
Math 561/661 Fall 2023
Homework 6 Drew Armstrong

1. The Second Isomorphism Theorem. Let H and K be subgroups of (G, ∗, ε) and
suppose that at least one of these subgroups is normal. Let’s say K ⊆ G is normal.

(a) Show that the product set H ∗K = {h ∗ k : h ∈ H, k ∈ K} is a subgroup of G.
(b) Show that K ⊆ H ∗K is a normal subgroup, hence the group (H ∗K)/K exists.
(c) Show that the function ϕ : H → (H ∗K)/K defined by ϕ(h) := h ∗K is a surjective

group homomorphism.
(d) Show that kerϕ = H ∩K, and then use the First Isomorphism Theorem to show that

H

H ∩K
∼=

H ∗K
K

.

(e) If G is finite, use part (d) to show that #(H ∗K) ·#(H ∩K) = #H ·#K.

2. Size of a Product Set. Given two subgroups H,K ⊆ (G, ∗, ε) you showed on a previous
homework that the product set H ∗K = {h ∗ k : h ∈ H, k ∈ K} ⊆ G need not be a subgroup,
in which case Problem 1(d) makes no sense. Nevertheless, you will show that 1(e) is still true.

(a) Prove that h(gK) := (h ∗ g)K defines an action of H on the set of cosets X = G/K.
(b) For the specific coset K ∈ X, show that Stab(K) = H ∩K.
(c) For the specific coset K ∈ X, show that #Orb(K) = #(H ∗ K)/#K. [Hint: Show

that the set H ∗K is a disjoint union of cosets of K.]
(d) Now combine (b) and (c) with the Orbit-Stabilizer Theorem to prove the result.

3. Groups of Size p2 are Abelian. Let p ≥ 2 be prime.

(a) For any group (G, ∗, ε), the center Z(G) = {a ∈ G : ∀b ∈ G, a ∗ b = b ∗ a} is a normal
subgroup. If the quotient group G/Z(G) is cyclic, prove that G must be abelian. [Hint:
Suppose that G/Z(G) is generated by the coset a ∗ Z(G). Then every element of G
has the form ak ∗ z for some z ∈ Z(G).]

(b) For any group (G, ∗, ε) with #G = pk (for k ≥ 1), show that p|Z(G). [Hint: The class
equation says that #G = #Z(G) +

∑
i #K(ai) where the sum is over the nontrivial

conjugacy classes: #K(ai) ≥ 2. Now use Orbit-Stabilizer.]
(c) Finally, let #G = p2. Use parts (a) and (b) to prove that G is abelian. [Hint: By

Lagrange’s Theorem the center must have size 1, p or p2.]

4. There Are Only Two Groups of Size p2. Let p ≥ 2 be prime and let (G, ∗, ε) be a
group with p2 elements. If G 6∼= Z/p2Z, we will show that G must be isomorphic to the direct
product Z/pZ× Z/pZ.

(a) Suppose that G is not cyclic and consider any ε 6= a ∈ G. Show that #〈a〉 = p.
(b) Now pick any element b ∈ G \ 〈a〉 and consider the two groups H = 〈a〉 and K = 〈b〉.

Prove that H ∩K = {ε}. [Hint: Use Lagrange.]
(c) Conclude from Problem 1(e) or 2 that #(H ∗K) = p2 and hence G = H ∗K.
(d) Show that the function ϕ : Z/pZ × Z/pZ → G defined by (k, `) 7→ ak ∗ b` is a group

isomorphism. [Hint: Problem 3 implies that ϕ is a homomorphism, part (b) implies
that ϕ is injective and part (c) implies that ϕ is surjective.]



5. Cauchy’s Theorem. Consider a finite group G and a prime factor p|#G. Cauchy’s
Theorem says that there exists an element g ∈ G of order p. In order to prove this, we
consider the set of p-tuples of group elements whose product (in order) is the identity:

X = {(g1, g2, . . . , gp) ∈ Gp : g1g2 · · · gp = ε}.
Note that #X = (#G)p−1 because the group elements g1, . . . , gp−1 can be chosen freely, but

then we must have gp = g−1
p−1 · · · g

−1
1 . In particular, since p|#G and p ≥ 2 we must have p|#X.

(a) If g 6= ε and (g, g, . . . , g) ∈ X, show that g is an element of order p.
(b) Prove that (g1, g2, . . . , gp) ∈ X implies (g2, . . . , gp, g1) ∈ X. This shows that the cyclic

group Cp ⊆ Sp generated by the p-cycle c = (1, 2, . . . , p) acts on the set X.
(c) Use Orbit-Stabilizer to show that every orbit of this action has size 1 or p.
(d) Note that {(ε, . . . , ε)} ⊆ X is an orbit of size 1. Show that there is at least one more

orbit of size 1, and then use part (a) to show that G contains an element of order p.
[Hint: If there were no other orbit of size 1 then by part (c) every other orbit would
have size p, which would imply that #X − 1 is divisible by p.]

6. The Symmetric Group is Not Solvable1 (Optional). Let n ≥ 5 and consider the
symmetric group Sn. Assume for contradiction that there exists a chain of subgroups

Sn = G0 ⊇ G1 ⊇ · · · ⊇ Gr = {id}
with the property that for each i the subgroup Gi+1 ⊆ Gi is normal and the quotient group
Gi/Gi+1 is abelian. Let X ⊆ Sn be the subset of 3-cycles. We will obtain a contradiction by
showing that X ⊆ {id}.

(a) Show that every 3-cycle c ∈ X has the form c = c1c2c
−2
1 c−1

2 for some 3-cycles c1, c2 ∈ X.
[Hint: Consider any n-cycle c = (ijk). Since n ≥ 5 we may choose two more numbers
`,m not in the set {i, j, k}. Check that (ijk) = (jkm)(i`j)(jkm)−1(i`j)−1.]

(b) If X ⊆ Gi for some i, show that we also have X ⊆ Gi+1. [Hint: Consider any c ∈ X,
which from part (a) can be expressed as c = c1c2c

−1
1 c−1

2 for some c1, c2 ∈ X. Use the
fact that the group Gi/Gi+1 is abelian to show that the coset cGi+1 equals Gi+1.]

1This terminology is inspired by Galois’ theorem on the solvability of polynomial equations by radicals. We
will discuss this next semester.


