
Math 561/661 Fall 2023
Homework 1 Drew Armstrong

1. Group Axioms. Let G be a set with a binary operation (a, b) 7→ a ∗ b. Consider the
following four possible axioms:

(G1) For all a, b, c ∈ G we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(G2) There exists some ε ∈ G such that a ∗ ε = ε ∗ a = a for all a ∈ G.
(G3) For each a ∈ G there exists some b ∈ G such that a ∗ b = b ∗ a = ε.
(G4) For each a ∈ G there exists some c ∈ G such that a ∗ c = ε.

The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided
inverse for a and the element c in (G3) is called a right inverse for a.

(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.
(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.
(c) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent.

[Hint: One direction is obvious. The hard part is to prove that the existence of right
inverses implies the existence of two-sided inverses.]

(a) Assume that (G1) and (G2) hold and suppose that the elements ε, ε′ ∈ G both satisfy
(G2). Then we have

ε = ε ∗ ε′ = ε′.

[Remark: Actually I didn’t need to use (G1).]

(b) Assume that (G1), (G2) and (G3) hold and suppose that the elements b, b′ ∈ G both
satisfy (G3). Then we have

b = b ∗ id = b ∗ (a ∗ b′) = (b ∗ a) ∗ b′ = id ∗ b′ = b′.

(c) Assume that (G1) and (G2) hold. Then (G3) clearly implies (G4). On the other hand,
suppose that (G4) holds. Then for all a ∈ G there exists some c ∈ G such that a ∗ c = ε. But
we can also apply (G4) to this c to obtain some d ∈ G such that c ∗ d = ε. Putting these
together gives

d = id ∗ d = (a ∗ c) ∗ d = a ∗ (c ∗ d) = a ∗ id = a,

so that c ∗ d = c ∗ a = ε and hence c is a two-sided inverse for a. Finally, since a ∈ G was
arbitrary we conclude that (G3) holds.

2. Groups of Matrices. Let R be a commutative ring. Prove that each of the following
sets of matrices is a subgroup of GLn(R):

SLn(R) = {A ∈ Matn(R) : detA = 1},
On(R) = {A ∈ Matn(R) : ATA = I},

SOn(R) = {A ∈ Matn(R) : ATA = I and detA = 1}.

[Hint: You will need the matrix identities det(AB) = det(A) det(B) and (AB)T = BTAT .]

[Remark: I originally stated this problem in terms of the real numbers R but it applies equally
well to any commutative ring R.]



Special Linear Group. Note that det(A) = 1 ∈ R× implies that A−1 exists, hence SLn(R)
is a subset of GLn(R). We need to show that it is a subgroup. To see this we first note that
A,B ∈ SLn(R) implies AB ∈ SLn(R) because det(A) = 1 and det(B) = 1 implies

det(AB) = det(A) det(B) = 1 · 1 = 1.

Next we note that I is in SLn(R) becuase det(I) = 1. Finally, if A ∈ SLn(R) we note that
A−1 (which exists because SLn is a subset of GLn) is also in SLn(R) because

AA−1 = I

det(A) det(A−1) = det(I)

1 · det(A−1) = 1

det(A−1) = 1.

Orthogonal Group. If AAT = I then we have

det(AAT ) = det(I)

det(A) det(AT ) = 1

det(A)2 = 1,

which implies that det(A) = ±1. Since ±1 ∈ R× this implies that On(R) is a subset of
GLn(R). We need to show that it is a subgroup. To see this we first note that I ∈ On(R)
because IT I = II = I. Next we note that A,B ∈ On(R) implies AB ∈ On(R) since ATA = I
and BTB = I imply

(AB)T (AB) = BTATAB = BT IB = BTB = I.

Finally, we will show that A ∈ On(R) implies A−1 ∈ On(R) to do this we will use the (highly
nontrivial) fact that

AB = I =⇒ BA = I.

Suppose that A ∈ On(R) so that ATA = I. Then we must have AAT = I and we can take
the inverse of both sides to get

(AAT )−1 = I−1

(AT )−1A−1 = I

(A−1)TA−1 = I,

which implies that A−1 ∈ On(R).

[Remark: We discussed in class the fact that

ATA = I ⇐⇒ The columns of A are orthonormal.

The equivalence of ATA = I and AAT = I tells us that

The columns of A are orthonormal. ⇐⇒ The rows of A are orthonormal.

You will never find an elementary proof of this fact. This is an example of the mysterious
influence between rows and columns of a matrix.]

Special Orthogonal Group. It is easy to show that the intersection of subgroups is a
subgroup. Since SLn(R) and On(R) are both subgroups of GLn(R), and since

SOn(R) = SLn(R) ∩On(R),

we conclude that SOn(R) is a subgroup of GLn(R).



3. Groups of Permutations. Let S3 be the set of all permutations of the set {1, 2, 3}, i.e.,
all invertible functions

f : {1, 2, 3} → {1, 2, 3}.
(a) List all 6 elements of the set. [I recommend using cycle notation.]
(b) We can think of (S3, ◦, id) as a group, where ◦ is functional composition and id is the

identity function. Write out the full 6× 6 group table.
(c) Let Sn be the group of permutations of {1, 2, . . . , n}. An element of Sn is called a

transposition if it switches two elements of the set and sends every other element to
itself. We denote the transposition that switches i↔ j by (ij) ∈ Sn. Let An ⊆ Sn be
the subset of permutations that can be expressed as a composition of an even number
of transpositions. Prove that An ⊆ Sn is a subgroup.

(d) List all elements of the subgroup A3 ⊆ S3 and draw its group table.

(a) Here are the six permutations of {1, 2, 3} in word notation and cycle notation:

word notation cycle notation
123 ε
132 (23)
213 (12)
231 (123)
312 (132)
321 (13)

(b) Here is the group table:

◦ ε (12) (13) (23) (123) (132)
ε ε (12) (13) (23) (123) (132)

(12) (12) ε (132) (123) (23) (13)
(13) (13) (123) ε (132) (12) (23)
(23) (23) (132) (123) ε (13) (12)
(123) (123) (13) (23) (12) (132) ε
(132) (132) (23) (12) (13) ε (123)

(c) By the notation (i1, i2, . . . , ik) ∈ Sn, I mean the permutation that sends sends ij to ij+1

for all 1 ≤ j < k, sends ik to i1, and sends every other element of {1, 2, . . . , n} to itself. We
call this kind of permutation a k-cycle. [Example: Transpositions are 2-cycles.] The cycle
notation tells us that every element of Sn can be expressed as a composition of (commuting)
cycles. Thus we will be done if we can show that every cycle is a composition of transpositions.

Here is the proof:

(i1, i2, . . . , ik) = (i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik).

[Example: The permutation f = 615432 in word notation can be expressed as f = (162)(35) =
(162) ◦ (35) in cycle notation, hence we have f = (16) ◦ (62) ◦ (35).]

(d) Let An ⊆ Sn be the subset consisting of permutations which can be expressed as a
composition of an even number of transpositions. I claim that this is a subgroup. Proof.



• Closure. Suppose that f, g ∈ An. Then by definition we can write

f = s1 ◦ s2 ◦ · · · ◦ sk and g = t1 ◦ t2 ◦ · · · ◦ t`,
for some transpositions si and ti, where k, ` are even numbers. But then

f ◦ g = s1 ◦ s2 ◦ · · · ◦ sk ◦ t1 ◦ t2 ◦ · · · ◦ t`
is a composition of k + ` transpositions, where k + ` is an even number.
• Identity. By convention we will say that the identity ε is a composition of zero

transpositions. Since zero is an even number this means that ε ∈ An. If you don’t buy
that, let t ∈ Sn be any transposition. Then we have

ε = t ◦ t,
which is in An because 2 is an even number.
• Inverses. For any transposition t ∈ Sn we have t2 = t◦ t = ε and hence t−1 = t. More

generally, if f = t1 ◦ t2 ◦ · · · ◦ tk is any composition of transpositions then we have

f−1 = tk ◦ tk−1 ◦ · · · ◦ t2 ◦ t1.
It follows that f ∈ An implies f−1 ∈ An. �

[Jargon: The subgroup An ⊆ Sn is called the alternating subgroup of Sn.]

(e) Note that (123) = (12) ◦ (23) and (132) = (12) ◦ (13) are both in A3. It is a bit harder to
check that the elements (12), (13), (23) are not in A3. Check. Let’s write c = (123) so that
c2 = c−1 = (132). Now assume for contradiction that (12) can be expressed as a composition
of evenly many transpositions:

(12) = (t1 ◦ t2) ◦ · · · ◦ (t2k−1 ◦ t2k).

But from the group table we see that any two transpositions compose to ε, c = (123) or
c−1 = (132). This implies that (12) is a power of c. Contradiction. /// We conclude that

A3 = {ε, (123), (132)}.
Here is the group table:

◦ ε (123) (132)
ε ε (123) (132)

(123) (123) (132) ε
(132) (132) ε (123)

[Exercise: In general we have #An = n!/2. Later we will give a short proof which depends on
the identity det(AB) = det(A) det(B) for determinants.]


