
Math 561/661 Fall 2023
Homework 6 Drew Armstrong

1. The Second Isomorphism Theorem. Let H and K be subgroups of (G, ∗, ε) and
suppose that at least one of these subgroups is normal. Let’s say K ⊆ G is normal.

(a) Show that the product set H ∗K = {h ∗ k : h ∈ H, k ∈ K} is a subgroup of G.
(b) Show that K ⊆ H ∗K is a normal subgroup, hence the group (H ∗K)/K exists.
(c) Show that the function ϕ : H → (H ∗K)/K defined by ϕ(h) := h ∗K is a surjective

group homomorphism.
(d) Show that kerϕ = H ∩K, and then use the First Isomorphism Theorem to show that

H

H ∩K
∼=

H ∗K
K

.

(e) If G is finite, use part (d) to show that #(H ∗K) ·#(H ∩K) = #H ·#K.

(a): Let H,K ⊆ (G, ∗, ε) be subgroups and let K ⊆ G be normal. This means that for any
g ∈ G and k ∈ K there exists some k′ ∈ K such that k ∗ g = g ∗ k′. We will use this property
to show that H ∗K ⊆ G is a subgroup.

So consider any two elements h1 ∗ k1 and h2 ∗ k2 in H ∗K. Since H and K are subgroups of
G we know that h1 ∗ h−12 ∈ H, h−12 ∈ H and k1 ∗ k−12 ∈ K. Putting g = h−12 and k = k1 ∗ k−12
into the previous remark gives

(h1 ∗ k1) ∗ (h2 ∗ k2)−1 = h1 ∗ (k1 ∗ k−12 ) ∗ h−12

= h1 ∗ h−12 ∗ k
′,

for some element k′ ∈ K, and hence (h1 ∗ k1) ∗ (h2 ∗ k2)−1 ∈ H ∗K.

(b): Note that K is a subset of H∗K since every element k ∈ K has the form k = ε∗k ∈ H∗K.
The fact that K is a normal subgroup of H ∗K follows trivially from the assumption that K
is a normal subgroup of G. Hence the quotient group H ∗K/K exists.

(c): Define the function ϕ : H → (H ∗K)/K by ϕ(h) := (h ∗ ε) ∗K = h ∗K. The fact that
this is a group homomorphism follows from the definition of coset multiplication:

ϕ(h1) ∗ ϕ(h2) = (h1 ∗K) ∗ (h2 ∗K) := (h1 ∗ h2) ∗K = ϕ(h1 ∗ h2).
To see that ϕ is surjective, consider any coset (h ∗ k) ∗ K ∈ (H ∗ K)/K, with h ∈ H and
k ∈ K. Recall that for any a, b ∈ G we have a ∗K = b ∗K if and only if a−1 ∗ b ∈ K. Taking
a = h and b = h ∗ k gives a−1 ∗ b = h−1 ∗ h ∗ k = k ∈ K and hence

(h ∗ k) ∗K = h ∗K = ϕ(h).

(d): For any a ∈ G recall that a ∗ K = K if and only if a ∈ K. Since the coset K is the
identity element of the quotient group (H ∗K)/K, we have1

kerϕ = {h ∈ H : h ∗K = K} = {h ∈ H : h ∈ K} = H ∩K.

It follows from the First Isomorphism Theorem that

H

H ∩K
=

H

kerϕ
∼= imϕ =

H ∗K
K

.

1Since kernels are normal, it follows from this that H ∩K is a normal subgroup of H, though this is easy
enough to check directly.



(e): If G is a finite group then it follows from part (d) and Lagrange’s Theorem that

# (H/(H ∩K)) = # ((H ∗K)/K)

#H/#(H ∩K) = #(H ∗K)/#K

#H ·#K = #(H ∗K) ·#(H ∩K).

2. Size of a Product Set. Given two subgroups H,K ⊆ (G, ∗, ε) you showed on a previous
homework that the product set H ∗K = {h ∗ k : h ∈ H, k ∈ K} ⊆ G need not be a subgroup,
in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.

(a) Prove that h(gK) := (h ∗ g)K defines an action of H on the set of cosets X = G/K.
(b) For the specific coset K ∈ X, show that Stab(K) = H ∩K.
(c) For the specific coset K ∈ X, show that #Orb(K) = #(H ∗ K)/#K. [Hint: Show

that the set H ∗K is a disjoint union of cosets of K.]
(d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.

(a): Let H and K be subgroups of (G, ∗, ε) and consider the set X = G/K of left cosets of
K. We do not assume that K ⊆ G is normal, hence X = G/K need not be a group. I claim
that the rule h · (g ∗K) := (h ∗ g) ∗K defines an action of the group H on the set X. Indeed,
for h = ε we have ε · (g ∗K) = (ε ∗ g) ∗K = g ∗K, and for any h1, h2 ∈ H we have

h1 · (h2 · (g ∗K)) = h1 · ((h2 ∗ g) ∗K) = (h1 ∗ h2 ∗ g) ∗K = (h1 ∗ h2) · (g ∗K).

(b): For the specific coset K = ε ∗K ∈ X we have

Stab(K) = {h ∈ H : h · (ε ∗K) = ε ∗K}
= {h ∈ H : h ∗K = K}
= {h ∈ H : h ∈ K}
= H ∩K.

This need not be a normal subgroup of H.

(c): Note that every coset h ∈ K with h ∈ H is contained in the product set H ∗ K.
Furthermore, every element h ∗ k ∈ H ∗K is contained in the coset h ∗K. This shows that
H ∗K is equal to the union of cosets in the set Orb(K) = {h ∗K : h ∈ H}. If G is finite then
n := #Orb(K) is finite and we can choose some orbit representatives h1, . . . , hn ∈ H so that

H ∗K = (h1 ∗K) t (h2 ∗K) t · · · t (hn ∗K).

Then since each coset has size #K we get

#(H ∗K) = #(h1 ∗K) + #(h2 ∗K) + · · ·+ #(hn ∗K)

= #K + #K + · · ·+ #K

= n ·#K

= #Orb(K) ·#K.

(d): It follows from the Orbit-Stabilizer Theorem that

#Orb(K) = #H/#Stab(K)

#(H ∗K)/#K = #H/#(H ∩K)

#(H ∗K) ·#(H ∩K) = #H ·#K.



3. Groups of Size p2 are Abelian. Let p ≥ 2 be prime.

(a) For any group (G, ∗, ε), the center Z(G) = {a ∈ G : ∀b ∈ G, a ∗ b = b ∗ a} is a normal
subgroup. If the quotient group G/Z(G) is cyclic, prove that G must be abelian. [Hint:
Suppose that G/Z(G) is generated by the coset a ∗ Z(G). Then every element of G
has the form ak ∗ z for some z ∈ Z(G).]

(b) For any group (G, ∗, ε) with #G = pk (for k ≥ 1), show that p|Z(G). [Hint: The class
equation says that #G = #Z(G) +

∑
i #K(ai) where the sum is over the nontrivial

conjugacy classes: #K(ai) ≥ 2. Now use Orbit-Stabilizer.]
(c) Finally, let #G = p2. Use parts (a) and (b) to prove that G is abelian. [Hint: By

Lagrange’s Theorem the center must have size 1, p or p2.]

(a): Suppose that the quotient group G/Z(G) is cyclic, generated by some coset g ∗ Z(G).
This implies that every coset of Z(G) has the form gk ∗ Z(G) for some k ∈ Z. Since G is
covered by the cosets of Z(G) is follows that every element of G has the form gk ∗ a for some
k ∈ Z and a ∈ Z(G). Finally, for any two elements gk1 ∗ a1 and gk2 ∗ a2 in G we have

(gk1 ∗ a1) ∗ (gk2 ∗ a2) = gk1 ∗ gk2 ∗ a1 ∗ a2 a1 ∈ Z(G)

= gk1+k2 ∗ a1 ∗ a2
= gk2+k1 ∗ a1 ∗ a2
= gk2 ∗ gk1 ∗ a1 ∗ a2
= (gk2 ∗ a2) ∗ (gk1 ∗ a1). a2 ∈ Z(G)

(b): For any group (G, ∗, ε) the class equation says that

#G = #Z(G) +
∑
i

#K(ai),

where ai ∈ G are representatives for the non-trivial conjugacy classes: #K(ai) ≥ 2. By Orbit-
Stabilizer we have #K(ai) = #G/#Z(ai) and hence each #K(ai) divides #G. Now suppose
that #G = pk is a power of a prime. Since #K(ai) is a divisor of #G and #K(ai) 6= 1 we
see that p divides #K(ai) for each i. Finally, since p divides #G and #K(ai) for each i, the
class equation tells us that p divides #Z(G).

(c): Now let #G = p2. Since the center Z(G) is a subgroup of G, Lagrange’s Theorem tells us
that #Z(G) equals 1, p or p2. Part (b) tells us that #Z(G) = 1 is impossible. If #Z(G) = p2

then we have Z(G) = G and hence G is abelian. Otherwise, if #Z(G) = p then the quotient
group G/Z(G) has size p2/p = p. In this case, since any group of prime order is cyclic, it
follows from part (a) that G is abelian.

4. There Are Only Two Groups of Size p2. Let p ≥ 2 be prime and let (G, ∗, ε) be a
group with p2 elements. If G 6∼= Z/p2Z, we will show that G must be isomorphic to the direct
product Z/pZ× Z/pZ.

(a) Suppose that G is not cyclic and consider any ε 6= a ∈ G. Show that #〈a〉 = p.
(b) Now pick any element b ∈ G \ 〈a〉 and consider the two groups H = 〈a〉 and K = 〈b〉.

Prove that H ∩K = {ε}. [Hint: Use Lagrange.]
(c) Conclude from Problem 1(e) or 2 that #(H ∗K) = p2 and hence G = H ∗K.
(d) Show that the function ϕ : Z/pZ × Z/pZ → G defined by (k, `) 7→ ak ∗ b` is a group

isomorphism. [Hint: Problem 3 implies that ϕ is a homomorphism, part (b) implies
that ϕ is injective and part (c) implies that ϕ is surjective.]



(a): Let #G = p2 for some prime p and suppose that G is not cyclic. Consider any ε 6= a ∈ G.
By Lagrange, the cyclic subgroup 〈a〉 has size 1, p or p2. The first is impossible because a 6= ε
and the last is impossible since #〈a〉 = p2 implies 〈a〉 = G, which contradicts our assumption
that G is not cyclic. Hence we must have #〈a〉 = p.

(b): Now pick any b ∈ G \ 〈a〉 and consider the groups H = 〈a〉 and K = 〈b〉. By the same
argument as in part (a) we know that #K = p. Since H ∩ K is a subgroup of H and K,
Lagrange’s Theorem tells us that #(H∩K) = 1 or p. The latter implies that H = H∩K = K,
which is impossible because b ∈ K \H. Hence we must have #(H ∩K) = 1.

(c): It follows from Problem 2 that2

#(H ∗K) = #H ·#K/#(H ∩K) = p2/1 = p2

and hence H ∗K = G.

(d): Finally, I claim that the function ϕ : Z/pZ × Z/pZ → G defined by (k, `) 7→ ak ∗ b` is
a group isomorphism. The fact that ϕ is well-defined follows from the facts that ap = ε and
bp = ε. Indeed, if k1 ≡ k2 and `1 ≡ `2 mod p then we have ak1 = ak2 and b`1 = b`2 , hence

ϕ(k1, `1) = ak1 ∗ b`1 = ak2 ∗ b`2 = ϕ(k2, `2).

The fact that ϕ is a homomorphism follows from Problem 3, which says that G is abelian.
Indeed, for any (k1, `1) and (k2, `2) we have

ϕ(k1, `1) ∗ ϕ(k2, `2) = (ak1 ∗ b`1) ∗ (ak2 ∗ b`2)

= ak1 ∗ ak2 ∗ b`1 ∗ b`2 (a ∗ b = b ∗ a)

= ak1+k2 ∗ b`1+`2

= ϕ(k1 + k2, `1 + `2).

The fact that ϕ is surjective follows from part (c), which implies that

G = H ∗K = 〈a〉 ∗ 〈b〉 = {ak ∗ b` : k, ` ∈ Z}.

Finally, to see that ϕ is injective we will use part (b), which says that H ∩K = {ε}. Indeed,
suppose that we have ϕ(k1, `1) = ϕ(k2, `2), so that

ak1 ∗ b`2 = ak2 ∗ b`2

ak1−k2 = b`2−`1 . (a ∗ b = b ∗ a)

Since the left side is in H and the right side is in K we must have ak1−k2 = ε and b`2−`1 = ε.
This implies that k1 ≡ k2 and `1 ≡ `2 mod p, as desired.

Remark: In summary, we have shown that every group of size p2 (with p prime) is isomorphic
to Z/p2Z or Z/pZ×Z/pZ. As you see, the proof was not trivial. The hardest part was to show
that a group of size p2 must be abelian. A group of size pk with k ≥ 3 need not be abelian. For
example, there are two non-abelian groups of size 23: the dihedral and quaternion groups. Non-
abelian groups of size pk can be extremely complicated. On the other hand, the Fundamental
Theorem of Finite Abelian Groups says that any finite abelian group is isomorphic to a direct
product of cyclic groups, which is nice. Maybe we will see that theorem next semester.

2We know from Problem 3 that G is abelian, hence we could use Problem 1(e), but it is better not to assume
what we don’t need.



5. Cauchy’s Theorem. Consider a finite group G and a prime factor p|#G. Cauchy’s
Theorem says that there exists an element g ∈ G of order p. In order to prove this, we
consider the set of p-tuples of group elements whose product (in order) is the identity:

X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = ε}.
Note that #X = (#G)p−1 because the group elements g1, . . . , gp−1 can be chosen freely, but

then we must have gp = g−1p−1 · · · g
−1
1 . In particular, since p|#G and p ≥ 2 we must have p|#X.

(a) If g 6= ε and (g, g, . . . , g) ∈ X, show that g is an element of order p.
(b) Prove that (g1, g2, . . . , gp) ∈ X implies (g2, . . . , gp, g1) ∈ X. This shows that the cyclic

group Cp ⊆ Sp generated by the p-cycle c = (1, 2, . . . , p) acts on the set X.
(c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.
(d) Note that {(ε, . . . , ε)} ⊆ X is an orbit of size 1. Show that there is at least one more

orbit of size 1, and then use part (a) to show that G contains an element of order p.
[Hint: If there were no other orbit of size 1 then by part (c) every other orbit would
have size p, which would imply that #X − 1 is divisible by p.]

(a): If (g, g, . . . , g) ∈ X then by definition we have gp = gg · · · g = ε. This implies that #〈g〉
divides p, which, since p is prime, implies #〈g〉 = 1 or #〈g〉 = p. But the first possibility
implies g = ε, which contradicts our assumption. Hence #〈g〉 = p.

(b): Let (g1, g2, . . . , gp) ∈ X so that g1g2 · · · gp = ε. Then conjugating by g1 gives

g1g2 · · · gp = ε

g−11 g1g2 · · · gpg1 = g−11 εg1

g2 · · · gpg1 = g−11 g1

g2 · · · gpg1 = ε,

and hence (g2, · · · , gp, g1) ∈ X. Thus the function ϕ : Gp → Gp defined by

ϕ(g1, g2, . . . , gp) := (g2, · · · , gp, g1)
sends elements of X to elements of X. Note that the map ϕ has order p, hence X is acted on
by the following cyclic group of size p:

〈ϕ〉 = {id, ϕ, ϕ2, . . . , ϕp−1}.

(c): For any element x ∈ X the Orbit-Stabilizer Theorem says that

#Orb(x) = #〈ϕ〉/#Stab(x)

#Orb(x) = p/#Stab(x)

#Orb(x) ·#Stab(x) = p.

Since p is prime, this tells us that every orbit has size 1 or p.

(d): Note that Orb((ε, . . . , ε)) = {(ε, . . . , ε)} is an orbit of size 1. From part (a) we know that
the other orbits of size 1 are in bijection with elements of G of order p. Let n be the number
of elements of G of order p. Then since X decomposes as a disjoint union of orbits of size 1
and p we must have

#X = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

+p + p + · · ·+ p

= 1 + n + p(something).

Since p divides #X this implies that n + 1 ≡ 0 mod p. In particular, n 6= 0.



6. The Symmetric Group is Not Solvable3 (Optional). Let n ≥ 5 and consider the
symmetric group Sn. Assume for contradiction that there exists a chain of subgroups

Sn = G0 ⊇ G1 ⊇ · · · ⊇ Gr = {id}
with the property that for each i the subgroup Gi+1 ⊆ Gi is normal and the quotient group
Gi/Gi+1 is abelian. Let X ⊆ Sn be the subset of 3-cycles. We will obtain a contradiction by
showing that X ⊆ {id}.

(a) Show that every 3-cycle c ∈ X has the form c = c1c2c
−2
1 c−12 for some 3-cycles c1, c2 ∈ X.

[Hint: Consider any n-cycle c = (ijk). Since n ≥ 5 we may choose two more numbers
`,m not in the set {i, j, k}. Check that (ijk) = (jkm)(i`j)(jkm)−1(i`j)−1.]

(b) If X ⊆ Gi for some i, show that we also have X ⊆ Gi+1. [Hint: Consider any c ∈ X,
which from part (a) can be expressed as c = c1c2c

−1
1 c−12 for some c1, c2 ∈ X. Use the

fact that the group Gi/Gi+1 is abelian to show that the coset cGi+1 equals Gi+1.]

(a): This is just a weird observation. The hint says it all.

(b): Suppose for induction that X ⊆ Gi. Our goal is to show that X ⊆ Gi+1. To do this,
consider any c ∈ X. From part (a) we can write c = c1c2c

−1
1 c−12 for some c1, c2 ∈ X. Since

c, c1, c2 ∈ Gi we may consider the corresponding cosets in the quotient group Gi/Gi+1. To
simplify notation we will write these cosets as [c], [c1] and [c2]. Then since Gi/Gi+1 is assumed
to be abelian we have

[c] = [c1c2c
−1
1 c−12 ]

= [c1][c2][c
−1
1 ][c−12 ]

= [c1][c
−1
1 ][c2][c

−1
2 ] Gi/Gi+1 is abelian

= [c1c
−1
1 ][c2c

−1
2 ]

= [ε][ε]

= [εε]

= [ε].

We have shown that the cosets cGi+1 and εGi+1 = Gi+1 are equal, which implies that c ∈ Gi+1.
Since this holds for c ∈ X we have shown that X ⊆ Gi+1.

Remark: We have shown that the symmetric group Sn is not solvable when n ≥ 5. Next
semester we will prove Galois’ Theorem, which says that a polynomial equation is solvable by
radicals if and only if its corresponding Galois group is solvable. Since the generic equation
of degree n has Galois group Sn, the result of Problem 6 will imply that for n ≥ 5 there does
not exist a “formula” expressing the roots in terms of the coefficients.

3This terminology is inspired by Galois’ theorem on the solvability of polynomial equations by radicals. We
will discuss this next semester.


