This course has an optional writing credit.

Details.

- Write a paper on a topic that is closely related to the course material.
- The style should be similar to a typical math textbook or research paper.
- The paper should be typeset instead of hand written.
- The paper should be approximately 10 pages long. Of course this will include white space because typeset mathematical formulas always need white space.
- The paper should include a series of small results and definitions, leading up to the proof of an interesting theorem. The definitions, statements and proofs should be written clearly and correctly.
- The paper should include an introduction/abstract and bibliography.
- The first draft must be submitted by Thurs Oct 12. I will provide feedback and then you must submit a final version incorporating this feedback. The final due date is Wed Dec 13.
- I will be happy to set up Zoom appointments to discuss possible topics.

Some Possible Topics.

- The $\mathbf{5 / 8}$ Theorem. Let G be a finite group and let $P(G)$ be the probability that two random elements $a, b \in G$ satisfy $a b=b a$. The " $5 / 8$ Theorem" says that

$$
P(G)>5 / 8 \quad \Rightarrow \quad P(G)=1
$$

Equivalently, if G is a non-abelian group then the probability that two random elements commute is less than or equal to $5 / 8$. Prove it.

- Wallpaper Groups. Let $\operatorname{Isom}\left(\mathbb{R}^{2}\right)$ be the group of isometries $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. We say that a subgroup $G \subseteq \operatorname{Isom}\left(\mathbb{R}^{2}\right)$ is "discrete" if there exists some real number $\epsilon>0$ such that the distance between $g(\mathbf{x})$ and \mathbf{x} is greater than ϵ for all $g \in G$ and $\mathbf{x} \in \mathbb{R}^{2}$. It turns out that there are only 17 such groups! Describe the classification and prove at least some of it.
- Polyhedral Groups. Let G be a finite subgroup of $S O(3)$. Then G is either (1) a cyclic group C_{n}, (2) a dihedral group $D_{2 n}$, (3) the group T of rotations of a tetrahedron, (4) the group O of rotations of an octahedron/cube, or (5) the group I of rotations of an icosahedron/dodecahedron. There are no other possibilities. Give a proof.
- Fermat-Euler-RSA. Discuss Fermat's Little Theorem, Euler's Theorem, and the following slight generalization: Let p and q be distinct primes. Then for all integers $a \in \mathbb{Z}$ we have

$$
a^{(p-1)(q-1)+1}=a \quad \bmod p q .
$$

Prove this theorem and explain how it is the basis of the RSA cryposystem.

- Sylow Theorems. Let G be a finite group with $\# G=p^{\alpha} m$ where p is prime and $p \nmid m$. Then (1) There exists a subgroup of size p^{α}, (2) Any two subgroups of size p^{α} are conjugate, and (3) the number of such subgroups (called Sylow subgroups) is congruent to $1 \bmod p$. Prove one or more of these theorems.
- The Gaussian Coefficients. The q-binomial theorem says that

$$
(a+b)(a+q b) \cdots\left(a+q^{n-1} b\right)=\sum_{k=0}^{n-1} q^{k(k-1) / 2}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} a^{k} b^{n-k},
$$

where $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ are called the Gaussian or q-binomial coefficients. Give an introduction to these numbers and prove at least one interesting theorem about them.

- The Cartan-Dieudonné Theorem. A reflection matrix F satisfies $F^{T}=F$ and $F^{2}=I$. Show that every matrix in the group $O_{n}(\mathbb{R})$ can be expressed as a product of at most n reflections. One consequence is that every non-identity matrix in the group $\mathrm{SO}_{3}(\mathbb{R})$ is a product exactly two reflections, i.e., is a rotation.
- Burnside's Lemma. This is a formula for counting finite structures up to symmetry. For example, it can be used to prove that there are 57 different ways to color the 6 faces of a cube using 3 possible colors, up to rotational symmetry. Prove this theorem and give some interesting examples.
- Quaternions. The ring of quaternions is a generalization of complex numbers. It is the set of expressions of the form $a \mathbf{1}+b \mathbf{i}+c \mathbf{j}+d \mathbf{k}$ where a, b, c, d are real numbers and the symbols $\mathbf{1}, \mathbf{i}, \mathbf{j}, \mathbf{k}$ satisfy certain relations, such as $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-\mathbf{1}$. Describe the basic theory of this ring and explain how it can be used to encode rotations in three dimensional space.

