
Math 561/661 Fall 2023
Homework 4 Drew Armstrong

1. Equivalence Modulo a Subgroup. Let (G, ∗, ε) be a group and let H ⊆ G be any
subgroup. Define the relation ∼ on G by

a ∼ b ⇐⇒ a−1 ∗ b ∈ H.
(a) Prove that ∼ is an equivalence relation on the set G.
(b) For each a ∈ G, consider the equivalence class [a] := {b ∈ G : a ∼ b} and the coset

a ∗H := {a ∗ h : h ∈ H}. Prove that [a] = a ∗H.
(c) Now suppose that H is a normal subgroup. That is, for all h ∈ H and a ∈ G we

assume that a ∗ h ∗ a−1 ∈ H. In this case, prove that the following operation on cosets
is well-defined:

[a] ∗ [b] := [a ∗ b].

(a): Reflexive. Consider any a ∈ G. Since H contains the identity we have a−1 ∗ a = ε ∈ H
and hence a ∼ a. Symmetric. Consider a, b ∈ G and suppose that a ∼ b, so that a−1 ∗ b ∈ H.
Then since H is closed under inversion we have b−1 ∗ a = (a−1 ∗ b) ∈ H, so that b ∼ a.
Transitive. Consider any a, b, c ∈ G with a ∼ b and b ∼ c, so that a−1 ∗ b ∈ H and b−1 ∗ c ∈ H.
Then since H is closed under ∗ we have a−1 ∗ c = (a−1 ∗ b) ∗ (b−1 ∗ c) ∈ H, so that a ∼ c ∈ H.

(b): First we will show that [a] ⊆ a ∗ H. Consider any element b ∈ [a], so that a ∼ b and
hence a−1 ∗ b ∈ H. Let’s write h = a−1 ∗ b. Then we have b = a ∗ h ∈ a ∗H. Conversely, we
will show that a ∗H ⊆ [a]. Consider any element b ∈ a ∗H, which can be written as b = a ∗ h
for some h ∈ H. We observe that a−1 ∗ b = h ∈ H, so that a ∗ b and b ∈ [a].

(c): Suppose that H ⊆ G is a normal subgroup so that for all g ∈ G and h ∈ H there exists
some h′ ∈ H satisfying g∗h = h′∗g. Furthermore, suppose that we have [a] = [a′] and [b] = [b′],
so that a−1 ∗ a′ ∈ H and b−1 ∗ b′ ∈ H. In this case we want to show that [a ∗ b] = [a′ ∗ b′], or,
in other words, that (a ∗ b)−1 ∗ (a′ ∗ b′) ∈ H. First observe that

(a ∗ b)−1 ∗ (a′ ∗ b) = b−1 ∗ a−1 ∗ a′ ∗ b′.

We have assumed that a−1 ∗ a′ ∈ H, so let’s write h = a−1 ∗ a′. Then since H is normal there
exists some h′ ∈ H satisfying b−1 ∗ h = h′ ∗ b−1. Finally, since b−1 ∗ b′ ∈ H and since H is
closed under ∗ we have

(a ∗ b)−1 ∗ (a′ ∗ b) = b−1 ∗ a−1 ∗ a′ ∗ b′

= b−1 ∗ h ∗ b′

= h′ ∗ b−1 ∗ b′ ∈ H,
as desired.

2. Order of a Commuting Product. Let (G, ·, 1) be a group and let a, b ∈ G be any
elements satisfying ab = ba.

(a) Suppose that am = 1 and bn = 1 for some integers m,n ≥ 1. In this case, show that

(ab)lcm(m,n) = 1.

[Hint: You may assume that lcm(m,n) = mn/ gcd(m,n).]
(b) Use part (a) to show that the order #〈ab〉 divides lcm(m,n).



(a): The fat that ab = ba implies that

(ab)k = (ab)(ab) · · · (ab) = (aa · · · a)(bb · · · b) = akbk for any k ∈ N.

Since gcd(n,m) is a common divisor of m and n we can write m = gcd(m,n)m′ and n =
gcd(m,n)n′ for some m′, n′ ∈ Z, which also implies that lcm(m,n) = mn′ = nm′. Hence

(ab)lcm(m,n) = alcm(m,n)blcm(m,n) = amn′
bnm

′
= (am)n

′
(bn)m

′
= 1n

′
1m

′
= 1.

(b): You showed on a previous homework that

(ab)k = 1 ⇐⇒ #〈ab〉 | k.

Hence from part (a) we have #〈ab〉 | lcm(m,n).

3. Direct Product of Groups. Let (G, ∗, εG) and (H, •, εH) be groups. Consider the
Cartesian product set, which is the set of ordered pairs:

G×H := {(g, h) : g ∈ G, h ∈ H}.

(a) Prove that the following operation makes the set G×H into a group:

(g1, h1) � (g2, h2) := (g1 ∗ g2, h1 • h2).

(b) For each g ∈ G we have an element g̃ := (g, εH) ∈ G×H and for each h ∈ H we have

an element h̃ := (εG, h) ∈ G×H. Show that g̃ � h̃ = h̃ � g̃ for all g ∈ G and h ∈ H.
(c) If gcd(m,n) 6= 1, prove that the group Z/mZ× Z/nZ is not cyclic. [Hint: A group of

size mn is cyclic if and only if it has an element of order mn. If gcd(m,n) 6= 1 then
lcm(m,n) = mn/ gcd(m,n) < mn. Use part (b) and Problem 2 to show that every
element of Z/mZ× Z/nZ has order dividing lcm(m,n).]

(a): Associative. Consider any three pairs (a, α), (b, β), (c, γ) ∈ G × H. Since ∗ and • are
associative operations, we have

(a, α) � ((b, β) � (c, γ)) = (a, α) � (b ∗ c, β • γ)

= (a ∗ (b ∗ c), α • (β • γ))

= ((a ∗ b) ∗ c, (α • β) • γ)

= (a ∗ b, α • β) � (c, γ)

= ((a, α) � (b, β)) � (c, γ).

Hence � is an associative operation. Identity. For any (g, h) ∈ G × H, the pair (εG, εH)
satisfies

(g, h) � (εG, εH) = (g ∗ εG, h • εH) = (g, h)

and

(εG, εH) � (g, h) = (εG ∗ g, εH • h) = (g, h),

hence (εG, εH) ∈ G×H is a two-sided identity. Inverse. For any pair (g, h) ∈ G×H let g−1

and h−1 denote the inverse elements in G and H. Then we have

(g, h) � (g−1, h−1) = (g ∗ g−1, h • h−1) = (εG, εH)

and

(g−1, h−1) � (g, h) = (g−1 ∗ g, h−1 • h) = (εG, εH),

so that (g−1, h−1) is a two-sided inverse of (g, h).



(b): Note that for any g ∈ G and h ∈ H we have

g̃ � h̃ = (g, εH) � (εG, h)

= (g ∗ εG, εH • h)

= (g, h)

= (εG ∗ g, h • εH)

= (εG, h) � (g, εH)

= h̃ � g̃.

From Problem 2(c) it follows that if gm = εG and hn = εH , so that g̃m = (εG, εH) and

h̃n = (εG, εH), then #〈(g, h)〉 | lcm(m,n). In particular, if G and H are finite then we know
from Lagrange that g#G = εG and h#H = εH , hence every element (g, h) of the group G×H
satisfies #〈(g, h)〉 ≤ lcm(#G,#H).

(c): From the previous remark we know that every element of the group Z/mZ × Z/nZ
has order ≤ lcm(m,n). Note that this group has mn elements. If it were a cyclic group
then it would have some element of order mn. But if gcd(m,n) 6= 1 then lcm(m,n) =
mn/ gcd(m,n) < mn, which is impossible from the previous remark. Hence

gcd(m,n) 6= 1 =⇒ Z/mZ× Z/nZ is not cyclic.

4. Chinese Remainder Theorem. In this problem we will show that the group Z/mZ ×
Z/nZ is cyclic whenever gcd(m,n) = 1. For any integers a, n ∈ Z we will write [a]n for the
equivalence class of a with respect to “equivalence mod n”. We showed in class that the
operation [a]n + [b]n := [a+ b]n is well-defined and makes the set of cosets Z/nZ into a group.

(a) For any integers m,n ∈ Z, show that the rule ϕ([a]mn) := ([a]m, [a]n]) is a well-defined
group homomorphism from Z/mnZ to Z/mZ × Z/nZ. [Hint: You must show that
[a]mn = [b]mn implies [a]m = [b]m and [a]n = [b]n.]

(b) If gcd(m,n) = 1, prove that ϕ is injective. [Hint: If gcd(m,n) = 1 then we can write
mx+ ny = 1 for some x, y ∈ Z. Use this to prove that m|c and n|c imply mn|c.]

(c) If gcd(m,n) = 1, prove that ϕ is also surjective. [Hint: Write mx+ ny = 1 for some
x, y ∈ Z. For any integers a, b ∈ Z, show that ϕ([any + bmx]mn) = ([a]m, [b]n).]

(d) Classical Version. Consider any integers a, b,m, n, x, y ∈ Z with mx + ny = 1. For
any integer c ∈ Z, show that{

c ≡ a mod m,
c ≡ b mod n.

⇐⇒ c ≡ any + bmx mod mn.

[Actually, there is really nothing to “do”, so you don’t have to do this part.]

(a): To show that the rule is well-defined, we need to show that [a]mn = [b]mn implies
([a]m, [a]n) = ([b]m, [b]n), i.e., that [a]m = [b]m and [b]m = [b]n. In other words, we need
to show that

mn|(a− b) =⇒ m|(a− b) and n|(a− b).

To see that this is true, suppose that a−b = kmn for some k ∈ Z. Then we have a−b = (kn)m
and a − b = (km)n, which implies that m|(a − b) and n|(a − b). The fact that ϕ is a group



homomorphism follows direction from the definitions:1

ϕ([a]mn + [b]mn) = ϕ([a+ b]mn)

= ([a+ b]m, [a+ b]n)

= ([a]m + [b]m, [a]n + [b]n)

= ([a]m, [a]n) + ([b]m, [b]n)

= ϕ([a]mn) + ϕ([b]mn).

(b): If gcd(m,n) = 1 then from Bézout’s identity we can write mx+ny = 1 for some x, y ∈ Z.
It follows from this that m|c and n|c imply mn|c for any integer c. Indeed, suppose that
c = mm′ and c = nn′. Then we have

mx+ ny = 1

cmx+ cny = c

nn′mx+mm′ny = c

mn(n′x+m′y) = c,

hence mn|c. We will use this to prove that ϕ is injective. Indeed, if gcd(m,n) = 1 then for all
a, b ∈ Z we have

m|(a− b) and n|(a− b) =⇒ mn|(a− b),
which translates to the statement that

([a]m, [a]n) = ([b]m, [b]n) =⇒ [a]mn = [b]mn.

(c): If gcd(m,n) = 1 then from parts (a) and (b) we have an injective function ϕ : Z/mnZ→
Z/mZ × Z/nZ. Since these two sets have the same size (namely, mn) it follows from the
pigeonhole princkple that ϕ must also be surjective. However, this indirect proof gives no hint
of how to compute the inverse: ϕ−1([a]m, [b]n) = ??

Since gcd(m,n) = 1 we can write mx+ ny = 1. In this case I claim that

ϕ−1([a]m, [b]n) = [any + bmx]mn.

To show this we only need to show that ϕ([any + bmx]mn) = ([a]m, [b]n), which amounts to
showing that [any + bmx]m = [a]m and [any + bmx]n = [b]n. For the first statement, we have
(working mod m):

any + bmx ≡ any + b0x

≡ any
≡ a(1−mx)

≡ a− amx
≡ a− a0x

≡ a.

1This typical in abstract algebra. The proof is “trivial” because we have hidden the entire history of the
subject within the notation.



For the second statement we have (working mod n):

any + bmx ≡ a0x+ bmx

≡ bmx
≡ b(1− ny)

≡ b− bny
≡ b− b0y
≡ b.

(d): We discussed this in class.

5. Permutation Matrices. For any permutation f ∈ Sn (i.e., for any invertible function
f : {1, . . . , n} → {1, . . . , n}) we define the n× n permutation matrix [f ] as follows:

ij entry of [f ] =

{
1 f(j) = i,

0 else.

(a) Write out the six 3× 3 matrices corresponding to the elements of S3.
(b) The definition of [f ] can be rephrased to say that [f ]ej = ef(j) where e1, . . . , en ∈ Rn

are the standard basis vectors. Use this fact to prove that

[f ◦ g] = [f ][g] for all permutations f, g ∈ Sn.

[Hint: You only need to check that [f ◦ g]ej = [f ][g]ej for each basis vector ej .]
(c) It follows from (b) that the map f 7→ [f ] is a group homomorphism Sn → GLn(R).

In fact, show that [f ] ∈ On(R) for all f ∈ Sn. [Hint: You only need to show that
[f−1] = [f ]T . For all i, j note that f(j) = i if and only if f−1(i) = j.]

(d) For any permutation f ∈ Sn, we define its sign as the determinant of its matrix:

sgn(f) := det([f ]).

Prove that sgn is a group homomorphism Sn → {±1}. [Hint: Every orthogonal matrix
ATA = I satisfies det(A) = ±1.]

(e) Prove that the sign homomorphism Sn → {±1} is surjective and its kernel is the
alternating subgroup An. [Hint: You can assume that every transposition t satisfies
sgn(t) = −1. We previously showed that every permutation can be expressed as a
product of transpositions. By definition, An is the set of permutations that can be
expressed as a product of evenly-many transpositions.]

(a): Here is a table of cycle notation versus matrix notation:2

f ε (12) (13) (23) (123) (132)

[f ]

1
1

1

  1
1

1

  1
1

1

 1
1

1

  1
1

1

  1
1

1


(b): We can think of [f ] as a permutation of the standard basis vectors: [f ]ej = ef(j). We
can also think of [f ]ej as the jth column of the matrix [f ]. To show that [f ◦ g] = [f ][g] it

2It is common to omit zeros in matrix notation.



suffices to show that these two matrices have the same column vectors:

[f ◦ g]ej = e(f◦g)(j)

= ef(g(j))

= [f ]eg(j)

= [f ][g]ej .

In other words, the function f 7→ [f ] is a group homomorphism from Sn to GLn(R), and it
follows from this that [f−1] = [f ]−1.

(c): Note that f(j) = i if and only if f−1(i) = j, so that

ij entry of [f ] =

{
1 f(j) = i,

0 else,
=

{
1 f−1(i) = j,

0 else,
= ji entry of [f−1].

In other words, we have [f ]T = [f−1] = [f ]−1. We have shown that [f ] ∈ On(R), from which
is follows that det([f ]) = ±1.3

(d): For any permutation f ∈ Sn let sgn(f) := det([f ]), which we have shown is a number in
the set {±1}. I claim that the function sgn : Sn → {±1} is a group homomorphism. Indeed,
since the determinant is multiplicative we have

sgn(f ◦ g) = det([f ◦ g])

= det([f ][g])

= det([f ]) det([g])

= sgn(f)sgn(g).

(e): Finally, I claim that the sign homomorphism is surjective with kernel An. For this we
will assume that sgn(t) = −1 for any transposition t ∈ Sn.4 Then since sgn(ε) = +1 and
sgn((12)) = −1 (for example), we see that sgn is surjective.

To show that ker(sgn) = An, recall the definition:

An = {f ∈ Sn : there exist transpositions t1, . . . , t2k such that f = t1 ◦ · · · ◦ t2k}.
Note that every such permutation satisfies

sgn(f) = sgn(t1) · · · sgn(t2k) = (−1)2k = 1k = 1,

and hence An ⊆ ker(sgn). For the other direction, recall that any permutation f can be
expressed as some composition of transpositions f = t1 ◦ · · · t` so that

sgn(f) = sgn(t1) · · · sgn(t`) = (−1)`.

If sgn(f) = 1 then ` must be even, and it follows that f can be expressed as a composition of
“evenly-many” transpositions. Hence ker(sgn) ⊆ An.

3Recall: If ATA = I then det(A)2 = det(ATA) = det(I) = 1.
4This follows from fact that switching any two columns of a matrix multiplies the determinant by −1.


