ∈ Rn. We can think
of A as the linear function Rn → Rn that sends x 7→ Ax. Hence A sends the unit n-cube
generated by the standard basis vectors e1, . . . , en to the n-parallelotope generated by the
vectors Aei = ai. Since the unit n-cube has volume 1 (by definition), we see that

Voln(A) = |det(A)|
Voln(A) = |det(A)| · 1

Voln(n-parallelotope generated by a1, . . . ,an) = |det(A)| ·Voln(unit n-cube).
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More generally, consider an n × n matrix B with columns b1, . . . ,bn ∈ Rn. Then A sends
the n-parallelotope generated by b1, . . . ,bn to the n-parallelotope generated by Ab1, . . . , Abn,
which are the columns of AB. Hence we have

Voln(image of the parallelotope b1, . . . ,bn under the function A)

= Voln(parallelotope generated by Ab1, . . . , Abn)

= Voln(Ab1, . . . , Abn)

= Voln(AB)

= |det(AB)|
= |det(A)det(B)|
= |det(A)| · |det(B)|
= |det(A)| ·Voln(B)

= |det(A)| ·Voln(parallelotope b1, . . . ,bn).

For example, the unit n-cube corresponds to the identity matrix B = In. It is also worth
mentioning the case when A = λIn for some scalar λ, so that A is the function that dilates
Rn by a factor of λ. In this case we have33

det(λIn) = λn,

so the function A scales volumes in Rn by a factor of λn. Indeed, if you double the side length
of a cube in R3 then its volume gets multiplied by 8 = 23.

We can think of a square matrix A in two ways. If we think of it as a collection of numbers then
the determinant is the (signed) volume of the parallelotope generated by the columns. On the
other hand, if we think of A as a linear function Rn → Rn then we should think of |det(A)|
as a “volume scaling factor”. Indeed, we have shown that applying A to any parallelotope in
Rn scales its volume by |det(A)|. I claim that the same idea holds for arbitrary34 subsets of
Rn. To be precise, for any subset S ⊆ Rn we define the image set

A(S) := {the set of points Ap for all p ∈ S}.

In this case I claim that
Voln(A(S)) = |det(A)| ·Voln(S).

The idea of the proof is that any reasonable subset of Rn can be approximated as a union of
tiny parallelotopes. To simplify the discussion we will use tiny cubes. Suppose that the set
S ⊆ Rn is a union of tiny cubes. Then the image A(S) ⊆ Rn is a union of tiny parallelotopes,
each of whose volume has been scaled by |det(A)|. But the total volume is just the sum of
the volumes of the tiny pieces. Hence the total volume is also scaled by |det(A)|. Here is a
picture:

33This follows from multilinearity. Multiplying one column by λ multiplies the determinant λ. Multiplying
each of the n columns by λ multiplies the determinant by λn.

34Arbitrary “measurable” subsets. The real numbers are wild enough that they admit pathological examples
such as “sets whose volume cannot be defined”. I am happy to ignore such things.
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Thinking of determinants as volume scaling factors of linear functions gives an intuitive ex-
planation for the identity det(AB) = det(A)det(B). Indeed, for any subset S ⊆ Rn and for
any n× n matrices A,B we have

Voln((AB)(S)) = |det(AB)| ·Voln(S),

but also

Voln((AB)(S)) = Voln(A(B(S))

= |det(A)| ·Voln(B(S))

= |det(A)| · |det(B)| ·Voln(S),

which implies that |det(AB)| = |det(A)| · |det(B)|. (The sign is a bit trickier to handle.)
This idea also gives meaning to the determinant of an abstract linear function f : V → V ,
independent of choosing a basis for V .

Linear Approximation. We have seen that a linear function A : Rn → Rn scales the n-
volume of an arbitrary shape S ⊆ Rn by a factor of |det(A)|. In this section we will generalize
from linear to non-linear functions.

A general function r : Rm → Rn has the form

r(x1, . . . , xn) = r(x) = (r1(x), . . . , rm(x)),

where each component function ri(x1, . . . , xn) sends Rn → R. Suppose that each ri has
continuous partial derivatives near some point p ∈ Rn, and consider the Taylor expansion:

ri(p + x) = ri(p) + (∇ri)
T
px + higher terms,
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where the higher terms are small when x is close to 0. Then we collect the components into
a column vector:

r(p + x) =

 r1(p + x)
...

rm(p + x)


≈

 r1(p) + (∇r1)
T
px

...

rm(p) + (∇rm)Tpx



=

 r1(p)
...

rm(p)

+

 (∇r1)
T
px

...

(∇rm)Tpx



= r(p) +

 (∇r1)
T
p

...

(∇rm)Tp

x

= r(p) +


∂r1
∂x1

(p) · · · ∂r1
∂xn

(p)
...

...
∂rm
∂x1

(p) · · · ∂rm
∂xn

(p)

x.

The m× n matrix of partial derivatives of the components of r is called the Jacobian matrix:

Jr :=

∂r1/∂x1 · · · ∂r1/∂xn
...

...
∂rm/∂x1 · · · ∂rm/∂xn

 .

This matrix plays the role of the “linear part” of the multi-multivariable Taylor expansion:

r(p + x) = r(p) + (Jr)px + higher terms.

In summary, suppose that a possibly non-linear function r : Rn → Rm behaves nicely near
a point p ∈ Rn. Then near this point the function r is approximately equal to the linear
function corresponding to the m × n Jacobian matrix (Jr)p. If r happens to be linear,
corresponding to an m× n matrix A, then one can check that (Jr)p = A for any point p. If
r is non-linear then the matrix (Jr)p changes from point to point.

Application to Integration. In the previous sections we showed the following:

• If a function r : Rm → Rn has continuous partial derivatives near a point p ∈ Rn then
we can approximate r near p by an m× n matrix (Jr)p.

• A linear function A : Rn → Rn scales volume by the factor |det(A)|.
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Combining these ideas gives us a method to compute the volumes of parametrized shapes in
Rn. Before showing some examples, I will state the general theorem.

Theorem (Volume of a k-dimensional submanifold of Rn). We wish to compute the
k-volume of a k-dimensional subset T ⊆ Rn. To do this, we look for a parametrization function
r : Rk → Rn whose image is T . Suppose that r sends the subset S ⊆ Rk to the subset T ⊆ Rn.
Then we can compute35 the k-volume of T by integrating a suitable “volume stretch factor”
over the region S ⊆ Rk using standard Euclidean coordinates:

Volk(T ) = Volk(r(S)) =

∫
p∈S

√
det((Jr)Tp(Jr)p) · dp.

Remark: We require the shapes S, T and the function r to be sufficiently nice. This involves
several technical conditions that I am happy to ignore. Basically, S and T should be reasonably
smooth, and r should parametrize T without any overlaps or kinks.

Proof. A tiny cube at the point p ∈ S has a tiny volume dp. The function r is approximately
linear at p, given by the n× k matrix (Jr)p. This matrix sends the tiny cube at the point p
to a tiny k-parallelotope at the point r(p). For any small shape near p, the linear function
(Jr)p scales its volume by a factor of36√

det((Jr)Tp(Jr)).

Hence the volume of the tiny k-parallelotope at the point r(p) is√
det((Jr)Tp(Jr)) · (volume of the tiny cube) =

√
det((Jr)Tp(Jr)) · dp.

Then we just add up all these tiny volumes to get the k-volume of T . �

To end this section, I will illustrate how this result unifies several formulas from Calculus III.

Example: Arc Length. Let r : R→ Rn be a parametrized path in Rn. Usually we think of
the parameter as time, and we write r(t) = (x1(t), x2(t), . . . , xn(t)). The Jacobian matrix at
time t is just the velocity vector:

Jr(t) =

∂x1/∂t...
∂xn/∂t

 = r′(t).

In this case, (Jr)T (Jr) is just a scalar, and the 1-volume (i.e., length) scaling factor is just
the speed of the parametrization:

(Jr)T (Jr) = r′(t)T r(t)

35In fact, this formula is often used as the definition of volume.
36We only proved this in the case k = n, when (Jr)p is a square matrix and the scaling factor reduces to
|det((Jr)p)|. The general case follows by the same argument as in 2.6.
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(Jr)T (Jr) = ‖r′(t)‖2

det((Jr)T (Jr)) = ‖r′(t)‖2√
det((Jr)T (Jr)) = ‖r′(t)‖.

Then the theorem tells us that the arc length of the curve is just the integral of the speed:

(length of the curve r(t) between times t = a and t = b) =

∫ b

a
‖r′(t)‖ dt.

Of course this makes sense because distance is the time integral of speed.

Example: Surface Area. Let r : R2 → Rn be a parametrization for a 2-dimensional surface
T ⊆ Rn. It is common to write r(u, v) = (x1(u, v), . . . , xn(u, v)), where each coordinate xi is
a function from R2 to R. The Jacobian matrix is

Jr =

∂x1/∂u ∂x1/∂v
...

...
∂xn/∂u ∂xn/∂v

 =

 | |
ru rv
| |

 ,

where ru and rv are the “velocity vectors” of r in the u and v directions37

37If one of u or v is fixed then you can think of the other as time.
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In this case the 2-volume (i.e., area) scaling factor is the area of the parallelogram generated
by ru and rv:

(Jr)T (Jr) =

(
− ru −
− rv −

) | |
ru rv
| |


=

(
‖ru‖2 ru • rv
ru • rv ‖rv‖2

)
det((Jr)T (Jr)) = ‖ru‖2‖rv‖2 − (ru • rv)

2

= ‖ru‖2‖rv‖2 − (|ru‖‖rv‖ cos θuv)
2

= ‖ru‖2‖rv‖2(1− cos2 θuv)

= ‖ru‖2‖rv‖2 sin2 θuv√
det((Jr)T (Jr)) = ‖ru‖‖rv‖| sin θuv|,

where θuv is the angle between the velocity vectors ru and rv. In the special case of a surface
in R3, we can also describe this area as the length of the cross product vector:

‖ru × rv‖ = ‖ru‖‖rv‖| sin θuv|.

To compute the area of the surface, we add up all of the areas of tiny parallelograms:

(area of the surface T ⊆ Rn) =

∫ √
‖ru‖2‖rv‖2 − (ru • rv)2 · dudv.

Example: Change of Coordinates. A parametrization of an n-dimensional shape in n-
dimensional space is sometimes viewed as a “change of coordinates” r : Rn → Rn. For
example, take the parametrization of R2 by polar coordinates:

r(r, θ) =

(
x(r, θ)
y(r, θ)

)
=

(
r cos θ
r sin θ

)
.
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The Jacobian stretch factor at the point (r, θ) is

Jr =

(
∂x/∂r ∂x/∂θ
∂y/∂r ∂y/∂θ

)
=

(
cos θ −r sin θ
sin θ r cos θ

)
√

det((Jr)T (Jr)) = |det(Jr)|

= |r cos2 θ + r sin2 θ|
= |r|.

Hence the area of a region T in the x, y-plane, which is parametrized by a region S in the
r, θ-plane is given by38 ∫

S
r · drdθ.

Since a change of coordinates maps a space into itself, changes of coordinates can be composed.
Suppose we have functions r : Rn → Rn and s : Rn → Rn, with composition r ◦ s : Rn →
Rn. The multi-multivariable version of the chain rule says that the Jacobian matrix of the
composition r ◦ s is equal to the product of the Jacobian matrices of r and s. That is, for any
point p ∈ Rn we have

(J(r ◦ s))p = (Jr)s(p) · (Js)p.

38In order to ensure the “niceness” of the parametrization, we will take r ≥ 0 (so that |r| = r) and 0 ≤ θ < 2π.
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Hence the the Jacobian scaling factors multiply:

|det((J(r ◦ s))p)| = |det((Jr)s(p))| · |det((Js)p)|.

Observe that the notation is getting complicated. Indeed, the subject of differential geometry
is known for its impenetrable notation. Since no two authors can understand each other, they
often invent their own personal notations. Einstein’s notation is the most popular among
physicists.
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