1. The Second Isomorphism Theorem. Let H and K be subgroups of ($G, *, \varepsilon$) and suppose that at least one of these subgroups is normal. Let's say $K \subseteq G$ is normal.
(a) Show that the product set $H * K=\{h * k: h \in H, k \in K\}$ is a subgroup of G.
(b) Show that $K \subseteq H * K$ is a normal subgroup, hence the group $(H * K) / K$ exists.
(c) Show that the function $\varphi: H \rightarrow(H * K) / K$ defined by $\varphi(h):=h * K$ is a surjective group homomorphism.
(d) Show that $\operatorname{ker} \varphi=H \cap K$, and then use the First Isomorphism Theorem to show that

$$
\frac{H}{H \cap K} \cong \frac{H * K}{K} .
$$

(e) If G is finite, use part (d) to show that $\#(H * K) \cdot \#(H \cap K)=\# H \cdot \# K$.
2. Size of a Product Set. Given two subgroups $H, K \subseteq(G, *, \varepsilon)$ you showed on a previous homework that the product set $H * K=\{h * k: h \in H, k \in K\} \subseteq G$ need not be a subgroup, in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.
(a) Prove that $h(g K):=(h * g) K$ defines an action of H on the set of cosets $X=G / K$.
(b) For the specific coset $K \in X$, show that $\operatorname{Stab}(K)=H \cap K$.
(c) For the specific coset $K \in X$, show that $\# \operatorname{Orb}(K)=\#(H * K) / \# K$. [Hint: Show that the set $H * K$ is a disjoint union of cosets of K.]
(d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.
3. Groups of Size p^{2} are Abelian. Let $p \geq 2$ be prime.
(a) For any group $(G, *, \varepsilon)$, the center $Z(G)=\{a \in G: \forall b \in G, a * b=b * a\}$ is a normal subgroup. If the quotient group $G / Z(G)$ is cyclic, prove that G must be abelian. [Hint: Suppose that $G / Z(G)$ is generated by the coset $a * Z(G)$. Then every element of G has the form $a^{k} * z$ for some $z \in Z(G)$.]
(b) For any group $(G, *, \varepsilon)$ with $\# G=p^{k}$ (for $k \geq 1$), show that $p \mid Z(G)$. [Hint: The class equation says that $\# G=\# Z(G)+\sum_{i} \# K\left(a_{i}\right)$ where the sum is over the nontrivial conjugacy classes: $\# K\left(a_{i}\right) \geq 2$. Now use Orbit-Stabilizer.]
(c) Finally, let $\# G=p^{2}$. Use parts (a) and (b) to prove that G is abelian. [Hint: By Lagrange's Theorem the center must have size $1, p$ or p^{2}.]
4. There Are Only Two Groups of Size p^{2}. Let $p \geq 2$ be prime and let $(G, *, \varepsilon)$ be a group with p^{2} elements. If $G \not \approx \mathbb{Z} / p^{2} \mathbb{Z}$, we will show that G must be isomorphic to the direct product $\mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
(a) Suppose that G is not cyclic and consider any $\varepsilon \neq a \in G$. Show that $\#\langle a\rangle=p$.
(b) Now pick any element $b \in G \backslash\langle a\rangle$ and consider the two groups $H=\langle a\rangle$ and $K=\langle b\rangle$. Prove that $H \cap K=\{\varepsilon\}$. [Hint: Use Lagrange.]
(c) Conclude from Problem 1(e) or 2 that $\#(H * K)=p^{2}$ and hence $G=H * K$.
(d) Show that the function $\varphi: \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z} \rightarrow G$ defined by $(k, \ell) \mapsto a^{k} * b^{\ell}$ is a group isomorphism. [Hint: Problem 3 implies that φ is a homomorphism, part (b) implies that φ is injective and part (c) implies that φ is surjective.]
5. Cauchy's Theorem. Consider a finite group G and a prime factor $p \mid \# G$. Cauchy's Theorem says that there exists an element $g \in G$ of order p. In order to prove this, we consider the set of p-tuples of group elements whose product (in order) is the identity:

$$
X=\left\{\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in G^{p}: g_{1} g_{2} \cdots g_{p}=\varepsilon\right\} .
$$

Note that $\# X=(\# G)^{p-1}$ because the group elements g_{1}, \ldots, g_{p-1} can be chosen freely, but then we must have $g_{p}=g_{p-1}^{-1} \cdots g_{1}^{-1}$. In particular, since $p \mid \# G$ and $p \geq 2$ we must have $p \mid \# X$.
(a) If $g \neq \varepsilon$ and $(g, g, \ldots, g) \in X$, show that g is an element of order p.
(b) Prove that $\left(g_{1}, g_{2}, \ldots, g_{p}\right) \in X$ implies $\left(g_{2}, \ldots, g_{p}, g_{1}\right) \in X$. This shows that the cyclic group $C_{p} \subseteq S_{p}$ generated by the p-cycle $c=(1,2, \ldots, p)$ acts on the set X.
(c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.
(d) Note that $\{(\varepsilon, \ldots, \varepsilon)\} \subseteq X$ is an orbit of size 1 . Show that there is at least one more orbit of size 1 , and then use part (a) to show that G contains an element of order p. [Hint: If there were no other orbit of size 1 then by part (c) every other orbit would have size p, which would imply that $\# X-1$ is divisible by p.]
6. The Symmetric Group is Not Solvable ${ }^{1}$ (Optional). Let $n \geq 5$ and consider the symmetric group S_{n}. Assume for contradiction that there exists a chain of subgroups

$$
S_{n}=G_{0} \supseteq G_{1} \supseteq \cdots \supseteq G_{r}=\{\mathrm{id}\}
$$

with the property that for each i the subgroup $G_{i+1} \subseteq G_{i}$ is normal and the quotient group G_{i} / G_{i+1} is abelian. Let $X \subseteq S_{n}$ be the subset of 3 -cycles. We will obtain a contradiction by showing that $X \subseteq\{\mathrm{id}\}$.
(a) Show that every 3 -cycle $c \in X$ has the form $c=c_{1} c_{2} c_{1}^{-2} c_{2}^{-1}$ for some 3-cycles $c_{1}, c_{2} \in X$. [Hint: Consider any n-cycle $c=(i j k)$. Since $n \geq 5$ we may choose two more numbers ℓ, m not in the set $\{i, j, k\}$. Check that $(i j k)=(j k m)(i \ell j)(j k m)^{-1}(i \ell j)^{-1}$.]
(b) If $X \subseteq G_{i}$ for some i, show that we also have $X \subseteq G_{i+1}$. [Hint: Consider any $c \in X$, which from part (a) can be expressed as $c=c_{1} c_{2} c_{1}^{-1} c_{2}^{-1}$ for some $c_{1}, c_{2} \in X$. Use the fact that the group G_{i} / G_{i+1} is abelian to show that the coset $c G_{i+1}$ equals G_{i+1}.]

[^0]
[^0]: ${ }^{1}$ This terminology is inspired by Galois' theorem on the solvability of polynomial equations by radicals. We will discuss this next semester.

