
Math 561/661 Fall 2023
Homework 5 Drew Armstrong

1. First Isomorphism Theorem. Let ϕ : (G, ∗, εG) → (H, •, εH) be a group homomor-
phism. Consider the kernel and image:

kerϕ = {a ∈ G : ϕ(a) = εH},
imϕ = {ϕ(a) : a ∈ G}.

(a) Prove that ϕ is injective if and only if kerϕ = {εG}. In this case, prove that G ∼= imϕ.
(b) Prove that kerϕ is a normal subgroup of G, so the set of cosets G/ kerϕ is a group.

Prove that the function Φ : G/ kerϕ→ imϕ defined by Φ([a]) := ϕ(a) is a well-defined
group isomorphism.

(a): First suppose that ϕ is injective, so that ϕ(a) = ϕ(b) implies a = b for all a, b ∈ G. In
order to show that kerϕ = {εG}, consider any element a ∈ kerϕ, so that ϕ(a) = εH . Then
since ϕ(εG) = ϕH we conclude that a = εG. Conversely, suppose that kerϕ = {εG}. In order
to show that ϕ is injective, consider any a, b ∈ G satisfying ϕ(a) = ϕ(b). Then we have

ϕ(a−1 ∗ b) = ϕ(a)−1 • ϕ(b) = ϕ(b)−1 • (b) = εH ,

so that a−1 ∗ b ∈ kerϕ. Since kerϕ = {εG} this implies that a−1 ∗ b = εG, and hence a = b.

(b): The assignment Φ([a]) := ϕ(a) is surjective by definition. We must show that Φ is well-
defined, injective, and that it satisfies the property of group homomorphism. First we observe
that Φ is well-defined and injective since for all a, b ∈ G we have

[a] = [b] ⇐⇒ a ∗ kerϕ = b ∗ kerϕ

⇐⇒ a−1 ∗ b ∈ kerϕ

⇐⇒ ϕ(a−1 ∗ b) = εH

⇐⇒ ϕ(a)−1 • ϕ(b) = εH

⇐⇒ ϕ(a) = ϕ(b)

⇐⇒ Φ([a]) = Φ([b]).

Then to see that Φ is a group homomorphism, we observe for all a, b ∈ G that

Φ([a] ∗ [b]) = Φ([a ∗ b])
= ϕ(a ∗ b)
= ϕ(a) • ϕ(b)

= Φ([a]) • Φ([b]).

Remark. This is a good example of of a proof that “writes itself”, since it only uses the
definitions and the basic properties of group homomorphisms. It does not involve any “think-
ing”. I call this style of math “theory building”, as opposed to “problem solving”. Still, the
First Isomorphism Theorem can be useful. For example, it gives a better point of view on
the order of a group element. For any group element a ∈ G recall that there exists a group
homomorphism ϕa : Z → G defined by ϕa(k) := ak. The image of ϕa is the set of powers
of a, which we know is the smallest subgroup of G that contains a. In other words, we have
imϕa = 〈a〉. The kernel of ϕa, being a subgroup of Z, must have the form nZ for some integer
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n ≥ 0. Now the First Isomorphism Theorem says that the map Φ : Z/nZ → G defined by
Φ([k]) = ak is an isomorphism. In other words, we have

ak = a` ⇐⇒ Φ([k]) = Φ([`]) ⇐⇒ [k] = [`] ⇐⇒ k ≡ ` mod n.

This n is called the order of the element a ∈ G. In summary: The order of a ∈ G is the unique
integer n ≥ 0 such that kerϕa = nZ. [Here n = 0 corresponds to “infinite order”.]

2. Orbit-Stabilizer Theorem. Let (G, ∗, ε) be a group and let X be a set. An action of G
on X is a function G×X → X, which we can denote by (g, x) 7→ g(x), satisfying two rules:

(A1) For all x ∈ X we have ε(x) = x.
(A2) For all a, b ∈ G and x ∈ X we have (a ∗ b)(x) = a(b(x)).

(a) Consider the relation ∼ on X defined by

x ∼ y ⇐⇒ ∃g ∈ G, y = g(x).

Prove that this is an equivalence relation. The equivalence classes are called orbits:

Orb(x) := {y ∈ X : x ∼ y} ⊆ X.
(b) For any x ∈ X we define the stabilizer subgroup:

Stab(x) := {g ∈ G : g(x) = x} ⊆ G.
Prove that Stab(x) is indeed a subgroup of G. [It need not be a normal subgroup.]

(c) Consider any element x ∈ X. From part (b) we may consider the set of cosets
G/Stab(x). Prove that the function Φ : G/Stab(x)→ Orb(x) defined by Φ([a]) = a(x)
is a well-defined bijection.

(a): Reflexive. Axiom (A1) says that x = ε(x) for all x ∈ X. Since ε ∈ G this implies that
x ∼ x for all x ∈ X. Symmetric. Suppose that x ∼ y so that y = g(x) for some g ∈ G. Then

y = g(x)

g−1(y) = g−1(g(x))

g−1(y) = (g−1 ∗ g)(x) (A2)

g−1(y) = ε(x)

g−1(y) = x. (A1)

Since g−1 ∈ G this implies that y ∼ x. Transitive. Suppose that x ∼ y and z ∼ y so that
y = g(x) and z = h(y) for some g, h ∈ G. Then we have

z = h(y)

= h(g(x))

= (h ∗ g)(x). (A2)

Since h ∗ g ∈ G this implies that x ∼ z.

(b): To show that Stab(x) ⊆ G is a subgroup, we consider any a, b ∈ Stab(x), so that a(x) = x
and b(x) = x. Observe that a(x) = x implies a−1(x) = x:

a(x) = x

a−1(a(x)) = a−1(x)

(a−1 ∗ a)(x) = a−1(x) (A2)

ε(x) = a−1(x)



3

x = a−1(x). (A1)

Then we have

(a−1 ∗ b)(x) = a−1(b(x)) = a−1(x) = x,

which says that a−1 ∗ b ∈ Stab(x).

(c): Fix any point x ∈ X. I claim that the rule Φ([a]) := a(x) defines a bijection from the set
of cosets G/Stab(x) to the set of points Orb(x). It is clearly surjective, so we only need to
check that Φ is well-defined and injective. To see this, note for all a, b ∈ G that

[a] = [b] ⇐⇒ a ∗ Stab(x) = b ∗ Stab(x)

⇐⇒ a−1 ∗ b ∈ Stab(x)

⇐⇒ (a−1 ∗ b)(x) = x

⇐⇒ a−1(b(x)) = x

⇐⇒ b(x) = a(x)

⇐⇒ Φ([a]) = Φ([b]).

Remark. Note that this is almost identical to the proof of the First Isomorphism Theorem.
The main difference is that Orb(x) and G/Stab(x) are not groups (the subgroup Stab(x) need
not be normal), so the Orbit-Stabilizer Theorem is just a bijection, not an “isomorphism”.1

3. Burnside’s Lemma. Suppose that the group (G, ∗, ε) acts on the set X. Consider the
set of pairs (g, x) ∈ G×X satisfying g(x) = x:

S = {(g, x) : g(x) = x} ⊆ G×X.

Suppose that G and X are finite so that S is finite.

(a) Explain why #S =
∑

x∈X #Stab(x).
(b) For any g ∈ G, let Fix(g) = {x ∈ X : g(x) = x} ⊆ X be the set of elements of X that

are “fixed by g”. Explain why #S =
∑

g∈G #Fix(g). It follows from (a) and (b) that∑
x∈X

#Stab(x) =
∑
g∈G

#Fix(g).

(c) From Problem 2 we know that X is a disjoint union of orbits. Let X/G denote the
set of orbits. Use the Orbit-Stabilizer Theorem to prove that

∑
x∈X #Stab(x) = #G ·

#(X/G), and conclude that the number of orbits is equal to the average number of
elements of X fixed by an element of G:

#(X/G) =
1

#G
·
∑
g∈G

#Fix(g).

[Hint: Let k = #(X/G) and let X = Orb(x1) t · · · t Orb(xk) be the decomposition
into orbits. For any element x ∈ Orb(xi) show that #Stab(x) = #G/#Orb(xi). Now
add them up.]

1Actually, there is a bit more structure here. The bijection from G/Stab(x) to Orb(x) is an “isomorphism
of G-sets” because it “preserves the action of G” on both sets. The natural action of G on the set of cosets
G/Stab(x) is by left multiplication: a(b ∗ Stab(x)) := (a ∗ b) ∗ Stab(x).
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(a,b): We will prove (a) and (b) together. Imagine the set G × X as a rectangular array of
cells with rows indexed by the elements of G and columns indexed by the elements of X. If
g(x) = x then we put a 1 in the cell indexed by the pair (g, x); otherwise we put 0.

Let S ⊆ G×X be the set of cells that contain 1, so that #S is the total number of 1s in the
array. Equivalently, #S is the sum of all entries in the rectangular array. Now consider the
column indexed by some element x ∈ X. The sum of the entries in this column is #Stab(x)
because each 1 in this column corresponds to a group element g ∈ G with g(x) = x. Summing
the entries of the array column-by-column gives #S =

∑
x∈X #Stab(x).

On the other hand, for a given group element g ∈ G the 1s in the g-th row correspond to
elements x ∈ X with g(x) = x, so the sum of the entries in this row is #Fix(g). Then summing
the entries of the array row-by-row gives #S =

∑
g∈G #Fix(g).

(c): By definition, the orbit Orb(x) is the equivalence class of x with respect to the equivalence
relation from Problem 2(a). Thus the set X is partitioned into orbits:

X = Orb(x1) tOrb(x2) t · · · tOrb(xk)

for some randomly chosen orbit representatives x1, . . . , xk ∈ X. Let X/G denote the set of
orbits, so that #(X/G) = k. For any point x in the orbit Orb(xi) we note that Orb(xi) =
Orb(x) so from Orbit-Stabilizer and Lagrange we have

#Stab(x) = #G/#Orb(x) = #G/Orb(xi).

Finally, from parts (a) and (b) we have∑
g∈G

#Fix(g) =
∑
x∈X

#Stab(x)

=
k∑
i=1

∑
x∈Orb(xi)

#Stab(xi)

=

k∑
i=1

∑
x∈Orb(xi)

#G/#Orb(xi)

=
k∑
i=1

#G ·

 ∑
x∈Orb(xi)

1/#Orb(xi)


=

k∑
i=1

#G · (1)

= k ·#G
= #(X/G) ·#G.

4. Counting Necklaces. Fix some integers n, k ≥ 1. Let X be the set of words (x1, . . . , xn)
with xi ∈ {1, 2, . . . , k} for all i, so that #X = kn. The symmetric group Sn acts on the set
X by permuting entries. Let c = (1, 2, . . . , n) ∈ Sn be the standard n-cycle and consider the
cyclic group G = 〈c〉 of size n. The orbits of G acting on X are called necklaces. We can think
of a necklace as a cyclic configuration of n beads using k possible colors.

(a) Explain why #Fix(ci) = kgcd(i,n). [Hint: You investigated the permutations ci in
Problem 3 of Homework 2.]
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(b) Use Burnside’s Lemma to show that

#{necklaces} =
1

n
·
n−1∑
i=0

kgcd(i,n).

(c) Compute the number of necklaces with 12 beads of 2 possible colors.

(a): For a general permutation f ∈ Sn I claim that

#Fix(f) = k# of cycles of f .

Indeed, the words x = (x1, . . . , xn) in the set Fix(f) have the property that xi = xj if and only
if i and j occur in the same cycle of f . We can choose such a word by choosing one color for
each cycle of f . For example, if f = (13)(245) then Fix(f) is the set of words (x1, x2, x3, x4, x5)
satisfying x := x1 = x3 and y := x2 = x4 = x5. Such a word is specified by choosing two
colors x, y ∈ {1, . . . , k}, and there are k2 ways to do this.

If c = (1, 2, . . . , n) is the standard n-cycle then we know from Homework 2 that the cycle
decomposition of ci consists of gcd(i, n) cycles, each of length n/ gcd(i, n). From the above
remarks this implies that

#Fix(ci) = k# of cycles of ci = kgcd(i,n).

(b): Let G = 〈c〉 be the cyclic group generated by the n-cycle c, so that #G = n. Then from
Burnside’s Lemma we have

#{necklaces} =
1

#G

∑
g∈G

#Fix(g)

=
1

n

n−1∑
i=0

#Fix(ci)

=
1

n

n−1∑
i=0

kgcd(i,n).

(c): For example, the number of necklaces with 12 beads of 2 possible colors is

1

12

11∑
i=0

2gcd(i,12) =
1

12

(
212 + 21 + 22 + 23 + 24 + 21 + 26 + 21 + 24 + 23 + 22 + 21

)
=

1

12
(4096 + 2 + 4 + 8 + 16 + 2 + 64 + 2 + 16 + 8 + 4 + 2)

= 352.

Remark. Since the number of necklaces is a whole number it follows from our formula that
the integer

∑n−1
i=0 k

gcd(i,n) is always divisible by n, which is not at all obvious. In fact, the
easiest case of this observation is just Fermat’s Little Theorem. To see this, let n = p be
prime, so that gcd(i, p) = 1 when p - i and gcd(i, p) = p when p|i. If N is the number of
necklaces with p beads in k possible colors then

N =
1

p

p−1∑
i=0

kgcd(i,p) =
1

p

kp + k1 + · · ·+ k1︸ ︷︷ ︸
p− 1 times

 =
1

p

(
kp + (p− 1)k1

)
.
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Rearranging gives kp − k = p(N + k), which shows that kp ≡ k mod p.

Remark. Now consider the action of the full symmetric group Sn on the set of words X. To
determine an orbit we just need to choose the number of beads of each color, since any two
words with the same number of beads of each color will be equivalent by some permutation of
the beads. For each i ∈ {1, 2, . . . , k} let mi be the number of beads of color i. Our goal is to
count the number of possible solutions to the equation n = m1 +m2 + · · ·+mk with mi ≥ 0.
A standard combinatorial argument says that the answer is

(
n+k−1
k−1

)
.2 Now let s(n, i) be the

number of permutations f ∈ Sn having i cycles. These are called the Stirling numbers of the
first kind. Putting all of this together, Burnside’s Lemma gives a combinatorial identity:(

n+ k − 1

k − 1

)
=

1

n!
·
n∑
i=1

s(n, i)ki.

Since this is just a remark, let me go one step further. By examining
(
n+k−1
k−1

)
more closely we

can obtain explicit formulas for the numbers s(n, i). First we note that(
n+ k − 1

k − 1

)
=

1

n!
· (k + n− 1)(k + n− 2) · · · (k + 1).

Then expanding the right hand side as a polynomial in k shows that s(n, i) is the sum of
products of n− i distinct numbers from the set {1, 2, . . . , n− 1}. For example,3

s(4, 1) = 1 · 2 · 3,
s(4, 2) = 1 · 2 + 1 · 3 + 2 · 3,
s(4, 3) = 1 + 2 + 3,

s(4, 4) = 1.

I find this result surprising.

5. Euler’s Totient Function. For any integer n ≥ 1 we define

φ(n) := #(Z/nZ)× = #{a ∈ Z : 1 ≤ a ≤ n and gcd(a, n) = 1}.
(a) Consider any integer k ≥ 1 and prime p ≥ 2. Explain why φ(pk) = pk − pk−1. [Hint:

The only integers less than pk that are not coprime to pk are the multiples of p.]
(b) Let R and S be rings. The direct product ring R× S is defined analogously to groups.

It is straightforward to check that the groups of units satisfy

(R× S)× = R× × S×.
Combine this with the Chinese Remainder Theorem to prove for all m,n ∈ Z that

gcd(m,n) = 1 =⇒ φ(mn) = φ(m)φ(n).

(c) Combine parts (a) and (b) to prove for any integer n ≥ 1 that

φ(n) = n ·
∏
p|n

p− 1

p
,

where the product is over the distinct prime divisors of n. [Hint: Write the prime

factorization of n as n = pk11 · · · p
kN
N . From part (a) we have φ(pkii ) = pkii − p

ki−1
i =

pkii (pi − 1)/pi. Now use part (b).]

2Such a solution corresponds to a binary sequence of length n + k − 1 containing n zeros and k − 1 ones.
The the lengths of the sequences of zeros are the numbers m1, . . . ,mk and the ones are the dividers.

3A sum of no numbers equals 1 by convention.
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(a): For any integer a ∈ Z we note that gcd(a, pk) = 1 if and only if p divides a. Thus φ(pk)
is the number of integers in the set {1, 2, . . . , pk} that are not multiples of p. The multiples
of p in this set are just

1p, 2p, 3p, . . . (pk−1)p,

and there are pk−1 of these. Hence we have

φ(pk) = #(numbers from 1 to pk that are coprime to pk)

= #(numbers from 1 to pk that are not a multiple of p)

= #(numbers from 1 to pk)−#(numbers from 1 to pk that are a multiple of p)

= pk − pk−1

= pk · p− 1

p
.

(b): If gcd(m,n) = 1 then the Chinese Remainder Theorem gives an isomorphism between
the ring Z/mnZ and the direct product of rings Z/mZ × Z/nZ. Comparing the groups of
units gives

(Z/mnZ)× ∼= (Z/mZ× Z/nZ)× = (Z/mZ)× × (Z/nZ)×,

and then taking cardinality gives

φ(mn) = #(Z/mnZ)×

= #
[
(Z/mZ)× × (Z/nZ)×

]
= #(Z/mZ)× ·#(Z/nZ)×

= φ(m)φ(n).

Remark. Here is the ring theory. Let (R,+, ·, 0, 1) and (S,+, ·, 0, 1) be rings. The direct
product ring is just the set of pairs

R× S = {(r, s) : r ∈ R, s ∈ S}

with the componentwise operations (r, s)+(r′, s′) = (r+r′, s+s′) and (r, s)(r′, s′) = (rr′, ss′).
The “zero” and “one” elements of R × S are (0, 0) and (1, 1). A pair (r, s) ∈ R × S is a unit
precisely when there exists a pair (r′, s′) ∈ R× S satisfying (rr′, ss′) = (r, s)(r′, s′) = (1, 1) =
(r′, s′)(r, s) = (r′r, ss′). This is equivalent to saying that rr′ = 1 = r′r and ss′ = 1 = s′s so
that r is a unit in R and s is a unit in S. In summary, we have shown that

(R× S)× = R× × S×.

(c): Consider an integer n ∈ Z with prime factorization n = pk11 p
k2
2 · · · p

kN
N . Then by combining

parts (a) and (b) we have

φ(n) = φ(pk11 p
k2
2 · · · p

kN
N )

= φ(pk11 )φ(pk22 ) · · ·φ(pkNN ) (b)

= pk11 ·
p1 − 1

p1
· pk22 ·

p2 − 1

p2
· · · pkNN ·

pN − 1

pN
(a)

= pk11 p
k2
2 · · · p

kN
N ·

N∏
i=1

pi − 1

pi
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= n ·
∏
p|n

p− 1

p
,

where the product runs over the distinct prime divisors of n. For example, the distinct prime
divisors of 4704 = 25 · 31 · 72 are just 2, 3, 7, and hence

φ(4704) = 4704 · 1

2
· 2

3
· 6

7
= 1344.

Then since gcd(5, 4707) = 1 we see from Euler’s Totient Theorem that

51344 = 5φ(4704) ≡ 1 mod 4704.

This kind of computation is central to cryptography.

Remark. Multiplying n by (p−1)/p just throws away all of the numbers less than n that are
multiples of p. It makes sense that by doing this for every prime divisor of n we are left with
just the numbers that are coprime to n. The fact that this procedure gives the correct answer
is equivalent to saying that the events {a is a multiple of p} are statistically independent for
different primes p. I guess this idea could lead to an alternative proof.


