1. The Second Isomorphism Theorem. Let H and K be subgroups of $(G, *, \varepsilon)$ and suppose that at least one of these subgroups is normal. Let's say $K \subseteq G$ is normal.
(a) Show that the product set $H * K=\{h * k: h \in H, k \in K\}$ is a subgroup of G.
(b) Show that $K \subseteq H * K$ is a normal subgroup, hence the group $(H * K) / K$ exists.
(c) Show that the function $\varphi: H \rightarrow(H * K) / K$ defined by $\varphi(h):=h * K$ is a surjective group homomorphism.
(d) Show that $\operatorname{ker} \varphi=H \cap K$, and then use the First Isomorphism Theorem to show that

$$
\frac{H}{H \cap K} \cong \frac{H * K}{K} .
$$

(e) If G is finite, use part (d) to show that $\#(H * K) \cdot \#(H \cap K)=\# H \cdot \# K$.
(a): Let $H, K \subseteq(G, *, \varepsilon)$ be subgroups and let $K \subseteq G$ be normal. This means that for any $g \in G$ and $k \in K$ there exists some $k^{\prime} \in K$ such that $k * g=g * k^{\prime}$. We will use this property to show that $H * K \subseteq G$ is a subgroup.

So consider any two elements $h_{1} * k_{1}$ and $h_{2} * k_{2}$ in $H * K$. Since H and K are subgroups of G we know that $h_{1} * h_{2}^{-1} \in H, h_{2}^{-1} \in H$ and $k_{1} * k_{2}^{-1} \in K$. Putting $g=h_{2}^{-1}$ and $k=k_{1} * k_{2}^{-1}$ into the previous remark gives

$$
\begin{aligned}
\left(h_{1} * k_{1}\right) *\left(h_{2} * k_{2}\right)^{-1} & =h_{1} *\left(k_{1} * k_{2}^{-1}\right) * h_{2}^{-1} \\
& =h_{1} * h_{2}^{-1} * k^{\prime},
\end{aligned}
$$

for some element $k^{\prime} \in K$, and hence $\left(h_{1} * k_{1}\right) *\left(h_{2} * k_{2}\right)^{-1} \in H * K$.
(b): Note that K is a subset of $H * K$ since every element $k \in K$ has the form $k=\varepsilon * k \in H * K$. The fact that K is a normal subgroup of $H * K$ follows trivially from the assumption that K is a normal subgroup of G. Hence the quotient group $H * K / K$ exists.
(c): Define the function $\varphi: H \rightarrow(H * K) / K$ by $\varphi(h):=(h * \varepsilon) * K=h * K$. The fact that this is a group homomorphism follows from the definition of coset multiplication:

$$
\varphi\left(h_{1}\right) * \varphi\left(h_{2}\right)=\left(h_{1} * K\right) *\left(h_{2} * K\right):=\left(h_{1} * h_{2}\right) * K=\varphi\left(h_{1} * h_{2}\right) .
$$

To see that φ is surjective, consider any coset $(h * k) * K \in(H * K) / K$, with $h \in H$ and $k \in K$. Recall that for any $a, b \in G$ we have $a * K=b * K$ if and only if $a^{-1} * b \in K$. Taking $a=h$ and $b=h * k$ gives $a^{-1} * b=h^{-1} * h * k=k \in K$ and hence

$$
(h * k) * K=h * K=\varphi(h) .
$$

(d): For any $a \in G$ recall that $a * K=K$ if and only if $a \in K$. Since the coset K is the identity element of the quotient group $(H * K) / K$, we hav Θ^{1}

$$
\operatorname{ker} \varphi=\{h \in H: h * K=K\}=\{h \in H: h \in K\}=H \cap K .
$$

It follows from the First Isomorphism Theorem that

$$
\frac{H}{H \cap K}=\frac{H}{\operatorname{ker} \varphi} \cong \operatorname{im} \varphi=\frac{H * K}{K} .
$$

[^0](e): If G is a finite group then it follows from part (d) and Lagrange's Theorem that
\[

$$
\begin{aligned}
\#(H /(H \cap K)) & =\#((H * K) / K) \\
\# H / \#(H \cap K) & =\#(H * K) / \# K \\
\# H \cdot \# K & =\#(H * K) \cdot \#(H \cap K) .
\end{aligned}
$$
\]

2. Size of a Product Set. Given two subgroups $H, K \subseteq(G, *, \varepsilon)$ you showed on a previous homework that the product set $H * K=\{h * k: h \in H, k \in K\} \subseteq G$ need not be a subgroup, in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.
(a) Prove that $h(g K):=(h * g) K$ defines an action of H on the set of cosets $X=G / K$.
(b) For the specific coset $K \in X$, show that $\operatorname{Stab}(K)=H \cap K$.
(c) For the specific coset $K \in X$, show that $\# \operatorname{Orb}(K)=\#(H * K) / \# K$. [Hint: Show that the set $H * K$ is a disjoint union of cosets of K.]
(d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.
(a): Let H and K be subgroups of $(G, *, \varepsilon)$ and consider the set $X=G / K$ of left cosets of K. We do not assume that $K \subseteq G$ is normal, hence $X=G / K$ need not be a group. I claim that the rule $h \cdot(g * K):=(h * g) * K$ defines an action of the group H on the set X. Indeed, for $h=\varepsilon$ we have $\varepsilon \cdot(g * K)=(\varepsilon * g) * K=g * K$, and for any $h_{1}, h_{2} \in H$ we have

$$
h_{1} \cdot\left(h_{2} \cdot(g * K)\right)=h_{1} \cdot\left(\left(h_{2} * g\right) * K\right)=\left(h_{1} * h_{2} * g\right) * K=\left(h_{1} * h_{2}\right) \cdot(g * K) .
$$

(b): For the specific coset $K=\varepsilon * K \in X$ we have

$$
\begin{aligned}
\operatorname{Stab}(K) & =\{h \in H: h \cdot(\varepsilon * K)=\varepsilon * K\} \\
& =\{h \in H: h * K=K\} \\
& =\{h \in H: h \in K\} \\
& =H \cap K .
\end{aligned}
$$

This need not be a normal subgroup of H.
(c): Note that every coset $h \in K$ with $h \in H$ is contained in the product set $H * K$. Furthermore, every element $h * k \in H * K$ is contained in the coset $h * K$. This shows that $H * K$ is equal to the union of cosets in the set $\operatorname{Orb}(K)=\{h * K: h \in H\}$. If G is finite then $n:=\# \operatorname{Orb}(K)$ is finite and we can choose some orbit representatives $h_{1}, \ldots, h_{n} \in H$ so that

$$
H * K=\left(h_{1} * K\right) \sqcup\left(h_{2} * K\right) \sqcup \cdots \sqcup\left(h_{n} * K\right) .
$$

Then since each coset has size $\# K$ we get

$$
\begin{aligned}
\#(H * K) & =\#\left(h_{1} * K\right)+\#\left(h_{2} * K\right)+\cdots+\#\left(h_{n} * K\right) \\
& =\# K+\# K+\cdots+\# K \\
& =n \cdot \# K \\
& =\# \operatorname{Orb}(K) \cdot \# K .
\end{aligned}
$$

(d): It follows from the Orbit-Stabilizer Theorem that

$$
\begin{aligned}
\# \operatorname{Orb}(K) & =\# H / \# \operatorname{Stab}(K) \\
\#(H * K) / \# K & =\# H / \#(H \cap K) \\
\#(H * K) \cdot \#(H \cap K) & =\# H \cdot \# K .
\end{aligned}
$$

3. Groups of Size p^{2} are Abelian. Let $p \geq 2$ be prime.
(a) For any group $(G, *, \varepsilon)$, the center $Z(G)=\{a \in G: \forall b \in G, a * b=b * a\}$ is a normal subgroup. If the quotient group $G / Z(G)$ is cyclic, prove that G must be abelian. [Hint: Suppose that $G / Z(G)$ is generated by the coset $a * Z(G)$. Then every element of G has the form $a^{k} * z$ for some $z \in Z(G)$.]
(b) For any group $(G, *, \varepsilon)$ with $\# G=p^{k}$ (for $k \geq 1$), show that $p \mid Z(G)$. [Hint: The class equation says that $\# G=\# Z(G)+\sum_{i} \# K\left(a_{i}\right)$ where the sum is over the nontrivial conjugacy classes: $\# K\left(a_{i}\right) \geq 2$. Now use Orbit-Stabilizer.]
(c) Finally, let $\# G=p^{2}$. Use parts (a) and (b) to prove that G is abelian. [Hint: By Lagrange's Theorem the center must have size $1, p$ or p^{2}.]
(a): Suppose that the quotient group $G / Z(G)$ is cyclic, generated by some coset $g * Z(G)$. This implies that every coset of $Z(G)$ has the form $g^{k} * Z(G)$ for some $k \in \mathbb{Z}$. Since G is covered by the cosets of $Z(G)$ is follows that every element of G has the form $g^{k} * a$ for some $k \in \mathbb{Z}$ and $a \in Z(G)$. Finally, for any two elements $g^{k_{1}} * a_{1}$ and $g^{k_{2}} * a_{2}$ in G we have

$$
\begin{array}{rlrl}
\left(g^{k_{1}} * a_{1}\right) *\left(g^{k_{2}} * a_{2}\right) & =g^{k_{1}} * g^{k_{2}} * a_{1} * a_{2} & & a_{1} \in Z(G) \\
& =g^{k_{1}+k_{2}} * a_{1} * a_{2} & \\
& =g^{k_{2}+k_{1}} * a_{1} * a_{2} & \\
& =g^{k_{2}} * g^{k_{1}} * a_{1} * a_{2} & \\
& =\left(g^{k_{2}} * a_{2}\right) *\left(g^{k_{1}} * a_{1}\right) . & a_{2} \in Z(G)
\end{array}
$$

(b): For any group $(G, *, \varepsilon)$ the class equation says that

$$
\# G=\# Z(G)+\sum_{i} \# K\left(a_{i}\right)
$$

where $a_{i} \in G$ are representatives for the non-trivial conjugacy classes: $\# K\left(a_{i}\right) \geq 2$. By OrbitStabilizer we have $\# K\left(a_{i}\right)=\# G / \# Z\left(a_{i}\right)$ and hence each $\# K\left(a_{i}\right)$ divides $\# G$. Now suppose that $\# G=p^{k}$ is a power of a prime. Since $\# K\left(a_{i}\right)$ is a divisor of $\# G$ and $\# K\left(a_{i}\right) \neq 1$ we see that p divides $\# K\left(a_{i}\right)$ for each i. Finally, since p divides $\# G$ and $\# K\left(a_{i}\right)$ for each i, the class equation tells us that p divides $\# Z(G)$.
(c): Now let $\# G=p^{2}$. Since the center $Z(G)$ is a subgroup of G, Lagrange's Theorem tells us that $\# Z(G)$ equals $1, p$ or p^{2}. Part (b) tells us that $\# Z(G)=1$ is impossible. If $\# Z(G)=p^{2}$ then we have $Z(G)=G$ and hence G is abelian. Otherwise, if $\# Z(G)=p$ then the quotient group $G / Z(G)$ has size $p^{2} / p=p$. In this case, since any group of prime order is cyclic, it follows from part (a) that G is abelian.
4. There Are Only Two Groups of Size p^{2}. Let $p \geq 2$ be prime and let $(G, *, \varepsilon)$ be a group with p^{2} elements. If $G \not \approx \mathbb{Z} / p^{2} \mathbb{Z}$, we will show that G must be isomorphic to the direct product $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
(a) Suppose that G is not cyclic and consider any $\varepsilon \neq a \in G$. Show that $\#\langle a\rangle=p$.
(b) Now pick any element $b \in G \backslash\langle a\rangle$ and consider the two groups $H=\langle a\rangle$ and $K=\langle b\rangle$. Prove that $H \cap K=\{\varepsilon\}$. [Hint: Use Lagrange.]
(c) Conclude from Problem 1(e) or 2 that $\#(H * K)=p^{2}$ and hence $G=H * K$.
(d) Show that the function $\varphi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow G$ defined by $(k, \ell) \mapsto a^{k} * b^{\ell}$ is a group isomorphism. [Hint: Problem 3 implies that φ is a homomorphism, part (b) implies that φ is injective and part (c) implies that φ is surjective.]
(a): Let $\# G=p^{2}$ for some prime p and suppose that G is not cyclic. Consider any $\varepsilon \neq a \in G$. By Lagrange, the cyclic subgroup $\langle a\rangle$ has size $1, p$ or p^{2}. The first is impossible because $a \neq \varepsilon$ and the last is impossible since $\#\langle a\rangle=p^{2}$ implies $\langle a\rangle=G$, which contradicts our assumption that G is not cyclic. Hence we must have $\#\langle a\rangle=p$.
(b): Now pick any $b \in G \backslash\langle a\rangle$ and consider the groups $H=\langle a\rangle$ and $K=\langle b\rangle$. By the same argument as in part (a) we know that $\# K=p$. Since $H \cap K$ is a subgroup of H and K, Lagrange's Theorem tells us that $\#(H \cap K)=1$ or p. The latter implies that $H=H \cap K=K$, which is impossible because $b \in K \backslash H$. Hence we must have $\#(H \cap K)=1$.
(c): It follows from Problem 2 that ${ }^{2}$

$$
\#(H * K)=\# H \cdot \# K / \#(H \cap K)=p^{2} / 1=p^{2}
$$

and hence $H * K=G$.
(d): Finally, I claim that the function $\varphi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow G$ defined by $(k, \ell) \mapsto a^{k} * b^{\ell}$ is a group isomorphism. The fact that φ is well-defined follows from the facts that $a^{p}=\varepsilon$ and $b^{p}=\varepsilon$. Indeed, if $k_{1} \equiv k_{2}$ and $\ell_{1} \equiv \ell_{2} \bmod p$ then we have $a^{k_{1}}=a^{k_{2}}$ and $b^{\ell_{1}}=b^{\ell_{2}}$, hence

$$
\varphi\left(k_{1}, \ell_{1}\right)=a^{k_{1}} * b^{\ell_{1}}=a^{k_{2}} * b^{\ell_{2}}=\varphi\left(k_{2}, \ell_{2}\right)
$$

The fact that φ is a homomorphism follows from Problem 3, which says that G is abelian. Indeed, for any $\left(k_{1}, \ell_{1}\right)$ and $\left(k_{2}, \ell_{2}\right)$ we have

$$
\begin{array}{rlr}
\varphi\left(k_{1}, \ell_{1}\right) * \varphi\left(k_{2}, \ell_{2}\right) & =\left(a^{k_{1}} * b^{\ell_{1}}\right) *\left(a^{k_{2}} * b^{\ell_{2}}\right) & \\
& =a^{k_{1}} * a^{k_{2}} * b^{\ell_{1}} * b^{\ell_{2}} \\
& =a^{k_{1}+k_{2}} * b^{\ell_{1}+\ell_{2}} \\
& =\varphi\left(k_{1}+k_{2}, \ell_{1}+\ell_{2}\right) . & (a * b=b * a) \\
\hline
\end{array}
$$

The fact that φ is surjective follows from part (c), which implies that

$$
G=H * K=\langle a\rangle *\langle b\rangle=\left\{a^{k} * b^{\ell}: k, \ell \in \mathbb{Z}\right\} .
$$

Finally, to see that φ is injective we will use part (b), which says that $H \cap K=\{\varepsilon\}$. Indeed, suppose that we have $\varphi\left(k_{1}, \ell_{1}\right)=\varphi\left(k_{2}, \ell_{2}\right)$, so that

$$
\begin{aligned}
a^{k_{1}} * b^{\ell_{2}} & =a^{k_{2}} * b^{\ell_{2}} & \\
a^{k_{1}-k_{2}} & =b^{\ell_{2}-\ell_{1}} . & (a * b=b * a)
\end{aligned}
$$

Since the left side is in H and the right side is in K we must have $a^{k_{1}-k_{2}}=\varepsilon$ and $b^{\ell_{2}-\ell_{1}}=\varepsilon$. This implies that $k_{1} \equiv k_{2}$ and $\ell_{1} \equiv \ell_{2} \bmod p$, as desired.

Remark: In summary, we have shown that every group of size p^{2} (with p prime) is isomorphic to $\mathbb{Z} / p^{2} \mathbb{Z}$ or $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$. As you see, the proof was not trivial. The hardest part was to show that a group of size p^{2} must be abelian. A group of size p^{k} with $k \geq 3$ need not be abelian. For example, there are two non-abelian groups of size 2^{3} : the dihedral and quaternion groups. Nonabelian groups of size p^{k} can be extremely complicated. On the other hand, the Fundamental Theorem of Finite Abelian Groups says that any finite abelian group is isomorphic to a direct product of cyclic groups, which is nice. Maybe we will see that theorem next semester.

[^1]5. Cauchy's Theorem. Consider a finite group G and a prime factor $p \mid \# G$. Cauchy's Theorem says that there exists an element $g \in G$ of order p. In order to prove this, we consider the set of p-tuples of group elements whose product (in order) is the identity:
$$
X=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in G^{p}: g_{1} g_{2} \cdots g_{p}=\varepsilon\right\} .
$$

Note that $\# X=(\# G)^{p-1}$ because the group elements g_{1}, \ldots, g_{p-1} can be chosen freely, but then we must have $g_{p}=g_{p-1}^{-1} \cdots g_{1}^{-1}$. In particular, since $p \mid \# G$ and $p \geq 2$ we must have $p \mid \# X$.
(a) If $g \neq \varepsilon$ and $(g, g, \ldots, g) \in X$, show that g is an element of order p.
(b) Prove that $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X$ implies $\left(g_{2}, \ldots, g_{p}, g_{1}\right) \in X$. This shows that the cyclic group $C_{p} \subseteq S_{p}$ generated by the p-cycle $c=(1,2, \ldots, p)$ acts on the set X.
(c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.
(d) Note that $\{(\varepsilon, \ldots, \varepsilon)\} \subseteq X$ is an orbit of size 1 . Show that there is at least one more orbit of size 1 , and then use part (a) to show that G contains an element of order p. [Hint: If there were no other orbit of size 1 then by part (c) every other orbit would have size p, which would imply that $\# X-1$ is divisible by p.]
(a): If $(g, g, \ldots, g) \in X$ then by definition we have $g^{p}=g g \cdots g=\varepsilon$. This implies that \# $\langle g\rangle$ divides p, which, since p is prime, implies $\#\langle g\rangle=1$ or $\#\langle g\rangle=p$. But the first possibility implies $g=\varepsilon$, which contradicts our assumption. Hence $\#\langle g\rangle=p$.
(b): Let $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X$ so that $g_{1} g_{2} \cdots g_{p}=\varepsilon$. Then conjugating by g_{1} gives

$$
\begin{aligned}
g_{1} g_{2} \cdots g_{p} & =\varepsilon \\
g_{1}^{-1} g_{1} g_{2} \cdots g_{p} g_{1} & =g_{1}^{-1} \varepsilon g_{1} \\
g_{2} \cdots g_{p} g_{1} & =g_{1}^{-1} g_{1} \\
g_{2} \cdots g_{p} g_{1} & =\varepsilon
\end{aligned}
$$

and hence $\left(g_{2}, \cdots, g_{p}, g_{1}\right) \in X$. Thus the function $\varphi: G^{p} \rightarrow G^{p}$ defined by

$$
\varphi\left(g_{1}, g_{2}, \ldots, g_{p}\right):=\left(g_{2}, \cdots, g_{p}, g_{1}\right)
$$

sends elements of X to elements of X. Note that the map φ has order p, hence X is acted on by the following cyclic group of size p :

$$
\langle\varphi\rangle=\left\{\operatorname{id}, \varphi, \varphi^{2}, \ldots, \varphi^{p-1}\right\} .
$$

(c): For any element $x \in X$ the Orbit-Stabilizer Theorem says that

$$
\begin{aligned}
\# \operatorname{Orb}(x) & =\#\langle\varphi\rangle / \# \operatorname{Stab}(x) \\
\# \operatorname{Orb}(x) & =p / \# \operatorname{Stab}(x) \\
\# \operatorname{Orb}(x) \cdot \# \operatorname{Stab}(x) & =p .
\end{aligned}
$$

Since p is prime, this tells us that every orbit has size 1 or p.
(d): Note that $\operatorname{Orb}((\varepsilon, \ldots, \varepsilon))=\{(\varepsilon, \ldots, \varepsilon)\}$ is an orbit of size 1. From part (a) we know that the other orbits of size 1 are in bijection with elements of G of order p. Let n be the number of elements of G of order p. Then since X decomposes as a disjoint union of orbits of size 1 and p we must have

$$
\begin{aligned}
\# X & =1+\underbrace{1+\cdots+1}_{n \text { times }}+p+p+\cdots+p \\
& =1+n+p(\text { something }) .
\end{aligned}
$$

Since p divides $\# X$ this implies that $n+1 \equiv 0 \bmod p$. In particular, $n \neq 0$.
6. The Symmetric Group is Not Solvable \llbracket^{3} (Optional). Let $n \geq 5$ and consider the symmetric group S_{n}. Assume for contradiction that there exists a chain of subgroups

$$
S_{n}=G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{r}=\{\mathrm{id}\}
$$

with the property that for each i the subgroup $G_{i+1} \subseteq G_{i}$ is normal and the quotient group G_{i} / G_{i+1} is abelian. Let $X \subseteq S_{n}$ be the subset of 3 -cycles. We will obtain a contradiction by showing that $X \subseteq\{\mathrm{id}\}$.
(a) Show that every 3-cycle $c \in X$ has the form $c=c_{1} c_{2} c_{1}^{-2} c_{2}^{-1}$ for some 3-cycles $c_{1}, c_{2} \in X$. [Hint: Consider any n-cycle $c=(i j k)$. Since $n \geq 5$ we may choose two more numbers ℓ, m not in the set $\{i, j, k\}$. Check that $(i j k)=(j k m)(i \ell j)(j k m)^{-1}(i \ell j)^{-1}$.]
(b) If $X \subseteq G_{i}$ for some i, show that we also have $X \subseteq G_{i+1}$. [Hint: Consider any $c \in X$, which from part (a) can be expressed as $c=c_{1} c_{2} c_{1}^{-1} c_{2}^{-1}$ for some $c_{1}, c_{2} \in X$. Use the fact that the group G_{i} / G_{i+1} is abelian to show that the coset $c G_{i+1}$ equals G_{i+1}.]
(a): This is just a weird observation. The hint says it all.
(b): Suppose for induction that $X \subseteq G_{i}$. Our goal is to show that $X \subseteq G_{i+1}$. To do this, consider any $c \in X$. From part (a) we can write $c=c_{1} c_{2} c_{1}^{-1} c_{2}^{-1}$ for some $c_{1}, c_{2} \in X$. Since $c, c_{1}, c_{2} \in G_{i}$ we may consider the corresponding cosets in the quotient group G_{i} / G_{i+1}. To simplify notation we will write these cosets as $[c],\left[c_{1}\right]$ and $\left[c_{2}\right]$. Then since G_{i} / G_{i+1} is assumed to be abelian we have

$$
\begin{array}{rlr}
{[c]} & =\left[c_{1} c_{2} c_{1}^{-1} c_{2}^{-1}\right] & \\
& =\left[c_{1}\right]\left[c_{2}\right]\left[c_{1}^{-1}\right]\left[c_{2}^{-1}\right] & \\
& =\left[c_{1}\right]\left[c_{1}^{-1}\right]\left[c_{2}\right]\left[c_{2}^{-1}\right] & G_{i} / G_{i+1} \text { is abelian } \\
& =\left[c_{1} c_{1}^{-1}\right]\left[c_{2} c_{2}^{-1}\right] & \\
& =[\varepsilon][\varepsilon] \\
& =[\varepsilon \varepsilon] \\
& =[\varepsilon] .
\end{array}
$$

We have shown that the cosets $c G_{i+1}$ and $\varepsilon G_{i+1}=G_{i+1}$ are equal, which implies that $c \in G_{i+1}$. Since this holds for $c \in X$ we have shown that $X \subseteq G_{i+1}$.

Remark: We have shown that the symmetric group S_{n} is not solvable when $n \geq 5$. Next semester we will prove Galois' Theorem, which says that a polynomial equation is solvable by radicals if and only if its corresponding Galois group is solvable. Since the generic equation of degree n has Galois group S_{n}, the result of Problem 6 will imply that for $n \geq 5$ there does not exist a "formula" expressing the roots in terms of the coefficients.

[^2]
[^0]: ${ }^{1}$ Since kernels are normal, it follows from this that $H \cap K$ is a normal subgroup of H, though this is easy enough to check directly.

[^1]: ${ }^{2}$ We know from Problem 3 that G is abelian, hence we could use Problem 1(e), but it is better not to assume what we don't need.

[^2]: ${ }^{3}$ This terminology is inspired by Galois' theorem on the solvability of polynomial equations by radicals. We will discuss this next semester.

