1. Working with Lattice Axioms. Let (P, \leq, \land, \lor) be a lattice. For all $a, b \in P$ prove that $a \leq b \iff a = a \land b$.

2. Divisibility is a Partial Order. Consider the set $\mathbb{N} = \{0, 1, 2, ...\}$ together with the relation of *divisibility*:

 $a|b \iff$ there exists some $k \in \mathbb{Z}$ such that ak = b.

- (a) For all $a \in \mathbb{N}$ prove that a|a.
- (b) For all $a, b \in \mathbb{N}$ prove that a|b and b|a imply a = b. [Hint: For any integers $c, d \in \mathbb{Z}$ you can assume that cd = 0 implies c = 0 or d = 0.]
- (c) For all $a, b, c \in \mathbb{Z}$ prove that a|b and b|c imply a|c.

3. The Group of Units Mod *n*. Consider the ring $(\mathbb{Z}/n\mathbb{Z}, +, \cdot, 0, 1)$. We say that $u \in \mathbb{Z}/n\mathbb{Z}$ is a *unit* if there exist some $x \in \mathbb{Z}/n\mathbb{Z}$ such that $ux \equiv 1 \mod n$. We denote the *multiplicative group of units* by $((\mathbb{Z}/n\mathbb{Z})^{\times}, \cdot, 1)$.

- (a) Prove that $(\mathbb{Z}/n\mathbb{Z})^{\times} = \{a \in \mathbb{Z}/n\mathbb{Z} : \gcd(a, n) = 1\}$. [Hint: We proved in class that $a\mathbb{Z} + n\mathbb{Z} = \gcd(a, n)\mathbb{Z}$ for all $a, n \in \mathbb{Z}$. In particular, this implies that there exist $x, y \in \mathbb{Z}$ such that $ax + ny = \gcd(a, n)$.]
- (b) Write down the full group tables of (Z/10Z)[×] and (Z/12Z)[×]. Each of these groups has size 4. Prove that they are not isomorphic.
- **4.** Order of a Power. Let $(G, *, \varepsilon)$ be a group and let $g \in G$ be an element of order $n \ge 1$.
 - (a) For any integer $k \in \mathbb{Z}$, let $d = \gcd(k, n)$. Show that $\langle g^k \rangle = \langle g^d \rangle$. [Hint: It suffices to show that g^k is a power of g^d and that g^d is a power of g^k . For the second statement you should use Bézout's identity: $k\mathbb{Z} + n\mathbb{Z} = d\mathbb{Z}$.]
 - (b) For any positive divisor d|n show that g^d has order n/d. [Hint: Let m = n/d. You need to show that $(g^d)^m = \varepsilon$ and that the elements $\varepsilon, (g^d)^1, \ldots, (g^d)^{m-1}$ are distinct.]
 - (c) Combine (a) and (b) to show that for any $k \in \mathbb{Z}$ the element g^k has order $n/\gcd(n,k)$.

5. The Euler-Fermat-Lagrange Theorem. Let $(G, \cdot, 1)$ be an abelian group and let $a \in G$ be any element. Define the function $\tau_a : G \to G$ by $\tau_a(g) := ag$.

- (a) Prove that $\tau_a: G \to G$ is a bijection.
- (b) If the group G is **finite**, prove that $a^{\#G} = 1$. [Hint: Suppose that #G = n and list the elements as $G = \{g_1, g_2, \ldots, g_n\}$. Explain why $g_1g_2 \cdots g_n = \tau_a(g_1)\tau_a(g_2) \cdots \tau_a(g_n)$. Rearrange the elements and then cancel.]
- (c) If p is prime and $a \nmid p$, show that the result from part (b) implies

$$a^{p-1} \equiv 1 \mod p$$
.

[Hint: Let $G = (\mathbb{Z}/p\mathbb{Z})^{\times}$. See Problem 3.]

6. Image and Preimage. Let $\varphi : (G, *, \varepsilon_G) \to (H, \bullet, \varepsilon_H)$ be a group homomorphism. For any subset $S \subseteq G$ we define the *image* set $\varphi[S] \subseteq H$ by

$$\varphi[S] := \{h \in H : \text{there exists } g \in S \text{ such that } \varphi(g) = h\}$$

and for any subset $T \subseteq H$ we define the *preimage* set $\varphi^{-1}[T] \subseteq G$ by

$$\varphi^{-1}[T] := \{ g \in G : \varphi(g) \in T \}.$$

Remark: We do not assume that the inverse function $\varphi^{-1} : H \to G$ exists. It exists if and only if for each element $h \in H$ the preimage set $\varphi^{-1}[\{h\}]$ consists of exactly one element.

(a) For any subsets $S \subseteq G$ and $T \subseteq G$, prove that

$$S \subseteq \varphi^{-1}[T] \quad \Longleftrightarrow \quad \varphi[S] \subseteq T$$

(b) If S ⊆ G is a subgroup, prove that φ[S] ⊆ H is a subgroup.
(c) If T ⊆ H is a subgroup, prove that φ⁻¹[T] ⊆ G is a subgroup.