1. Group Axioms. Let G be a set with a binary operation $(a, b) \mapsto a * b$. Consider the following four possible axioms:
(G1) For all $a, b, c \in G$ we have $a *(b * c)=(a * b) * c$.
(G2) There exists some $\varepsilon \in G$ such that $a * \varepsilon=\varepsilon * a=a$ for all $a \in G$.
(G3) For each $a \in G$ there exists some $b \in G$ such that $a * b=b * a=\varepsilon$.
(G4) For each $a \in G$ there exists some $c \in G$ such that $a * c=\varepsilon$.
The element ε in (G2) is called a two-sided identity. The element b in (G3) is called a two-sided inverse for a and the element c in (G3) is called a right inverse for a.
(a) If (G1) and (G2) hold, prove that the two-sided identity element is unique.
(b) If (G1), (G2) and (G3) hold, prove that the two-sided inverse is unique.
(c) Assuming that (G1) and (G2) hold, prove that that (G3) and (G4) are equivalent. [Hint: One direction is obvious. The hard part is to prove that the existence of right inverses implies the existence of two-sided inverses.]
2. Groups of Matrices. Matrix multiplication is necessarily associative because it corresponds to composition of linear functions. You may recall from linear algebra that a real $n \times n$ matrix $A \in \operatorname{Mat}_{n}(\mathbb{R})$ has a unique two-sided inverse precisely when $\operatorname{det} A \neq 0$. Now consider the following sets of matrices:

$$
\begin{aligned}
G L_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det} A \neq 0\right\} \\
S L_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): \operatorname{det} A=1\right\} \\
O_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): A^{T} A=I\right\} \\
S O_{n}(\mathbb{R}) & =\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}): A^{T} A=I \text { and } \operatorname{det} A=1\right\} .
\end{aligned}
$$

Prove carefully that each one of these sets is a group under matrix multiplication. [Hint: It is helpful to remember that $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $(A B)^{T}=B^{T} A^{T}$ for all matrices $A, B \in \operatorname{Mat}_{n}(\mathbb{R})$.]
3. Groups of Permutations. Let S_{3} be the set of all permutations of the set $\{1,2,3\}$, i.e., all invertible functions

$$
f:\{1,2,3\} \rightarrow\{1,2,3\} .
$$

(a) List all 6 elements of the set. [I recommend using cycle notation.]
(b) We can think of ($S_{3}, \circ, \mathrm{id}$) as a group, where \circ is functional composition and id is the identity function. Write out the full 6×6 group table.
(c) Let S_{n} be the group of permutations of $\{1,2, \ldots, n\}$. An element of S_{n} is called a transposition if it switches two elements of the set and sends every other element to itself. We denote the transposition that switches $i \leftrightarrow j$ by $(i j) \in S_{n}$. Let $A_{n} \subseteq S_{n}$ be the subset of permutations that can be expressed as a composition of an even number of transpositions. Prove that $A_{n} \subseteq S_{n}$ is a subgroup.
(d) List all elements of the subgroup $A_{3} \subseteq S_{3}$ and draw its group table.

