1. Working with Lattice Axioms. Let (P, \leq, \wedge, \vee) be a lattice. For all $a, b \in P$ prove that

$$
a \leq b \quad \Longleftrightarrow \quad a=a \wedge b
$$

By definition, the element $a \wedge b$ satisfies (and is uniquely determined by) three properties:

- $a \wedge b \leq a$,
- $a \wedge b \leq b$,
- if $c \leq a$ and $c \leq b$ then $c \leq a \wedge b$.

First suppose that $a=a \wedge b$. Then since $a \wedge b \leq b$ we have $a \leq b$. Conversely, suppose that $a \leq b$. In this case we wish to show that $a=a \wedge b$. If we can show that $a \leq a \wedge b$ and $a \wedge b \leq a$ then we will be done by using the anti-symmetry axiom of " \leq ". And we already know that $a \wedge b \leq a$ from the definition of " \wedge ".

It only remains to show that $a \leq a \wedge b$. Since we have $a \leq a$ (by definition) and $a \leq b$ (by assumption) we see that a is a lower bound of a and b, hence it follows from the "greatest lower bound" axiom that $a \leq a \wedge b$.
2. Divisibility is a Partial Order. Consider the set $\mathbb{N}=\{0,1,2, \ldots\}$ together with the relation of divisibility:

$$
a \mid b \quad \Longleftrightarrow \quad \text { there exists some } k \in \mathbb{Z} \text { such that } a k=b
$$

(a) For all $a \in \mathbb{N}$ prove that $a \mid a$.
(b) For all $a, b \in \mathbb{N}$ prove that $a \mid b$ and $b \mid a$ imply $a=b$. [Hint: For any integers $c, d \in \mathbb{Z}$ you can assume that $c d=0$ implies $c=0$ or $d=0$.]
(c) For all $a, b, c \in \mathbb{N}$ prove that $a \mid b$ and $b \mid c$ imply $a \mid c$.
(a): For all $a \in \mathbb{N}$ we have $a \cdot 1=a$ and hence $a \mid a$.
(b): Suppose that $a, b \in \mathbb{N}$ satisfy $a \mid b$ and $b \mid a$. In other words, suppose we have $a k=b$ and $b \ell=a$ for some $k, \ell \in \mathbb{Z}$. If one of a or b is zero then the other must be as well, hence $a=0=b$. So let us assume that $a \neq 0$ and $b \neq 0$. Then we have

$$
\begin{aligned}
a & =b \ell \\
a & =a k \ell \\
a(1-k \ell) & =0 \\
1-k \ell & \stackrel{*}{=} 0 \\
1 & =k \ell .
\end{aligned}
$$

Step $*$ follows from the fact that $a \neq 0$ and the cancellation property of the integers ${ }^{1}$ This last equation has only two solutions: $k=\ell=1$ or $k=\ell=-1$. The solution $k=\ell=-1$ is impossible because a and b are both positive, hence $k=\ell=1$ and we conclude that $a=b \ell=b \cdot 1=b$.

[^0](c): Suppose that $a, b, c \in \mathbb{N}$ satisfy $a \mid b$ and $b \mid c$. This means that there exist $k, \ell \in \mathbb{Z}$ satisfying $k b=c$ and $\ell a=b$. It follows that $(k \ell) a=c$ and hence $a \mid c$.
3. The Group of Units Mod n. Consider the ring $(\mathbb{Z} / n \mathbb{Z},+, \cdot, 0,1)$. We say that $u \in \mathbb{Z} / n \mathbb{Z}$ is a unit if there exist some $x \in \mathbb{Z} / n \mathbb{Z}$ such that $u x \equiv 1 \bmod n$. We denote the multiplicative group of units by $\left((\mathbb{Z} / n \mathbb{Z})^{\times}, \cdot, 1\right)$.
(a) Prove that $(\mathbb{Z} / n \mathbb{Z})^{\times}=\{a \in \mathbb{Z} / n \mathbb{Z}: \operatorname{gcd}(a, n)=1\}$. [Hint: We proved in class that $a \mathbb{Z}+n \mathbb{Z}=\operatorname{gcd}(a, n) \mathbb{Z}$ for all $a, n \in \mathbb{Z}$. In particular, this implies that there exist $x, y \in \mathbb{Z}$ such that $a x+n y=\operatorname{gcd}(a, n)$.]
(b) Write down the full group tables of $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$and $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$. Each of these groups has size 4. Prove that they are not isomorphic.
(a): If $a \in \mathbb{Z} / n \mathbb{Z}$ is a unit then we have $a x \equiv 1 \bmod n$ for some integer $x \in \mathbb{Z}$. By definition this means that $1-a x=n y$ for some $y \in \mathbb{Z}$, and hence $a x+n y=1$. I claim that this implies $\operatorname{gcd}(a, n)=1$. Indeed, let $d=\operatorname{gcd}(a, n)$. Since d is a common divisor of a and n we have $a=d a^{\prime}$ and $n=d n^{\prime}$ for some $a^{\prime}, n^{\prime} \in \mathbb{Z}$, and hence
$$
1=a x+n y=d a^{\prime} x+d n^{\prime} y=d\left(a^{\prime} x+n^{\prime} y\right),
$$

It follows that $d=12^{2}$
Conversely, suppose that $\operatorname{gcd}(a, n)=1$. We proved in class that $a \mathbb{Z}+n \mathbb{Z}=\operatorname{gcd}(a, b) \mathbb{Z}$, so in this case we have $a \mathbb{Z}+n \mathbb{Z}=\mathbb{Z}$. Since $1 \in a \mathbb{Z}+n \mathbb{Z}$ we have $1=a x+n y$ for some $x, y \in \mathbb{Z}$. It follows that $n \mid(1-a x)$ and hence $a x \equiv 1 \bmod n$. In other words, a is a unit of $\mathbb{Z} / n \mathbb{Z}$.
[Remark: Our proof from class that $a \mathbb{Z}+n \mathbb{Z}=\operatorname{gcd}(a, n) \mathbb{Z}$ was indirect. The Euclidean algorithm can be used to compute specific integers $x, y \in \mathbb{Z}$ satisfying $a x+n y=\operatorname{gcd}(a, n)$.]
(b): Here are the group tables of $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$and $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$:

\cdot	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1

\cdot	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

The group $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$has 2 elements of order, while $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$has 4 elements of order two; hence they are not isomorphic. To be more specific, $(\mathbb{Z} / 10 \mathbb{Z})^{\times}$is cyclic, hence is isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$. The only other group of size 4 is the direct product $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, hence $(\mathbb{Z} / 12 \mathbb{Z})^{\times}$ must be isomorphic to this.
4. Order of a Power. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be an element of order $n \geq 1$.
(a) For any integer $k \in \mathbb{Z}$, let $d=\operatorname{gcd}(k, n)$. Show that $\left\langle g^{k}\right\rangle=\left\langle g^{d}\right\rangle$. [Hint: It suffices to show that g^{k} is a power of g^{d} and that g^{d} is a power of g^{k}. For the second statement you should use Bézout's identity: $k \mathbb{Z}+n \mathbb{Z}=d \mathbb{Z}$.]
(b) For any positive divisor $d \mid n$ show that g^{d} has order n / d. [Hint: Let $m=n / d$. You need to show that $\left(g^{d}\right)^{m}=\varepsilon$ and that the elements $\varepsilon,\left(g^{d}\right)^{1}, \ldots,\left(g^{d}\right)^{m-1}$ are distinct.]
(c) Combine (a) and (b) to show that for any $k \in \mathbb{Z}$ the element g^{k} has order $n / \operatorname{gcd}(n, k)$.

[^1](a): Let $g \in G$ be an element of a group, with $\#\langle g\rangle=n$, and let $d=\operatorname{gcd}(k, n)$. In this case we will prove that $\left\langle g^{k}\right\rangle=\left\langle g^{d}\right\rangle$.
In order to prove that $\left\langle g^{k}\right\rangle \subseteq\left\langle g^{d}\right\rangle$ it suffices to show that $g^{k} \in\left\langle g^{d}\right\rangle$. Note that $d=\operatorname{gcd}(k, n)$ is a divisor of k, hence $k=d d^{\prime}$ for some $d^{\prime} \in \mathbb{Z}$. Then we have
$$
g^{k}=g^{d d^{\prime}}=\left(g^{d}\right)^{d^{\prime}} \in\left\langle g^{d}\right\rangle
$$

Conversely, in order to prove that $\left\langle g^{d}\right\rangle \subseteq\left\langle g^{k}\right\rangle$, it suffices to show that $g^{d} \in\left\langle g^{k}\right\rangle$. For this we use Bézout's identity to write $d=k x+n y$ for some $x, y \in \mathbb{Z}$. Then we have

$$
g^{d}=g^{k x+n y}=\left(g^{k}\right)^{x} *\left(g^{n}\right)^{y}=\left(g^{k}\right)^{x} * \varepsilon^{y}=\left(g^{k}\right)^{x} \in\left\langle g^{k}\right\rangle .
$$

(b): For any positive divisor $d \mid n$, let $n=d m$. Then we have

$$
\left(g^{d}\right)^{m}=g^{n}=\varepsilon .
$$

If we can show that the elements $\varepsilon, g^{d},\left(g^{d}\right)^{2}, \ldots,\left(g^{d}\right)^{m-1}$ are distinct then it will follow that $\#\left\langle g^{d}\right\rangle=m=n / d$. To show this, we assume for contradiction that $\left(g^{d}\right)^{k}=\left(g^{d}\right)^{\ell}$ for some $0 \leq k<\ell<m$. Multiplying both sides by $\left(g^{d}\right)^{-k}$ gives $g^{d(\ell-k)}=\varepsilon$, where $1 \leq \ell-k<m$. Multiplying this inequality by d gives $1 \leq d \leq d(\ell-k)<d m=n$. But we showed on the previous homework that if $\#\langle g\rangle=n$ then n is the smallest positive integer satisfying $g^{n}=\varepsilon$. Hence we have a contradiction.
(c): Let $\#\langle g\rangle=n$ and let $d=\operatorname{gcd}(k, n)$, where k is any integer. From part (a) we have $\left\langle g^{k}\right\rangle=\left\langle g^{d}\right\rangle$. Then from part (b) we have

$$
\#\left\langle g^{k}\right\rangle=\#\left\langle g^{d}\right\rangle=n / d=n / \operatorname{gcd}(k, n) .
$$

5. The Euler-Fermat-Lagrange Theorem. Let $(G, \cdot, 1)$ be an abelian group and let $a \in G$ be any element. Define the function $\tau_{a}: G \rightarrow G$ by $\tau_{a}(g):=a g$.
(a) Prove that $\tau_{a}: G \rightarrow G$ is a bijection.
(b) If the group G is finite, prove that $a^{\# G}=1$. [Hint: Suppose that $\# G=n$ and list the elements as $G=\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$. Explain why $g_{1} g_{2} \cdots g_{n}=\tau_{a}\left(g_{1}\right) \tau_{a}\left(g_{2}\right) \cdots \tau_{a}\left(g_{n}\right)$. Rearrange the elements and then cancel.]
(c) If p is prime and $a \nmid p$, show that the result from part (b) implies

$$
a^{p-1} \equiv 1 \bmod p .
$$

[Hint: Let $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$. See Problem 3.]
(a): For any $a \in G$ we define the "translation function" $\tau_{a}: G \rightarrow G$ by $\tau_{a}(g):=a g$. I claim that this function is invertible, with inverse $\tau_{a^{-1}}$. Indeed, for any $g \in G$ we have $\tau_{a^{-1}}\left(\tau_{a}(g)\right)=a^{-1} a g=g$ and $\tau_{a}\left(\tau_{a^{-1}}(g)\right)=a a^{-1} g=g$, which shows that $\tau_{a} \circ \tau_{a^{-1}}$ and $\tau_{a^{-1}} \circ \tau_{a}$ are the identity function.
(b): Let $\# G=n$ and denote the elements of G as $g_{1}, g_{2}, \ldots, g_{n}$. For any $a \in G$, we know from part (a) that the elements $a g_{1}, a g_{2}, \ldots, a g_{n}$ are distinct, hence this is just a rearrangement of the group elements. Let $h=g_{1} g_{2} \cdots g_{n}$ be the product of all the group elements. Then we also have

$$
h=\left(a g_{1}\right)\left(a g_{2}\right) \cdots\left(a g_{n}\right)=a^{n} g_{1} g_{2} \cdots g_{n}=a^{n} h .
$$

Finally, multiplying both sides by the inverse h^{-1} gives $a^{n}=1$ as desired.
(c): There is not much to "do" here. From Problem 3 we know that $\#(\mathbb{Z} / p \mathbb{Z})^{\times}=p-1$. If $G=(\mathbb{Z} / p \mathbb{Z})^{\times}$then part (b) tells us that every element $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$satisfies " $a^{p-1}=1$ ". Now
we translate these abstract statements into the language of integers: Given any integer $a \in \mathbb{Z}$ such that $a \in(\mathbb{Z} / p \mathbb{Z})^{\times}$, i.e., such that $\operatorname{gcd}(a, p)=1$, i.e., such that $p \nmid a$, we have " $a^{p-1}=1$ " in the group $(\mathbb{Z} / p \mathbb{Z})^{\times}$, i.e., $a^{p-1} \equiv 1 \bmod p$.
[Remark: Mathematics is too big to be covered by a consistent notation. Sometimes we just have to jump from one notation to another and hope that we don't fall.]
6. Image and Preimage. Let $\varphi:\left(G, *, \varepsilon_{G}\right) \rightarrow\left(H, \bullet, \varepsilon_{H}\right)$ be a group homomorphism. For any subset $S \subseteq G$ we define the image set $\varphi[S] \subseteq H$ by

$$
\varphi[S]:=\{h \in H: \text { there exists } g \in S \text { such that } \varphi(g)=h\}
$$

and for any subset $T \subseteq H$ we define the preimage set $\varphi^{-1}[T] \subseteq G$ by

$$
\varphi^{-1}[T]:=\{g \in G: \varphi(g) \in T\} .
$$

Remark: We do not assume that the inverse function $\varphi^{-1}: H \rightarrow G$ exists. It exists if and only if for each element $h \in H$ the preimage set $\varphi^{-1}[\{h\}]$ consists of exactly one element.
(a) For any subsets $S \subseteq G$ and $T \subseteq G$, prove that

$$
S \subseteq \varphi^{-1}[T] \quad \Longleftrightarrow \quad \varphi[S] \subseteq T .
$$

(b) If $S \subseteq G$ is a subgroup, prove that $\varphi[S] \subseteq H$ is a subgroup.
(c) If $T \subseteq H$ is a subgroup, prove that $\varphi^{-1}[T] \subseteq G$ is a subgroup.
(a): This part is just about sets and functions. For any subsets $S \subseteq G$ and $T \subseteq H$ we have

$$
\begin{aligned}
S \subseteq \varphi^{-1}[T] & \Longleftrightarrow \text { "every element } s \in S \text { satisfies } s \in \varphi^{-1}[T] \text { " } \\
& \Longleftrightarrow \text { "every element } s \in S \text { satisfies } \varphi(s) \in T \text { " } \\
& \Longleftrightarrow \text { "if } h \in H \text { has the form } h=\varphi(s) \text { for some } s \in S \text { then } h \in T \text { " } \\
& \Longleftrightarrow \text { "every element } h \in \varphi[S] \text { satisfies } h \in T \text { " } \\
& \Longleftrightarrow \varphi[S] \subseteq T .
\end{aligned}
$$

(b): Let $\varphi:\left(G, *, \varepsilon_{G}\right) \rightarrow\left(H, \bullet, \varepsilon_{H}\right)$ be a group homomorphism. Let $S \subseteq G$ be a subgroup and consider the image set $\varphi[S] \subseteq H$. For any two elements $a, b \in \varphi[S]$ we can write $a=\varphi(x)$ and $b=\varphi(y)$ for some $x, y \in S$. By properties of homomorphism we have

$$
\varphi\left(x * y^{-1}\right)=\varphi(x) \bullet \varphi(y)^{-1}=a \bullet b^{-1} .
$$

But since S is a subgroup we know that $x * y^{-1} \in S$ and hence $a \bullet b^{-1} \in \varphi[S]$. We have shown that $\varphi[S]$ is a subgroup of H.
(c): Let $\varphi:\left(G, *, \varepsilon_{G}\right) \rightarrow\left(H, \bullet, \varepsilon_{H}\right)$ be a group homomorphism. Let $T \subseteq H$ be a subgroup and consider the preimage set $\varphi^{-1}[T] \subseteq G$. For any two elements $a, b \in \varphi^{-1}[T]$ we have $\varphi(a) \in T$ and $\varphi(b) \in T$. Since T is a subgroup, this implies that

$$
\varphi\left(a * b^{-1}\right)=\varphi(a) \bullet \varphi(b)^{-1} \in T,
$$

and it follows that $a * b^{-1} \in \varphi^{-1}[T]$. We have shown that $\varphi^{-1}[T]$ is a subgroup of G.

[^0]: ${ }^{1}$ Technically, the integers satisfy the property that $c \neq 0$ and $d \neq 0$ implies $c d \neq 0$. A general commutative ring satisfying this condition is called an integral domain (i.e., a place in which to do arithmetic that is similar to the integers).

[^1]: ${ }^{2}$ In general, if $a \mid b$ and $b \neq 0$ then $|a| \leq|b|$. Proof: Suppose that $b=a k$. Since $b \neq 0$ we have $a \neq 0$ and $k \neq 0$, so that $|a| \geq 1$ and $|k| \geq 1$, because these are whole numbers. Multiply both sides of the inequality $1 \leq|k|$ by $|a|$ to get $|a| \leq|a||k|=|a k|=|b|$. This proof will look slightly different depending on what axiom system you are using for the integers.

