1. Equivalence Modulo a Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be any subgroup. Define the relation \sim on G by

$$
a \sim b \quad \Longleftrightarrow \quad a^{-1} * b \in H
$$

(a) Prove that \sim is an equivalence relation on the set G.
(b) For each $a \in G$, consider the equivalence class $[a]:=\{b \in G: a \sim b\}$ and the coset $a * H:=\{a * h: h \in H\}$. Prove that $[a]=a * H$.
(c) Now suppose that H is a normal subgroup. That is, for all $h \in H$ and $a \in G$ we assume that $a * h * a^{-1} \in H$. In this case, prove that the following operation on cosets is well-defined:

$$
[a] *[b]:=[a * b] .
$$

(a): Reflexive. Consider any $a \in G$. Since H contains the identity we have $a^{-1} * a=\varepsilon \in H$ and hence $a \sim a$. Symmetric. Consider $a, b \in G$ and suppose that $a \sim b$, so that $a^{-1} * b \in H$. Then since H is closed under inversion we have $b^{-1} * a=\left(a^{-1} * b\right) \in H$, so that $b \sim a$. Transitive. Consider any $a, b, c \in G$ with $a \sim b$ and $b \sim c$, so that $a^{-1} * b \in H$ and $b^{-1} * c \in H$. Then since H is closed under $*$ we have $a^{-1} * c=\left(a^{-1} * b\right) *\left(b^{-1} * c\right) \in H$, so that $a \sim c \in H$.
(b): First we will show that $[a] \subseteq a * H$. Consider any element $b \in[a]$, so that $a \sim b$ and hence $a^{-1} * b \in H$. Let's write $h=a^{-1} * b$. Then we have $b=a * h \in a * H$. Conversely, we will show that $a * H \subseteq[a]$. Consider any element $b \in a * H$, which can be written as $b=a * h$ for some $h \in H$. We observe that $a^{-1} * b=h \in H$, so that $a * b$ and $b \in[a]$.
(c): Suppose that $H \subseteq G$ is a normal subgroup so that for all $g \in G$ and $h \in H$ there exists some $h^{\prime} \in H$ satisfying $g * h=h^{\prime} * g$. Furthermore, suppose that we have $[a]=\left[a^{\prime}\right]$ and $[b]=\left[b^{\prime}\right]$, so that $a^{-1} * a^{\prime} \in H$ and $b^{-1} * b^{\prime} \in H$. In this case we want to show that $[a * b]=\left[a^{\prime} * b^{\prime}\right]$, or, in other words, that $(a * b)^{-1} *\left(a^{\prime} * b^{\prime}\right) \in H$. First observe that

$$
(a * b)^{-1} *\left(a^{\prime} * b\right)=b^{-1} * a^{-1} * a^{\prime} * b^{\prime} .
$$

We have assumed that $a^{-1} * a^{\prime} \in H$, so let's write $h=a^{-1} * a^{\prime}$. Then since H is normal there exists some $h^{\prime} \in H$ satisfying $b^{-1} * h=h^{\prime} * b^{-1}$. Finally, since $b^{-1} * b^{\prime} \in H$ and since H is closed under $*$ we have

$$
\begin{aligned}
(a * b)^{-1} *\left(a^{\prime} * b\right) & =b^{-1} * a^{-1} * a^{\prime} * b^{\prime} \\
& =b^{-1} * h * b^{\prime} \\
& =h^{\prime} * b^{-1} * b^{\prime} \in H,
\end{aligned}
$$

as desired.
2. Order of a Commuting Product. Let $(G, \cdot, 1)$ be a group and let $a, b \in G$ be any elements satisfying $a b=b a$.
(a) Suppose that $a^{m}=1$ and $b^{n}=1$ for some integers $m, n \geq 1$. In this case, show that

$$
(a b)^{\operatorname{lcm}(m, n)}=1 .
$$

[Hint: You may assume that $\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)$.]
(b) Use part (a) to show that the order \# $\langle a b\rangle$ divides $\operatorname{lcm}(m, n)$.
(a): The fat that $a b=b a$ implies that

$$
(a b)^{k}=(a b)(a b) \cdots(a b)=(a a \cdots a)(b b \cdots b)=a^{k} b^{k} \quad \text { for any } k \in \mathbb{N} \text {. }
$$

Since $\operatorname{gcd}(n, m)$ is a common divisor of m and n we can write $m=\operatorname{gcd}(m, n) m^{\prime}$ and $n=$ $\operatorname{gcd}(m, n) n^{\prime}$ for some $m^{\prime}, n^{\prime} \in \mathbb{Z}$, which also implies that $\operatorname{lcm}(m, n)=m n^{\prime}=n m^{\prime}$. Hence

$$
(a b)^{\operatorname{lcm}(m, n)}=a^{\operatorname{lcm}(m, n)} b^{\operatorname{lcm}(m, n)}=a^{m n^{\prime}} b^{n m^{\prime}}=\left(a^{m}\right)^{n^{\prime}}\left(b^{n}\right)^{m^{\prime}}=1^{n^{\prime}} 1^{m^{\prime}}=1 .
$$

(b): You showed on a previous homework that

$$
(a b)^{k}=1 \quad \Longleftrightarrow \quad \#\langle a b\rangle \mid k
$$

Hence from part (a) we have $\#\langle a b\rangle \mid \operatorname{lcm}(m, n)$.
3. Direct Product of Groups. Let $\left(G, *, \varepsilon_{G}\right)$ and $\left(H, \bullet, \varepsilon_{H}\right)$ be groups. Consider the Cartesian product set, which is the set of ordered pairs:

$$
G \times H:=\{(g, h): g \in G, h \in H\}
$$

(a) Prove that the following operation makes the set $G \times H$ into a group:

$$
\left(g_{1}, h_{1}\right) \diamond\left(g_{2}, h_{2}\right):=\left(g_{1} * g_{2}, h_{1} \bullet h_{2}\right)
$$

(b) For each $g \in G$ we have an element $\tilde{g}:=\left(g, \varepsilon_{H}\right) \in G \times H$ and for each $h \in H$ we have an element $\tilde{h}:=\left(\varepsilon_{G}, h\right) \in G \times H$. Show that $\tilde{g} \diamond \tilde{h}=\tilde{h} \diamond \tilde{g}$ for all $g \in G$ and $h \in H$.
(c) If $\operatorname{gcd}(m, n) \neq 1$, prove that the group $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ is not cyclic. [Hint: A group of size $m n$ is cyclic if and only if it has an element of order $m n$. If $\operatorname{gcd}(m, n) \neq 1$ then $\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)<m n$. Use part (b) and Problem 2 to show that every element of $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ has order dividing $\operatorname{lcm}(m, n)$.]
(a): Associative. Consider any three pairs $(a, \alpha),(b, \beta),(c, \gamma) \in G \times H$. Since $*$ and \bullet are associative operations, we have

$$
\begin{aligned}
(a, \alpha) \diamond((b, \beta) \diamond(c, \gamma)) & =(a, \alpha) \diamond(b * c, \beta \bullet \gamma) \\
& =(a *(b * c), \alpha \bullet(\beta \bullet \gamma)) \\
& =((a * b) * c,(\alpha \bullet \beta) \bullet \gamma) \\
& =(a * b, \alpha \bullet \beta) \diamond(c, \gamma) \\
& =((a, \alpha) \diamond(b, \beta)) \diamond(c, \gamma) .
\end{aligned}
$$

Hence \diamond is an associative operation. Identity. For any $(g, h) \in G \times H$, the pair $\left(\varepsilon_{G}, \varepsilon_{H}\right)$ satisfies

$$
(g, h) \diamond\left(\varepsilon_{G}, \varepsilon_{H}\right)=\left(g * \varepsilon_{G}, h \bullet \varepsilon_{H}\right)=(g, h)
$$

and

$$
\left(\varepsilon_{G}, \varepsilon_{H}\right) \diamond(g, h)=\left(\varepsilon_{G} * g, \varepsilon_{H} \bullet h\right)=(g, h),
$$

hence $\left(\varepsilon_{G}, \varepsilon_{H}\right) \in G \times H$ is a two-sided identity. Inverse. For any pair $(g, h) \in G \times H$ let g^{-1} and h^{-1} denote the inverse elements in G and H. Then we have

$$
(g, h) \diamond\left(g^{-1}, h^{-1}\right)=\left(g * g^{-1}, h \bullet h^{-1}\right)=\left(\varepsilon_{G}, \varepsilon_{H}\right)
$$

and

$$
\left(g^{-1}, h^{-1}\right) \diamond(g, h)=\left(g^{-1} * g, h^{-1} \bullet h\right)=\left(\varepsilon_{G}, \varepsilon_{H}\right),
$$

so that $\left(g^{-1}, h^{-1}\right)$ is a two-sided inverse of (g, h).
(b): Note that for any $g \in G$ and $h \in H$ we have

$$
\begin{aligned}
\tilde{g} \diamond \tilde{h} & =\left(g, \varepsilon_{H}\right) \diamond\left(\varepsilon_{G}, h\right) \\
& =\left(g * \varepsilon_{G}, \varepsilon_{H} \bullet h\right) \\
& =(g, h) \\
& =\left(\varepsilon_{G} * g, h \bullet \varepsilon_{H}\right) \\
& =\left(\varepsilon_{G}, h\right) \diamond\left(g, \varepsilon_{H}\right) \\
& =\tilde{h} \diamond \tilde{g} .
\end{aligned}
$$

From Problem 2(c) it follows that if $g^{m}=\varepsilon_{G}$ and $h^{n}=\varepsilon_{H}$, so that $\tilde{g}^{m}=\left(\varepsilon_{G}, \varepsilon_{H}\right)$ and $\tilde{h}^{n}=\left(\varepsilon_{G}, \varepsilon_{H}\right)$, then $\#\langle(g, h)\rangle \mid \operatorname{lcm}(m, n)$. In particular, if G and H are finite then we know from Lagrange that $g^{\# G}=\varepsilon_{G}$ and $h^{\# H}=\varepsilon_{H}$, hence every element (g, h) of the group $G \times H$ satisfies $\#\langle(g, h)\rangle \leq \operatorname{lcm}(\# G, \# H)$.
(c): From the previous remark we know that every element of the group $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ has order $\leq \operatorname{lcm}(m, n)$. Note that this group has $m n$ elements. If it were a cyclic group then it would have some element of order $m n$. But if $\operatorname{gcd}(m, n) \neq 1$ then $\operatorname{lcm}(m, n)=$ $m n / \operatorname{gcd}(m, n)<m n$, which is impossible from the previous remark. Hence

$$
\operatorname{gcd}(m, n) \neq 1 \quad \Longrightarrow \quad \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} \text { is not cyclic. }
$$

4. Chinese Remainder Theorem. In this problem we will show that the group $\mathbb{Z} / m \mathbb{Z} \times$ $\mathbb{Z} / n \mathbb{Z}$ is cyclic whenever $\operatorname{gcd}(m, n)=1$. For any integers $a, n \in \mathbb{Z}$ we will write $[a]_{n}$ for the equivalence class of a with respect to "equivalence $\bmod n$ ". We showed in class that the operation $[a]_{n}+[b]_{n}:=[a+b]_{n}$ is well-defined and makes the set of cosets $\mathbb{Z} / n \mathbb{Z}$ into a group.
(a) For any integers $m, n \in \mathbb{Z}$, show that the rule $\left.\varphi\left([a]_{m n}\right):=\left([a]_{m},[a]_{n}\right]\right)$ is a well-defined group homomorphism from $\mathbb{Z} / m n \mathbb{Z}$ to $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. [Hint: You must show that $[a]_{m n}=[b]_{m n}$ implies $[a]_{m}=[b]_{m}$ and $\left.[a]_{n}=[b]_{n}.\right]$
(b) If $\operatorname{gcd}(m, n)=1$, prove that φ is injective. [Hint: If $\operatorname{gcd}(m, n)=1$ then we can write $m x+n y=1$ for some $x, y \in \mathbb{Z}$. Use this to prove that $m \mid c$ and $n \mid c$ imply $m n \mid c$.]
(c) If $\operatorname{gcd}(m, n)=1$, prove that φ is also surjective. [Hint: Write $m x+n y=1$ for some $x, y \in \mathbb{Z}$. For any integers $a, b \in \mathbb{Z}$, show that $\left.\varphi\left([a n y+b m x]_{m n}\right)=\left([a]_{m},[b]_{n}\right).\right]$
(d) Classical Version. Consider any integers $a, b, m, n, x, y \in \mathbb{Z}$ with $m x+n y=1$. For any integer $c \in \mathbb{Z}$, show that

$$
\left\{\begin{array}{rl}
c & \equiv a \bmod m, \\
c & \equiv b \bmod n .
\end{array} \Longleftrightarrow \quad c \equiv a n y+b m x \bmod m n .\right.
$$

[Actually, there is really nothing to "do", so you don't have to do this part.]
(a): To show that the rule is well-defined, we need to show that $[a]_{m n}=[b]_{m n}$ implies $\left([a]_{m},[a]_{n}\right)=\left([b]_{m},[b]_{n}\right)$, i.e., that $[a]_{m}=[b]_{m}$ and $[b]_{m}=[b]_{n}$. In other words, we need to show that

$$
m n|(a-b) \quad \Longrightarrow \quad m|(a-b) \text { and } n \mid(a-b)
$$

To see that this is true, suppose that $a-b=k m n$ for some $k \in \mathbb{Z}$. Then we have $a-b=(k n) m$ and $a-b=(k m) n$, which implies that $m \mid(a-b)$ and $n \mid(a-b)$. The fact that φ is a group
homomorphism follows direction from the definitions ${ }^{1}$

$$
\begin{aligned}
\varphi\left([a]_{m n}+[b]_{m n}\right) & =\varphi\left([a+b]_{m n}\right) \\
& =\left([a+b]_{m},[a+b]_{n}\right) \\
& =\left([a]_{m}+[b]_{m},[a]_{n}+[b]_{n}\right) \\
& =\left([a]_{m},[a]_{n}\right)+\left([b]_{m},[b]_{n}\right) \\
& =\varphi\left([a]_{m n}\right)+\varphi\left([b]_{m n}\right)
\end{aligned}
$$

(b): If $\operatorname{gcd}(m, n)=1$ then from Bézout's identity we can write $m x+n y=1$ for some $x, y \in \mathbb{Z}$. It follows from this that $m \mid c$ and $n \mid c$ imply $m n \mid c$ for any integer c. Indeed, suppose that $c=m m^{\prime}$ and $c=n n^{\prime}$. Then we have

$$
\begin{aligned}
m x+n y & =1 \\
c m x+c n y & =c \\
n n^{\prime} m x+m m^{\prime} n y & =c \\
m n\left(n^{\prime} x+m^{\prime} y\right) & =c,
\end{aligned}
$$

hence $m n \mid c$. We will use this to prove that φ is injective. Indeed, $\operatorname{if} \operatorname{gcd}(m, n)=1$ then for all $a, b \in \mathbb{Z}$ we have

$$
m \mid(a-b) \text { and } n|(a-b) \quad \Longrightarrow \quad m n|(a-b),
$$

which translates to the statement that

$$
\left([a]_{m},[a]_{n}\right)=\left([b]_{m},[b]_{n}\right) \quad \Longrightarrow \quad[a]_{m n}=[b]_{m n} .
$$

(c): If $\operatorname{gcd}(m, n)=1$ then from parts (a) and (b) we have an injective function $\varphi: \mathbb{Z} / m n \mathbb{Z} \rightarrow$ $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. Since these two sets have the same size (namely, $m n$) it follows from the pigeonhole princkple that φ must also be surjective. However, this indirect proof gives no hint of how to compute the inverse: $\varphi^{-1}\left([a]_{m},[b]_{n}\right)=$??

Since $\operatorname{gcd}(m, n)=1$ we can write $m x+n y=1$. In this case I claim that

$$
\varphi^{-1}\left([a]_{m},[b]_{n}\right)=[a n y+b m x]_{m n}
$$

To show this we only need to show that $\varphi\left([a n y+b m x]_{m n}\right)=\left([a]_{m},[b]_{n}\right)$, which amounts to showing that $[a n y+b m x]_{m}=[a]_{m}$ and $[a n y+b m x]_{n}=[b]_{n}$. For the first statement, we have (working $\bmod m$):

$$
\begin{aligned}
a n y+b m x & \equiv a n y+b 0 x \\
& \equiv a n y \\
& \equiv a(1-m x) \\
& \equiv a-a m x \\
& \equiv a-a 0 x \\
& \equiv a .
\end{aligned}
$$

[^0]For the second statement we have (working $\bmod n)$:

$$
\begin{aligned}
a n y+b m x & \equiv a 0 x+b m x \\
& \equiv b m x \\
& \equiv b(1-n y) \\
& \equiv b-b n y \\
& \equiv b-b 0 y \\
& \equiv b
\end{aligned}
$$

(d): We discussed this in class.
5. Permutation Matrices. For any permutation $f \in S_{n}$ (i.e., for any invertible function $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\})$ we define the $n \times n$ permutation matrix $[f]$ as follows:

$$
i j \text { entry of }[f]= \begin{cases}1 & f(j)=i \\ 0 & \text { else }\end{cases}
$$

(a) Write out the six 3×3 matrices corresponding to the elements of S_{3}.
(b) The definition of $[f]$ can be rephrased to say that $[f] \mathbf{e}_{j}=\mathbf{e}_{f(j)}$ where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ are the standard basis vectors. Use this fact to prove that

$$
[f \circ g]=[f][g] \text { for all permutations } f, g \in S_{n} .
$$

[Hint: You only need to check that $[f \circ g] \mathbf{e}_{j}=[f][g] \mathbf{e}_{j}$ for each basis vector \mathbf{e}_{j}.]
(c) It follows from (b) that the map $f \mapsto[f]$ is a group homomorphism $S_{n} \rightarrow G L_{n}(\mathbb{R})$. In fact, show that $[f] \in O_{n}(\mathbb{R})$ for all $f \in S_{n}$. [Hint: You only need to show that $\left[f^{-1}\right]=[f]^{T}$. For all i, j note that $f(j)=i$ if and only if $f^{-1}(i)=j$.]
(d) For any permutation $f \in S_{n}$, we define its sign as the determinant of its matrix:

$$
\operatorname{sgn}(f):=\operatorname{det}([f])
$$

Prove that sgn is a group homomorphism $S_{n} \rightarrow\{ \pm 1\}$. [Hint: Every orthogonal matrix $A^{T} A=I$ satisfies $\operatorname{det}(A)= \pm 1$.]
(e) Prove that the sign homomorphism $S_{n} \rightarrow\{ \pm 1\}$ is surjective and its kernel is the alternating subgroup A_{n}. [Hint: You can assume that every transposition t satisfies $\operatorname{sgn}(t)=-1$. We previously showed that every permutation can be expressed as a product of transpositions. By definition, A_{n} is the set of permutations that can be expressed as a product of evenly-many transpositions.]
(a): Here is a table of cycle notation versus matrix notation $?^{2}$

f	ε	(12)	(13)	(23)	(123)	(132)
${ }^{\text {[f] }}$	$\left(\begin{array}{lll}1 & & \\ & 1 & \\ & & 1\end{array}\right)$	$\left(\begin{array}{lll} & 1 & \\ 1 & & \\ & & 1\end{array}\right)$	$\left(\begin{array}{lll} & & 1 \\ & 1 & \\ 1 & & \end{array}\right)$	$\left(\begin{array}{lll}1 & & \\ & & 1 \\ & 1 & \end{array}\right)$	$\left(\begin{array}{lll}1 & & 1 \\ & 1\end{array}\right)$	$\left(\begin{array}{lll} & 1 & \\ & & 1 \\ 1 & & \end{array}\right)$

(b): We can think of $[f]$ as a permutation of the standard basis vectors: $[f] \mathbf{e}_{j}=\mathbf{e}_{f(j)}$. We can also think of $[f] \mathbf{e}_{j}$ as the j th column of the matrix $[f]$. To show that $[f \circ g]=[f][g]$ it

[^1]suffices to show that these two matrices have the same column vectors:
\[

$$
\begin{aligned}
{[f \circ g] \mathbf{e}_{j} } & =\mathbf{e}_{(f \circ g)(j)} \\
& =e_{f(g(j))} \\
& =[f] \mathbf{e}_{g(j)} \\
& =[f][g] \mathbf{e}_{j} .
\end{aligned}
$$
\]

In other words, the function $f \mapsto[f]$ is a group homomorphism from S_{n} to $G L_{n}(\mathbb{R})$, and it follows from this that $\left[f^{-1}\right]=[f]^{-1}$.
(c): Note that $f(j)=i$ if and only if $f^{-1}(i)=j$, so that

$$
i j \text { entry of }[f]=\left\{\begin{array}{ll}
1 & f(j)=i, \\
0 & \text { else },
\end{array}=\left\{\begin{array}{ll}
1 & f^{-1}(i)=j, \\
0 & \text { else },
\end{array}=j i \text { entry of }\left[f^{-1}\right]\right.\right.
$$

In other words, we have $[f]^{T}=\left[f^{-1}\right]=[f]^{-1}$. We have shown that $[f] \in O_{n}(\mathbb{R})$, from which is follows that $\operatorname{det}([f])= \pm 1 \cdot{ }^{3}$
(d): For any permutation $f \in S_{n}$ let $\operatorname{sgn}(f):=\operatorname{det}([f])$, which we have shown is a number in the set $\{ \pm 1\}$. I claim that the function sgn : $S_{n} \rightarrow\{ \pm 1\}$ is a group homomorphism. Indeed, since the determinant is multiplicative we have

$$
\begin{aligned}
\operatorname{sgn}(f \circ g) & =\operatorname{det}([f \circ g]) \\
& =\operatorname{det}([f][g]) \\
& =\operatorname{det}([f]) \operatorname{det}([g]) \\
& =\operatorname{sgn}(f) \operatorname{sgn}(g) .
\end{aligned}
$$

(e): Finally, I claim that the sign homomorphism is surjective with kernel A_{n}. For this we will assume that $\operatorname{sgn}(t)=-1$ for any transposition $t \in S_{n} 4^{4}$ Then since $\operatorname{sgn}(\varepsilon)=+1$ and $\operatorname{sgn}((12))=-1$ (for example), we see that sgn is surjective.

To show that $\operatorname{ker}(\operatorname{sgn})=A_{n}$, recall the definition:

$$
A_{n}=\left\{f \in S_{n}: \text { there exist transpositions } t_{1}, \ldots, t_{2 k} \text { such that } f=t_{1} \circ \cdots \circ t_{2 k}\right\} .
$$

Note that every such permutation satisfies

$$
\operatorname{sgn}(f)=\operatorname{sgn}\left(t_{1}\right) \cdots \operatorname{sgn}\left(t_{2 k}\right)=(-1)^{2 k}=1^{k}=1
$$

and hence $A_{n} \subseteq \operatorname{ker}(\mathrm{sgn})$. For the other direction, recall that any permutation f can be expressed as some composition of transpositions $f=t_{1} \circ \cdots t_{\ell}$ so that

$$
\operatorname{sgn}(f)=\operatorname{sgn}\left(t_{1}\right) \cdots \operatorname{sgn}\left(t_{\ell}\right)=(-1)^{\ell}
$$

If $\operatorname{sgn}(f)=1$ then ℓ must be even, and it follows that f can be expressed as a composition of "evenly-many" transpositions. Hence $\operatorname{ker}(\mathrm{sgn}) \subseteq A_{n}$.

[^2]
[^0]: ${ }^{1}$ This typical in abstract algebra. The proof is "trivial" because we have hidden the entire history of the subject within the notation.

[^1]: ${ }^{2}$ It is common to omit zeros in matrix notation.

[^2]: ${ }^{3}$ Recall: If $A^{T} A=I$ then $\operatorname{det}(A)^{2}=\operatorname{det}\left(A^{T} A\right)=\operatorname{det}(I)=1$.
 ${ }^{4}$ This follows from fact that switching any two columns of a matrix multiplies the determinant by -1 .

