1. Equivalence Modulo a Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be any subgroup. Define the relation \sim on G by

$$
a \sim b \quad \Longleftrightarrow \quad a^{-1} * b \in H
$$

(a) Prove that \sim is an equivalence relation on the set G.
(b) For each $a \in G$, consider the equivalence class $[a]:=\{b \in G: a \sim b\}$ and the coset $a * H:=\{a * h: h \in H\}$. Prove that $[a]=a * H$.
(c) Now suppose that H is a normal subgroup. That is, for all $h \in H$ and $a \in G$ we assume that $a * h * a^{-1} \in H$. In this case, prove that the following operation on cosets is well-defined:

$$
[a] *[b]:=[a * b] .
$$

2. Order of a Commuting Product. Let $(G, \cdot, 1)$ be a group and let $a, b \in G$ be any elements satisfying $a b=b a$.
(a) Suppose that $a^{m}=1$ and $b^{n}=1$ for some integers $m, n \geq 1$. In this case, show that

$$
(a b)^{\operatorname{lcm}(m, n)}=1
$$

[Hint: You may assume that $\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)$.]
(b) Use part (a) to show that the order \# $\langle a b\rangle$ divides $\operatorname{lcm}(m, n)$.
3. Direct Product of Groups. Let $\left(G, *, \varepsilon_{G}\right)$ and $\left(H, \bullet, \varepsilon_{H}\right)$ be groups. Consider the Cartesian product set, which is the set of ordered pairs:

$$
G \times H:=\{(g, h): g \in G, h \in H\} .
$$

(a) Prove that the following operation makes the set $G \times H$ into a group:

$$
\left(g_{1}, h_{1}\right) \diamond\left(g_{2}, h_{2}\right):=\left(g_{1} * g_{2}, h_{1} \bullet h_{2}\right) .
$$

(b) For each $g \in G$ we have an element $\tilde{g}:=\left(g, \varepsilon_{H}\right) \in G \times H$ and for each $h \in H$ we have an element $\tilde{h}:=\left(\varepsilon_{G}, h\right) \in G \times H$. Show that $\tilde{g} \diamond \tilde{h}=\tilde{h} \diamond \tilde{g}$ for all $g \in G$ and $h \in H$.
(c) If $\operatorname{gcd}(m, n) \neq 1$, prove that the group $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ is not cyclic. [Hint: A group of size $m n$ is cyclic if and only if it has an element of order $m n$. If $\operatorname{gcd}(m, n) \neq 1$ then $\operatorname{lcm}(m, n)=m n / \operatorname{gcd}(m, n)<m n$. Use part (b) and Problem 2 to show that every element of $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$ has order dividing $\operatorname{lcm}(m, n)$.]
4. Chinese Remainder Theorem. In this problem we will show that the group $\mathbb{Z} / m \mathbb{Z} \times$ $\mathbb{Z} / n \mathbb{Z}$ is cyclic whenever $\operatorname{gcd}(m, n)=1$. For any integers $a, n \in \mathbb{Z}$ we will write $[a]_{n}$ for the equivalence class of a with respect to "equivalence $\bmod n$ ". We showed in class that the operation $[a]_{n}+[b]_{n}:=[a+b]_{n}$ is well-defined and makes the set of cosets $\mathbb{Z} / n \mathbb{Z}$ into a group.
(a) For any integers $m, n \in \mathbb{Z}$, show that the rule $\left.\varphi\left([a]_{m n}\right):=\left([a]_{m},[a]_{n}\right]\right)$ is a well-defined group homomorphism from $\mathbb{Z} / m n \mathbb{Z}$ to $\mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z}$. [Hint: You must show that $[a]_{m n}=[b]_{m n}$ implies $[a]_{m}=[b]_{m}$ and $\left.[a]_{n}=[b]_{n}.\right]$
(b) If $\operatorname{gcd}(m, n)=1$, prove that φ is injective. [Hint: If $\operatorname{gcd}(m, n)=1$ then we can write $m x+n y=1$ for some $x, y \in \mathbb{Z}$. Use this to prove that $m \mid c$ and $n \mid c$ imply $m n \mid c$.]
(c) If $\operatorname{gcd}(m, n)=1$, prove that φ is also surjective. [Hint: Write $m x+n y=1$ for some $x, y \in \mathbb{Z}$. For any integers $a, b \in \mathbb{Z}$, show that $\left.\varphi\left([a n y+b m x]_{m n}\right)=\left([a]_{m},[b]_{n}\right).\right]$
(d) Classical Version. Consider any integers $a, b, m, n, x, y \in \mathbb{Z}$ with $m x+n y=1$. For any integer $c \in \mathbb{Z}$, show that

$$
\left\{\begin{array}{rl}
c & \equiv a \bmod m, \\
c & \equiv b \bmod n .
\end{array} \Longleftrightarrow c \equiv a n y+b m x \bmod m n\right.
$$

[Actually, there is really nothing to "do", so you don't have to do this part.]
5. Permutation Matrices. For any permutation $f \in S_{n}$ (i.e., for any invertible function $f:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\})$ we define the $n \times n$ permutation matrix $[f]$ as follows:

$$
i j \text { entry of }[f]= \begin{cases}1 & f(j)=i \\ 0 & \text { else }\end{cases}
$$

(a) Write out the six 3×3 matrices corresponding to the elements of S_{3}.
(b) The definition of $[f]$ can be rephrased to say that $[f] \mathbf{e}_{j}=\mathbf{e}_{f(j)}$ where $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n} \in \mathbb{R}^{n}$ are the standard basis vectors. Use this fact to prove that

$$
[f \circ g]=[f][g] \text { for all permutations } f, g \in S_{n} .
$$

[Hint: You only need to check that $[f \circ g] \mathbf{e}_{j}=[f][g] \mathbf{e}_{j}$ for each basis vector \mathbf{e}_{j}.]
(c) It follows from (b) that the map $f \mapsto[f]$ is a group homomorphism $S_{n} \rightarrow G L_{n}(\mathbb{R})$. In fact, show that $[f] \in O_{n}(\mathbb{R})$ for all $f \in S_{n}$. [Hint: You only need to show that $\left[f^{-1}\right]=[f]^{T}$. For all i, j note that $f(j)=i$ if and only if $f^{-1}(i)=j$.]
(d) For any permutation $f \in S_{n}$, we define its sign as the determinant of its matrix:

$$
\operatorname{sgn}(f):=\operatorname{det}([f]) .
$$

Prove that sgn is a group homomorphism $S_{n} \rightarrow\{ \pm 1\}$. [Hint: Every orthogonal matrix $A^{T} A=I$ satisfies $\operatorname{det}(A)= \pm 1$.]
(e) Prove that the sign homomorphism $S_{n} \rightarrow\{ \pm 1\}$ is surjective and its kernel is the alternating subgroup A_{n}. [Hint: You can assume that every transposition t satisfies $\operatorname{sgn}(t)=-1$. We previously showed that every permutation can be expressed as a product of transpositions. By definition, A_{n} is the set of permutations that can be expressed as a product of evenly-many transpositions.]

