1. First Isomorphism Theorem. Let $\varphi:\left(G, *, \varepsilon_{G}\right) \rightarrow\left(H, \bullet, \varepsilon_{H}\right)$ be a group homomorphism. Consider the kernel and image:

$$
\begin{aligned}
\operatorname{ker} \varphi & =\left\{a \in G: \varphi(a)=\varepsilon_{H}\right\}, \\
\operatorname{im} \varphi & =\{\varphi(a): a \in G\} .
\end{aligned}
$$

(a) Prove that φ is injective if and only if $\operatorname{ker} \varphi=\left\{\varepsilon_{G}\right\}$. In this case, prove that $G \cong \operatorname{im} \varphi$.
(b) Prove that $\operatorname{ker} \varphi$ is a normal subgroup of G, so the set of $\operatorname{cosets} G / \operatorname{ker} \varphi$ is a group. Prove that the function $\Phi: G / \operatorname{ker} \varphi \rightarrow \operatorname{im} \varphi$ defined by $\Phi([a]):=\varphi(a)$ is a well-defined group isomorphism.
2. Orbit-Stabilizer Theorem. Let $(G, *, \varepsilon)$ be a group and let X be a set. An action of G on X is a function $G \times X \rightarrow X$, which we can denote by $(g, x) \mapsto g(x)$, satisfying two rules:

- For all $x \in X$ we have $\varepsilon(x)=x$.
- For all $a, b \in G$ and $x \in X$ we have $(a * b)(x)=a(b(x))$.
(a) Consider the relation \sim on X defined by

$$
x \sim y \quad \Longleftrightarrow \quad \exists g \in G, y=g(x)
$$

Prove that this is an equivalence relation. The equivalence classes are called orbits:

$$
\operatorname{Orb}(x):=\{y \in X: x \sim y\} \subseteq X
$$

(b) For any $x \in X$ we define the stabilizer subgroup:

$$
\operatorname{Stab}(x):=\{g \in G: g(x)=x\} \subseteq G .
$$

Prove that $\operatorname{Stab}(x)$ is indeed a subgroup of G. [It need not be a normal subgroup.]
(c) Consider any element $x \in X$. From part (b) we may consider the set of cosets $G / \operatorname{Stab}(x)$. Prove that the function $\Phi: G / \operatorname{Stab}(x) \rightarrow \operatorname{Orb}(x)$ defined by $\Phi([a])=a(x)$ is a well-defined bijection.
3. Burnside's Lemma. Suppose that the group $(G, *, \varepsilon)$ acts on the set X. Consider the set of pairs $(g, x) \in G \times X$ satisfying $g(x)=x$:

$$
S=\{(g, x): g(x)=x\} \subseteq G \times X
$$

Suppose that G and X are finite so that S is finite.
(a) Explain why $\# S=\sum_{x \in X} \# \operatorname{Stab}(x)$.
(b) For any $g \in G$, let $\operatorname{Fix}(g)=\{x \in X: g(x)=x\} \subseteq X$ be the set of elements of X that are "fixed by g ". Explain why $\# S=\sum_{g \in G} \# \operatorname{Fix}(g)$. It follows from (a) and (b) that

$$
\sum_{x \in X} \# \operatorname{Stab}(x)=\sum_{g \in G} \# \operatorname{Fix}(g) .
$$

(c) From Problem 2 we know that X is a disjoint union of orbits. Let X / G denote the set of orbits. Use the Orbit-Stabilizer Theorem to prove that $\sum_{x \in X} \# \operatorname{Stab}(x)=\# G$. $\#(X / G)$, and conclude that the number of orbits is equal to the average number of elements of X fixed by an element of G :

$$
\#(X / G)=\frac{1}{\# G} \cdot \sum_{g \in G} \# \operatorname{Fix}(g)
$$

[Hint: Let $k=\#(X / G)$ and let $X=\operatorname{Orb}\left(x_{1}\right) \sqcup \cdots \sqcup \operatorname{Orb}\left(x_{k}\right)$ be the decomposition into orbits. For any element $x \in \operatorname{Orb}\left(x_{i}\right)$ show that $\# \operatorname{Stab}(x)=\# G / \# \operatorname{Orb}\left(x_{i}\right)$. Now add them up.]
4. Counting Necklaces. Fix some integers $n, k \geq 1$. Let X be the set of words $\left(x_{1}, \ldots, x_{n}\right)$ with $x_{i} \in\{1,2, \ldots, k\}$ for all i, so that $\# X=k^{n}$. The symmetric group S_{n} acts on the set X by permuting entries. Let $c=(1,2, \ldots, n) \in S_{n}$ be the standard n-cycle and consider the cyclic group $G=\langle c\rangle$ of size n. The orbits of G acting on X are called necklaces. We can think of a necklace as a cyclic configuration of n beads using k possible colors.
(a) Explain why \#Fix $\left(c^{i}\right)=k^{\operatorname{gcd}(i, n)}$. [Hint: You investigated the permutations c^{i} in Problem 3 of Homework 2.]
(b) Use Burnside's Lemma to show that

$$
\#\{\text { necklaces }\}=\frac{1}{n} \cdot \sum_{i=0}^{n-1} k^{\operatorname{gcd}(i, n)} .
$$

(c) Compute the number of necklaces with 12 beads of 2 possible colors.
5. Euler's Totient Function. For any integer $n \geq 1$ we define

$$
\phi(n):=\#(\mathbb{Z} / n \mathbb{Z})^{\times}=\#\{a \in \mathbb{Z}: 1 \leq a \leq n \text { and } \operatorname{gcd}(a, n)=1\}
$$

(a) Consider any integer $k \geq 1$ and prime $p \geq 2$. Explain why $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$. [Hint: The only integers less than p^{k} that are not coprime to p^{k} are the multiples of p.]
(b) Let R and S be rings. The direct product ring $R \times S$ is defined analogously to groups. It is straightforward to check that the groups of units satisfy

$$
(R \times S)^{\times}=R^{\times} \times S^{\times} .
$$

Combine this with the Chinese Remainder Theorem to prove for all $m, n \in \mathbb{Z}$ that

$$
\operatorname{gcd}(m, n)=1 \quad \Longrightarrow \quad \phi(m n)=\phi(m) \phi(n)
$$

(c) Combine parts (a) and (b) to prove for any integer $n \geq 1$ that

$$
\phi(n)=n \cdot \prod_{p \mid n} \frac{p-1}{p}
$$

where the product is over the distinct prime divisors of n. [Hint: Write the prime factorization of n as $n=p_{1}^{k_{1}} \cdots p_{N}^{k_{N}}$. From part (a) we have $\phi\left(p_{i}^{k_{i}}\right)=p_{i}^{k_{i}}-p_{i}^{k_{i}-1}=$ $p_{i}^{k_{i}}\left(p_{i}-1\right) / p_{i}$. Now use part (b).]

