Math 561/661 Fall 2023
Homework 6 Drew Armstrong

1. The Second Isomorphism Theorem. Let H and K be subgroups of (G,x*,¢) and
suppose that at least one of these subgroups is normal. Let’s say K C G is normal.

(a) Show that the product set H « K = {hxk:h € H,k € K} is a subgroup of G.

(b) Show that K C H x K is a normal subgroup, hence the group (H x K)/K exists.

(¢) Show that the function ¢ : H — (H * K)/K defined by ¢(h) := h * K is a surjective

group homomorphism.
(d) Show that ker ¢ = H N K, and then use the First Isomorphism Theorem to show that
H  HxK
HNnK K
(e) If G is finite, use part (d) to show that #(H x K) - #(H N K) = #H - #K.

(a): Let H, K C (G,*,¢) be subgroups and let K C G be normal. This means that for any
g € G and k € K there exists some k' € K such that k* g = g * k. We will use this property
to show that H * K C G is a subgroup.

So consider any two elements hq x k1 and ho * ko in H x K. Since H and K are subgroups of
G we know that hy *hy ' € H, hy' € H and ki x ky ' € K. Putting g = hy* and k = ky x ky *
into the previous remark gives
(hl * k‘l) * (h2 * ]{2)_1 = hl * (k‘l * k‘gl) * h;l
= hy * h2_1 x k'
for some element k' € K, and hence (hy * k1) * (ha * ko)™ € H x K.

(b): Note that K is a subset of H* K since every element k € K has the form k = exk € Hx K.
The fact that K is a normal subgroup of H x K follows trivially from the assumption that K
is a normal subgroup of G. Hence the quotient group H * K/K exists.

(c): Define the function ¢ : H — (H * K)/K by ¢(h) := (h*¢€)« K = h x K. The fact that
this is a group homomorphism follows from the definition of coset multiplication:
@(h1) * @(h2) = (h1 * K) * (hg * K) := (h1 x he) * K = @(hy  ha).

To see that ¢ is surjective, consider any coset (h * k) * K € (H « K)/K, with h € H and
k € K. Recall that for any a,b € G we have a x K = b* K if and only if a—! xb € K. Taking
a=handb=hxkgivesa 'xb=h"'xhxk=kec K and hence

(hxk)+* K =hx K = ¢(h).

(d): For any a € G recall that a *+ K = K if and only if @ € K. Since the coset K is the
identity element of the quotient group (H * K)/K, we haveEI
kerop={he H:h«K=K}={heH:he K}=HNK.
It follows from the First Isomorphism Theorem that
H H _ . Hx K
HNK kerg YT TK

lSince kernels are normal, it follows from this that H N K is a normal subgroup of H, though this is easy
enough to check directly.



(e): If G is a finite group then it follows from part (d) and Lagrange’s Theorem that
#(H/(HNK))=#((H = K)/K)
#H/#(HNK) =#(H * K)/#K

HH - #K = #(H + K) - #(H N K).

2. Size of a Product Set. Given two subgroups H, K C (G, *,¢) you showed on a previous
homework that the product set H « K = {hxk:h € H,k € K} C G need not be a subgroup,
in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.

(a) Prove that h(gK) := (h * g)K defines an action of H on the set of cosets X = G/K.

(b) For the specific coset K € X, show that Stab(K) = H N K.

(c) For the specific coset K € X, show that #O0rb(K) = #(H * K)/#K. [Hint: Show
that the set H x K is a disjoint union of cosets of K]

(d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.

(a): Let H and K be subgroups of (G, ,¢) and consider the set X = G/K of left cosets of
K. We do not assume that K C G is normal, hence X = G/K need not be a group. I claim
that the rule h- (g% K) := (h* g) * K defines an action of the group H on the set X. Indeed,
forh=cwehavee- (g% K) = (exg)* K = g+ K, and for any hy, he € H we have

hi-(he-(g*x K))=hy-((ha*g)* K) = (hy *xhaxg)*x K = (hy xhy) - (g% K).

(b): For the specific coset K = ¢ x K € X we have
Stab(K) ={h€ H:h-(exK)=e¢xK}
={heH:hxK=K}
={heH:heK}
=HNK.

This need not be a normal subgroup of H.

(c): Note that every coset h € K with h € H is contained in the product set H * K.
Furthermore, every element h x k € H = K is contained in the coset h * K. This shows that
H x K is equal to the union of cosets in the set Orb(K) = {h* K : h € H}. If G is finite then
n := #0rb(K) is finite and we can choose some orbit representatives hq,...,h, € H so that

HxK=(h«K)U(hax K)U---U(h, * K).
Then since each coset has size #K we get
#(H*K)=#(h1 %K)+ #(hg x K) + - - - + #(hp, x K)
= #K + #K + -+ #K
=n-#K
= #O0rb(K) - #K.

(d): It follows from the Orbit-Stabilizer Theorem that
#Orb(K) = #H /#Stab(K)
B 5 ) /4K = $H/#(H N K)



3. Groups of Size p? are Abelian. Let p > 2 be prime.

(a) For any group (G, *,¢), the center Z(G) = {a € G:Vb € G,a*b=bx*a} is a normal
subgroup. If the quotient group G/Z(G) is cyclic, prove that G must be abelian. [Hint:
Suppose that G/Z(G) is generated by the coset a *x Z(G). Then every element of G
has the form a* * z for some z € Z(G).]

(b) For any group (G, *,¢) with #G = p* (for k > 1), show that p|Z(G). [Hint: The class
equation says that #G = #2Z(G) + >, #K(a;) where the sum is over the nontrivial
conjugacy classes: #K(a;) > 2. Now use Orbit-Stabilizer.]

(c) Finally, let #G = p?. Use parts (a) and (b) to prove that G is abelian. [Hint: By
Lagrange’s Theorem the center must have size 1, p or p?.]

(a): Suppose that the quotient group G/Z(G) is cyclic, generated by some coset g * Z(G).
This implies that every coset of Z(G) has the form g* * Z(G) for some k € Z. Since G is
covered by the cosets of Z(G) is follows that every element of G has the form g* x a for some
k € Z and a € Z(G). Finally, for any two elements g* % a; and ¢g*? * as in G we have

(gF s ay) * (¢* % ag) = gF' * g*2 x a1 x ao a1 € Z(Q)
= gk1+k2 *ay *a
= gF2 R s qy % ay
:g’”*gkl*al*az

= (¢" x ag) * (g™ * a). az € Z(G)

(b): For any group (G, , ¢) the class equation says that
#HG = #2(G) + Y #K (i),

where a; € G are representatives for the non-trivial conjugacy classes: #K (a;) > 2. By Orbit-
Stabilizer we have # K (a;) = #G/#Z(a;) and hence each #K (a;) divides #G. Now suppose
that #G = p”* is a power of a prime. Since #K (a;) is a divisor of #G and #K (a;) # 1 we
see that p divides # K (a;) for each i. Finally, since p divides #G and #K (a;) for each i, the
class equation tells us that p divides #Z(G).

(c): Now let #G = p?. Since the center Z(G) is a subgroup of G, Lagrange’s Theorem tells us
that #7(G) equals 1, p or p?. Part (b) tells us that #Z(G) = 1 is impossible. If #7(G) = p?
then we have Z(G) = G and hence G is abelian. Otherwise, if #Z(G) = p then the quotient
group G/Z(G) has size p?/p = p. In this case, since any group of prime order is cyclic, it
follows from part (a) that G is abelian.

4. There Are Only Two Groups of Size p?. Let p > 2 be prime and let (G, *,¢) be a
group with p? elements. If G % Z/p*Z, we will show that G must be isomorphic to the direct
product Z/pZ x 7./ pZ.

(a) Suppose that G is not cyclic and consider any € # a € G. Show that #(a) = p.

(b) Now pick any element b € G'\ (a) and consider the two groups H = (a) and K = (b).
Prove that H N K = {¢}. [Hint: Use Lagrange.]

(c) Conclude from Problem 1(e) or 2 that #(H * K) = p? and hence G = H * K.

(d) Show that the function ¢ : Z/pZ x Z/pZ — G defined by (k,€) — a* * b’ is a group
isomorphism. [Hint: Problem 3 implies that ¢ is a homomorphism, part (b) implies
that ¢ is injective and part (c) implies that ¢ is surjective.]



(a): Let #G = p? for some prime p and suppose that G is not cyclic. Consider any ¢ # a € G.
By Lagrange, the cyclic subgroup (a) has size 1, p or p?. The first is impossible because a # ¢
and the last is impossible since #(a) = p? implies (a) = G, which contradicts our assumption
that G is not cyclic. Hence we must have #(a) = p.

(b): Now pick any b € G \ (a) and consider the groups H = (a) and K = (b). By the same
argument as in part (a) we know that #K = p. Since H N K is a subgroup of H and K,
Lagrange’s Theorem tells us that #(HNK) = 1 or p. The latter implies that H = HNK = K,
which is impossible because b € K \ H. Hence we must have #(H N K) = 1.

(c): Tt follows from Problem 2 thatﬂ

#(H« K) = #H - #K/#HNK) =p*/1 = p?
and hence H * K = G.

(d): Finally, I claim that the function ¢ : Z/pZ x Z/pZ — G defined by (k,£) — a¥ = b is
a group isomorphism. The fact that ¢ is well-defined follows from the facts that a? = ¢ and
b? = ¢. Indeed, if k1 = ko and ¢; = /5 mod p then we have akt = ak2 and b©r = 642, hence

o(k1,01) = a® 5 b = k2 % b2 = p(ko, £y).

The fact that ¢ is a homomorphism follows from Problem 3, which says that G is abelian.
Indeed, for any (k1,¢1) and (k2,f2) we have

@k, 1) * p(ka, €2) = (aP % b) % (a¥2 % b2)
= a¥ % a2 5 b 5 "2 (axb="bx*a)
_ lithe gt
= (k1 + k2, 01 + £2).
The fact that ¢ is surjective follows from part (c), which implies that
G=Hx*K = (a)(b)={a"*b": k, 0 7}

Finally, to see that ¢ is injective we will use part (b), which says that H N K = {¢}. Indeed,
suppose that we have p(ki, 1) = ¢(ka, l2), so that

aft o« b2 = a2« b2
afi—hz — pla—h, (axb=bxa)

Since the left side is in H and the right side is in K we must have a®*=%2 = ¢ and b2~ =¢.
This implies that k1 = k9 and #; = f5 mod p, as desired.

Remark: In summary, we have shown that every group of size p? (with p prime) is isomorphic
to Z/p*Z or 7.]pZ x 7./ pZ. As you see, the proof was not trivial. The hardest part was to show
that a group of size p? must be abelian. A group of size p* with & > 3 need not be abelian. For
example, there are two non-abelian groups of size 23: the dihedral and quaternion groups. Non-
abelian groups of size p* can be extremely complicated. On the other hand, the Fundamental
Theorem of Finite Abelian Groups says that any finite abelian group is isomorphic to a direct
product of cyclic groups, which is nice. Maybe we will see that theorem next semester.

2We know from Problem 3 that @ is abelian, hence we could use Problem 1(e), but it is better not to assume
what we don’t need.



5. Cauchy’s Theorem. Consider a finite group G' and a prime factor p|#G. Cauchy’s

Theorem says that there exists an element g € G of order p. In order to prove this, we

consider the set of p-tuples of group elements whose product (in order) is the identity:
X={(91,92,---,9p) € G" : G192 gp = €}.

Note that #X = (#G)P~! because the group elements g1, ... , gp—1 can be chosen freely, but

then we must have g, = gp__l1 - -gl_l. In particular, since p|#G and p > 2 we must have p|#X.

(a) If g #¢ and (g,9,...,9) € X, show that g is an element of order p.

(b) Prove that (g1,92,...,9p) € X implies (g2,...,9p,g1) € X. This shows that the cyclic
group Cp, C S, generated by the p-cycle ¢ = (1,2,...,p) acts on the set X.

(c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.

(d) Note that {(g,...,¢)} C X is an orbit of size 1. Show that there is at least one more
orbit of size 1, and then use part (a) to show that G contains an element of order p.
[Hint: If there were no other orbit of size 1 then by part (c) every other orbit would
have size p, which would imply that #X — 1 is divisible by p.]

(a): If (g,9,...,9) € X then by definition we have g = gg---g = . This implies that #(g)
divides p, which, since p is prime, implies #(g) = 1 or #(g) = p. But the first possibility
implies g = &, which contradicts our assumption. Hence #(g) = p.

(b): Let (g1,92,-..,9p) € X so that gig2---gp = €. Then conjugating by g1 gives
9192 - -"gp =€
91192 901 = 97 e
92 Gpg1 = 91 o1
92 9p91 = &,
and hence (g2, , gp,g1) € X. Thus the function ¢ : G — GP defined by

(91,925 9p) == (92, , Ip> 91)

sends elements of X to elements of X. Note that the map ¢ has order p, hence X is acted on
by the following cyclic group of size p:

(o) = {id, 0, 9%, ..., "1}

(c): For any element z € X the Orbit-Stabilizer Theorem says that
#0rb(x) = () /#Stab(z)
#Orb(z) = p/#Stab(z)
#Orb(z) - #Stab(x) = p.
Since p is prime, this tells us that every orbit has size 1 or p.
(d): Note that Orb((e,...,e)) ={(s,...,e)} is an orbit of size 1. From part (a) we know that
the other orbits of size 1 are in bijection with elements of G of order p. Let n be the number

of elements of G of order p. Then since X decomposes as a disjoint union of orbits of size 1
and p we must have

X =1 1 1
# +1l+--+1l+p+p+---+p
n times

= 1+ n + p(something).
Since p divides #X this implies that n + 1 = 0 mod p. In particular, n # 0.



6. The Symmetric Group is Not Solvableﬁ (Optional). Let n > 5 and consider the
symmetric group S,,. Assume for contradiction that there exists a chain of subgroups

Sp=Gy2G 22 G, ={id}

with the property that for each i the subgroup G;+1 C G; is normal and the quotient group
Gi/Git1 is abelian. Let X C S, be the subset of 3-cycles. We will obtain a contradiction by
showing that X C {id}.

(a) Show that every 3-cycle ¢ € X has the form ¢ = ¢; CQCIQCg ! for some 3-cycles ¢1, ¢ € X.
[Hint: Consider any n-cycle ¢ = (ijk). Since n > 5 we may choose two more numbers
¢,m not in the set {7, j, k}. Check that (ijk) = (jkm)(ilj)(jkm)~1(it5) =1

(b) If X C G; for some 4, show that we also have X C G,1;. [Hint: Consider any ¢ € X,
which from part (a) can be expressed as ¢ = ClCQCIlcg ! for some c1,c2 € X. Use the
fact that the group G;/G;y1 is abelian to show that the coset ¢G;11 equals Gjt1.]

(a): This is just a weird observation. The hint says it all.

(b): Suppose for induction that X C G;. Our goal is to show that X C G;y;. To do this,
consider any ¢ € X. From part (a) we can write ¢ = 01026;105 ! for some ¢1, ¢y € X. Since
¢,c1,c2 € G we may consider the corresponding cosets in the quotient group G;/Giy1. To
simplify notation we will write these cosets as [c], [c1] and [c2]. Then since G;/G;11 is assumed
to be abelian we have

[e] = [ercaer ' e5 ]
cilfea]ler M]lez ]
c1]ler Hlealles '] Gi/Giy1 is abelian

elle]

ee]

[
=
=
= laiey ] [ca2cy 1]
=
=
=

el.

We have shown that the cosets ¢G;+1 and €G;41 = G471 are equal, which implies that ¢ € Gj41.
Since this holds for ¢ € X we have shown that X C G;4;.

Remark: We have shown that the symmetric group S, is not solvable when n > 5. Next
semester we will prove Galois” Theorem, which says that a polynomial equation is solvable by
radicals if and only if its corresponding Galois group is solvable. Since the generic equation
of degree n has Galois group S, the result of Problem 6 will imply that for n > 5 there does
not exist a “formula” expressing the roots in terms of the coefficients.

3This terminology is inspired by Galois’ theorem on the solvability of polynomial equations by radicals. We
will discuss this next semester.



