1. Group Axioms. Let G be a set with a binary operation $(a, b) \mapsto a * b$. Consider the following four possible axioms:
(G1) For all $a, b, c \in G$ we have $a *(b * c)=(a * b) * c$.
(G2) There exists some $\varepsilon \in G$ such that $a * \varepsilon=\varepsilon * a=a$ for all $a \in G$.
(G3) For each $a \in G$ there exists some $b \in G$ such that $a * b=b * a=\varepsilon$.
(G4) For each $a \in G$ there exists some $c \in G$ such that $a * c=\varepsilon$.
The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided inverse for a and the element c in (G3) is called a right inverse for a.
(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.
(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.
(c) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent. [Hint: One direction is obvious. The hard part is to prove that the existence of right inverses implies the existence of two-sided inverses.]
(a) Assume that (G1) and (G2) hold and suppose that the elements $\varepsilon, \varepsilon^{\prime} \in G$ both satisfy (G2). Then we have

$$
\varepsilon=\varepsilon * \varepsilon^{\prime}=\varepsilon^{\prime}
$$

[Remark: Actually I didn't need to use (G1).]
(b) Assume that (G1), (G2) and (G3) hold and suppose that the elements $b, b^{\prime} \in G$ both satisfy (G3). Then we have

$$
b=b * \operatorname{id}=b *\left(a * b^{\prime}\right)=(b * a) * b^{\prime}=\operatorname{id} * b^{\prime}=b^{\prime} .
$$

(c) Assume that (G1) and (G2) hold. Then (G3) clearly implies (G4). On the other hand, suppose that (G4) holds. Then for all $a \in G$ there exists some $c \in G$ such that $a * c=\varepsilon$. But we can also apply (G4) to this c to obtain some $d \in G$ such that $c * d=\varepsilon$. Putting these together gives

$$
d=\operatorname{id} * d=(a * c) * d=a *(c * d)=a * \operatorname{id}=a
$$

so that $c * d=c * a=\varepsilon$ and hence c is a two-sided inverse for a. Finally, since $a \in G$ was arbitrary we conclude that (G3) holds.
2. Groups of Matrices. Let R be a commutative ring. Prove that each of the following sets of matrices is a subgroup of $G L_{n}(R)$:

$$
\begin{aligned}
S L_{n}(R) & =\left\{A \in \operatorname{Mat}_{n}(R): \operatorname{det} A=1\right\} \\
O_{n}(R) & =\left\{A \in \operatorname{Mat}_{n}(R): A^{T} A=I\right\} \\
S O_{n}(R) & =\left\{A \in \operatorname{Mat}_{n}(R): A^{T} A=I \text { and } \operatorname{det} A=1\right\} .
\end{aligned}
$$

[Hint: You will need the matrix identities $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $(A B)^{T}=B^{T} A^{T}$.]
[Remark: I originally stated this problem in terms of the real numbers \mathbb{R} but it applies equally well to any commutative ring R.]

Special Linear Group. Note that $\operatorname{det}(A)=1 \in R^{\times}$implies that A^{-1} exists, hence $S L_{n}(R)$ is a subset of $G L_{n}(R)$. We need to show that it is a subgroup. To see this we first note that $A, B \in S L_{n}(R)$ implies $A B \in S L_{n}(R)$ because $\operatorname{det}(A)=1$ and $\operatorname{det}(B)=1$ implies

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1 \cdot 1=1
$$

Next we note that I is in $S L_{n}(R)$ becuase $\operatorname{det}(I)=1$. Finally, if $A \in S L_{n}(R)$ we note that A^{-1} (which exists because $S L_{n}$ is a subset of $G L_{n}$) is also in $S L_{n}(R)$ because

$$
\begin{aligned}
A A^{-1} & =I \\
\operatorname{det}(A) \operatorname{det}\left(A^{-1}\right) & =\operatorname{det}(I) \\
1 \cdot \operatorname{det}\left(A^{-1}\right) & =1 \\
\operatorname{det}\left(A^{-1}\right) & =1 .
\end{aligned}
$$

Orthogonal Group. If $A A^{T}=I$ then we have

$$
\begin{aligned}
\operatorname{det}\left(A A^{T}\right) & =\operatorname{det}(I) \\
\operatorname{det}(A) \operatorname{det}\left(A^{T}\right) & =1 \\
\operatorname{det}(A)^{2} & =1,
\end{aligned}
$$

which implies that $\operatorname{det}(A)= \pm 1$. Since $\pm 1 \in R^{\times}$this implies that $O_{n}(R)$ is a subset of $G L_{n}(R)$. We need to show that it is a subgroup. To see this we first note that $I \in O_{n}(R)$ because $I^{T} I=I I=I$. Next we note that $A, B \in O_{n}(R)$ implies $A B \in O_{n}(R)$ since $A^{T} A=I$ and $B^{T} B=I$ imply

$$
(A B)^{T}(A B)=B^{T} A^{T} A B=B^{T} I B=B^{T} B=I .
$$

Finally, we will show that $A \in O_{n}(R)$ implies $A^{-1} \in O_{n}(R)$ to do this we will use the (highly nontrivial) fact that

$$
A B=I \quad \Longrightarrow \quad B A=I .
$$

Suppose that $A \in O_{n}(R)$ so that $A^{T} A=I$. Then we must have $A A^{T}=I$ and we can take the inverse of both sides to get

$$
\begin{aligned}
\left(A A^{T}\right)^{-1} & =I^{-1} \\
\left(A^{T}\right)^{-1} A^{-1} & =I \\
\left(A^{-1}\right)^{T} A^{-1} & =I,
\end{aligned}
$$

which implies that $A^{-1} \in O_{n}(R)$.
[Remark: We discussed in class the fact that

$$
A^{T} A=I \quad \Longleftrightarrow \quad \text { The columns of } A \text { are orthonormal. }
$$

The equivalence of $A^{T} A=I$ and $A A^{T}=I$ tells us that
The columns of A are orthonormal. \Longleftrightarrow The rows of A are orthonormal.
You will never find an elementary proof of this fact. This is an example of the mysterious influence between rows and columns of a matrix.]

Special Orthogonal Group. It is easy to show that the intersection of subgroups is a subgroup. Since $S L_{n}(R)$ and $O_{n}(R)$ are both subgroups of $G L_{n}(R)$, and since

$$
S O_{n}(R)=S L_{n}(R) \cap O_{n}(R),
$$

we conclude that $S O_{n}(R)$ is a subgroup of $G L_{n}(R)$.
3. Groups of Permutations. Let S_{3} be the set of all permutations of the set $\{1,2,3\}$, i.e., all invertible functions

$$
f:\{1,2,3\} \rightarrow\{1,2,3\} .
$$

(a) List all 6 elements of the set. [I recommend using cycle notation.]
(b) We can think of (S_{3}, \circ, id) as a group, where \circ is functional composition and id is the identity function. Write out the full 6×6 group table.
(c) Let S_{n} be the group of permutations of $\{1,2, \ldots, n\}$. An element of S_{n} is called a transposition if it switches two elements of the set and sends every other element to itself. We denote the transposition that switches $i \leftrightarrow j$ by $(i j) \in S_{n}$. Let $A_{n} \subseteq S_{n}$ be the subset of permutations that can be expressed as a composition of an even number of transpositions. Prove that $A_{n} \subseteq S_{n}$ is a subgroup.
(d) List all elements of the subgroup $A_{3} \subseteq S_{3}$ and draw its group table.
(a) Here are the six permutations of $\{1,2,3\}$ in word notation and cycle notation:

word notation	cycle notation
123	ε
132	(23)
213	(12)
231	(123)
312	(132)
321	(13)

(b) Here is the group table:

\circ	ε	(12)	(13)	(23)	(123)	(132)
ε	ε	(12)	(13)	(23)	(123)	(132)
(12)	(12)	ε	(132)	(123)	(23)	(13)
(13)	(13)	(123)	ε	(132)	(12)	(23)
(23)	(23)	(132)	(123)	ε	(13)	(12)
(123)	(123)	(13)	(23)	(12)	(132)	ε
(132)	(132)	(23)	(12)	(13)	ε	(123)

(c) By the notation $\left(i_{1}, i_{2}, \ldots, i_{k}\right) \in S_{n}$, I mean the permutation that sends sends i_{j} to i_{j+1} for all $1 \leq j<k$, sends i_{k} to i_{1}, and sends every other element of $\{1,2, \ldots, n\}$ to itself. We call this kind of permutation a k-cycle. [Example: Transpositions are 2-cycles.] The cycle notation tells us that every element of S_{n} can be expressed as a composition of (commuting) cycles. Thus we will be done if we can show that every cycle is a composition of transpositions.

Here is the proof:

$$
\left(i_{1}, i_{2}, \ldots, i_{k}\right)=\left(i_{1}, i_{2}\right) \circ\left(i_{2}, i_{3}\right) \circ \cdots \circ\left(i_{k-1}, i_{k}\right) .
$$

[Example: The permutation $f=615432$ in word notation can be expressed as $f=(162)(35)=$ (162) $\circ(35)$ in cycle notation, hence we have $f=(16) \circ(62) \circ(35)$.]
(d) Let $A_{n} \subseteq S_{n}$ be the subset consisting of permutations which can be expressed as a composition of an even number of transpositions. I claim that this is a subgroup. Proof.

- Closure. Suppose that $f, g \in A_{n}$. Then by definition we can write

$$
f=s_{1} \circ s_{2} \circ \cdots \circ s_{k} \quad \text { and } \quad g=t_{1} \circ t_{2} \circ \cdots \circ t_{\ell},
$$

for some transpositions s_{i} and t_{i}, where k, ℓ are even numbers. But then

$$
f \circ g=s_{1} \circ s_{2} \circ \cdots \circ s_{k} \circ t_{1} \circ t_{2} \circ \cdots \circ t_{\ell}
$$

is a composition of $k+\ell$ transpositions, where $k+\ell$ is an even number.

- Identity. By convention we will say that the identity ε is a composition of zero transpositions. Since zero is an even number this means that $\varepsilon \in A_{n}$. If you don't buy that, let $t \in S_{n}$ be any transposition. Then we have

$$
\varepsilon=t \circ t
$$

which is in A_{n} because 2 is an even number.

- Inverses. For any transposition $t \in S_{n}$ we have $t^{2}=t \circ t=\varepsilon$ and hence $t^{-1}=t$. More generally, if $f=t_{1} \circ t_{2} \circ \cdots \circ t_{k}$ is any composition of transpositions then we have

$$
f^{-1}=t_{k} \circ t_{k-1} \circ \cdots \circ t_{2} \circ t_{1} .
$$

It follows that $f \in A_{n}$ implies $f^{-1} \in A_{n}$.
[Jargon: The subgroup $A_{n} \subseteq S_{n}$ is called the alternating subgroup of S_{n}.]
(e) Note that $(123)=(12) \circ(23)$ and $(132)=(12) \circ(13)$ are both in A_{3}. It is a bit harder to check that the elements $(12),(13),(23)$ are not in A_{3}. Check. Let's write $c=(123)$ so that $c^{2}=c^{-1}=(132)$. Now assume for contradiction that (12) can be expressed as a composition of evenly many transpositions:

$$
(12)=\left(t_{1} \circ t_{2}\right) \circ \cdots \circ\left(t_{2 k-1} \circ t_{2 k}\right) .
$$

But from the group table we see that any two transpositions compose to $\varepsilon, c=(123)$ or $c^{-1}=(132)$. This implies that (12) is a power of c. Contradiction. /// We conclude that

$$
A_{3}=\{\varepsilon,(123),(132)\} .
$$

Here is the group table:

\circ	ε	(123)	(132)
ε	ε	(123)	(132)
(123)	(123)	(132)	ε
(132)	(132)	ε	(123)

[Exercise: In general we have $\# A_{n}=n!/ 2$. Later we will give a short proof which depends on the identity $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ for determinants.]

