
Math 561/661 Fall 2023
Homework 4 Drew Armstrong

1. Equivalence Modulo a Subgroup. Let (G, ∗, ε) be a group and let H ⊆ G be any
subgroup. Define the relation ∼ on G by

a ∼ b ⇐⇒ a−1 ∗ b ∈ H.

(a) Prove that ∼ is an equivalence relation on the set G.
(b) For each a ∈ G, consider the equivalence class [a] := {b ∈ G : a ∼ b} and the coset

a ∗H := {a ∗ h : h ∈ H}. Prove that [a] = a ∗H.
(c) Now suppose that H is a normal subgroup. That is, for all h ∈ H and a ∈ G we

assume that a ∗ h ∗ a−1 ∈ H. In this case, prove that the following operation on cosets
is well-defined:

[a] ∗ [b] := [a ∗ b].

2. Order of a Commuting Product. Let (G, ·, 1) be a group and let a, b ∈ G be any
elements satisfying ab = ba.

(a) Suppose that am = 1 and bn = 1 for some integers m,n ≥ 1. In this case, show that

(ab)lcm(m,n) = 1.

[Hint: You may assume that lcm(m,n) = mn/ gcd(m,n).]
(b) Use part (a) to show that the order #〈ab〉 divides lcm(m,n).

3. Direct Product of Groups. Let (G, ∗, εG) and (H, •, εH) be groups. Consider the
Cartesian product set, which is the set of ordered pairs:

G×H := {(g, h) : g ∈ G, h ∈ H}.
(a) Prove that the following operation makes the set G×H into a group:

(g1, h1) � (g2, h2) := (g1 ∗ g2, h1 • h2).
(b) For each g ∈ G we have an element g̃ := (g, εH) ∈ G×H and for each h ∈ H we have

an element h̃ := (εG, h) ∈ G×H. Show that g̃ � h̃ = h̃ � g̃ for all g ∈ G and h ∈ H.
(c) If gcd(m,n) 6= 1, prove that the group Z/mZ× Z/nZ is not cyclic. [Hint: A group of

size mn is cyclic if and only if it has an element of order mn. If gcd(m,n) 6= 1 then
lcm(m,n) = mn/ gcd(m,n) < mn. Use part (b) and Problem 2 to show that every
element of Z/mZ× Z/nZ has order dividing lcm(m,n).]

4. Chinese Remainder Theorem. In this problem we will show that the group Z/mZ ×
Z/nZ is cyclic whenever gcd(m,n) = 1. For any integers a, n ∈ Z we will write [a]n for the
equivalence class of a with respect to “equivalence mod n”. We showed in class that the
operation [a]n + [b]n := [a+ b]n is well-defined and makes the set of cosets Z/nZ into a group.

(a) For any integers m,n ∈ Z, show that the rule ϕ([a]mn) := ([a]m, [a]n]) is a well-defined
group homomorphism from Z/mnZ to Z/mZ × Z/nZ. [Hint: You must show that
[a]mn = [b]mn implies [a]m = [b]m and [a]n = [b]n.]

(b) If gcd(m,n) = 1, prove that ϕ is injective. [Hint: If gcd(m,n) = 1 then we can write
mx + ny = 1 for some x, y ∈ Z. Use this to prove that m|c and n|c imply mn|c.]

(c) If gcd(m,n) = 1, prove that ϕ is also surjective. [Hint: Write mx + ny = 1 for some
x, y ∈ Z. For any integers a, b ∈ Z, show that ϕ([any + bmx]mn) = ([a]m, [b]n).]



(d) Classical Version. Consider any integers a, b,m, n, x, y ∈ Z with mx + ny = 1. For
any integer c ∈ Z, show that{

c ≡ a mod m,
c ≡ b mod n.

⇐⇒ c ≡ any + bmx mod mn.

[Actually, there is really nothing to “do”, so you don’t have to do this part.]

5. Permutation Matrices. For any permutation f ∈ Sn (i.e., for any invertible function
f : {1, . . . , n} → {1, . . . , n}) we define the n× n permutation matrix [f ] as follows:

ij entry of [f ] =

{
1 f(j) = i,

0 else.

(a) Write out the six 3× 3 matrices corresponding to the elements of S3.
(b) The definition of [f ] can be rephrased to say that [f ]ej = ef(j) where e1, . . . , en ∈ Rn

are the standard basis vectors. Use this fact to prove that

[f ◦ g] = [f ][g] for all permutations f, g ∈ Sn.

[Hint: You only need to check that [f ◦ g]ej = [f ][g]ej for each basis vector ej .]
(c) It follows from (b) that the map f 7→ [f ] is a group homomorphism Sn → GLn(R).

In fact, show that [f ] ∈ On(R) for all f ∈ Sn. [Hint: You only need to show that
[f−1] = [f ]T . For all i, j note that f(j) = i if and only if f−1(i) = j.]

(d) For any permutation f ∈ Sn, we define its sign as the determinant of its matrix:

sgn(f) := det([f ]).

Prove that sgn is a group homomorphism Sn → {±1}. [Hint: Every orthogonal matrix
ATA = I satisfies det(A) = ±1.]

(e) Prove that the sign homomorphism Sn → {±1} is surjective and its kernel is the
alternating subgroup An. [Hint: You can assume that every transposition t satisfies
sgn(t) = −1. We previously showed that every permutation can be expressed as a
product of transpositions. By definition, An is the set of permutations that can be
expressed as a product of evenly-many transpositions.]


