1. The Second Isomorphism Theorem. Let H and K be subgroups of $(G, *, \varepsilon)$ and suppose that at least one of these subgroups is normal. Let's say $K \subseteq G$ is normal.

- (a) Show that the product set $H * K = \{h * k : h \in H, k \in K\}$ is a subgroup of G.
- (b) Show that $K \subseteq H * K$ is a normal subgroup, hence the group (H * K)/K exists.
- (c) Show that the function $\varphi : H \to (H * K)/K$ defined by $\varphi(h) := h * K$ is a surjective group homomorphism.
- (d) Show that ker $\varphi = H \cap K$, and then use the First Isomorphism Theorem to show that

$$\frac{H}{H \cap K} \cong \frac{H * K}{K}$$

(e) If G is finite, use part (d) to show that $\#(H * K) \cdot \#(H \cap K) = \#H \cdot \#K$.

2. Size of a Product Set. Given two subgroups $H, K \subseteq (G, *, \varepsilon)$ you showed on a previous homework that the product set $H * K = \{h * k : h \in H, k \in K\} \subseteq G$ need not be a subgroup, in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.

- (a) Prove that h(gK) := (h * g)K defines an action of H on the set of cosets X = G/K.
- (b) For the specific coset $K \in X$, show that $\text{Stab}(K) = H \cap K$.
- (c) For the specific coset $K \in X$, show that #Orb(K) = #(H * K)/#K. [Hint: Show that the set H * K is a disjoint union of cosets of K.]
- (d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.

3. Groups of Size p^2 are Abelian. Let $p \ge 2$ be prime.

- (a) For any group $(G, *, \varepsilon)$, the center $Z(G) = \{a \in G : \forall b \in G, a * b = b * a\}$ is a normal subgroup. If the quotient group G/Z(G) is cyclic, prove that G must be abelian. [Hint: Suppose that G/Z(G) is generated by the coset a * Z(G). Then every element of G has the form $a^k * z$ for some $z \in Z(G)$.]
- (b) For any group $(G, *, \varepsilon)$ with $\#G = p^k$ (for $k \ge 1$), show that p|Z(G). [Hint: The class equation says that $\#G = \#Z(G) + \sum_i \#K(a_i)$ where the sum is over the nontrivial conjugacy classes: $\#K(a_i) \ge 2$. Now use Orbit-Stabilizer.]
- (c) Finally, let $\#G = p^2$. Use parts (a) and (b) to prove that G is abelian. [Hint: By Lagrange's Theorem the center must have size 1, p or p^2 .]

4. There Are Only Two Groups of Size p^2 . Let $p \ge 2$ be prime and let $(G, *, \varepsilon)$ be a group with p^2 elements. If $G \not\cong \mathbb{Z}/p^2\mathbb{Z}$, we will show that G must be isomorphic to the direct product $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$.

- (a) Suppose that G is not cyclic and consider any $\varepsilon \neq a \in G$. Show that $\#\langle a \rangle = p$.
- (b) Now pick any element $b \in G \setminus \langle a \rangle$ and consider the two groups $H = \langle a \rangle$ and $K = \langle b \rangle$. Prove that $H \cap K = \{\varepsilon\}$. [Hint: Use Lagrange.]
- (c) Conclude from Problem 1(e) or 2 that $\#(H * K) = p^2$ and hence G = H * K.
- (d) Show that the function $\varphi : \mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z} \to G$ defined by $(k, \ell) \mapsto a^k * b^\ell$ is a group isomorphism. [Hint: Problem 3 implies that φ is a homomorphism, part (b) implies that φ is injective and part (c) implies that φ is surjective.]

5. Cauchy's Theorem. Consider a finite group G and a prime factor p|#G. Cauchy's Theorem says that there exists an element $g \in G$ of order p. In order to prove this, we consider the set of p-tuples of group elements whose product (in order) is the identity:

$$X = \{ (g_1, g_2, \dots, g_p) \in G^p : g_1 g_2 \cdots g_p = \varepsilon \}.$$

Note that $\#X = (\#G)^{p-1}$ because the group elements g_1, \ldots, g_{p-1} can be chosen freely, but then we must have $g_p = g_{p-1}^{-1} \cdots g_1^{-1}$. In particular, since p | #G and $p \ge 2$ we must have p | #X.

- (a) If $g \neq \varepsilon$ and $(g, g, \dots, g) \in X$, show that g is an element of order p.
- (b) Prove that $(g_1, g_2, \ldots, g_p) \in X$ implies $(g_2, \ldots, g_p, g_1) \in X$. This shows that the cyclic group $C_p \subseteq S_p$ generated by the *p*-cycle $c = (1, 2, \ldots, p)$ acts on the set X.
- (c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.
- (d) Note that $\{(\varepsilon, \ldots, \varepsilon)\} \subseteq X$ is an orbit of size 1. Show that there is at least one more orbit of size 1, and then use part (a) to show that G contains an element of order p. [Hint: If there were no other orbit of size 1 then by part (c) every other orbit would have size p, which would imply that #X 1 is divisible by p.]

6. The Symmetric Group is Not Solvable¹ (Optional). Let $n \ge 5$ and consider the symmetric group S_n . Assume for contradiction that there exists a chain of subgroups

$$S_n = G_0 \supseteq G_1 \supseteq \cdots \supseteq G_r = {\mathrm{id}}$$

with the property that for each *i* the subgroup $G_{i+1} \subseteq G_i$ is normal and the quotient group G_i/G_{i+1} is abelian. Let $X \subseteq S_n$ be the subset of 3-cycles. We will obtain a contradiction by showing that $X \subseteq \{id\}$.

- (a) Show that every 3-cycle $c \in X$ has the form $c = c_1 c_2 c_1^{-2} c_2^{-1}$ for some 3-cycles $c_1, c_2 \in X$. [Hint: Consider any *n*-cycle c = (ijk). Since $n \ge 5$ we may choose two more numbers ℓ, m not in the set $\{i, j, k\}$. Check that $(ijk) = (jkm)(i\ell j)(jkm)^{-1}(i\ell j)^{-1}$.]
- (b) If $X \subseteq G_i$ for some *i*, show that we also have $X \subseteq G_{i+1}$. [Hint: Consider any $c \in X$, which from part (a) can be expressed as $c = c_1 c_2 c_1^{-1} c_2^{-1}$ for some $c_1, c_2 \in X$. Use the fact that the group G_i/G_{i+1} is abelian to show that the coset cG_{i+1} equals G_{i+1} .]

¹This terminology is inspired by Galois' theorem on the solvability of polynomial equations by radicals. We will discuss this next semester.