Problem 1. Equivalence Modulo a Subgroup. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subgroup. For all $a, b \in G$ we define

$$
a \sim b \quad \Longleftrightarrow \quad a^{-1} * b \in H
$$

You may assume that \sim is an equivalence relation. For any element $a \in G$ we define the set

$$
[a]:=\{b \in G: a \sim b\} .
$$

(a) Prove that $[\varepsilon]=H$.

First suppose that $a \in[\varepsilon]$, so that $\varepsilon \sim a$. By definition this means that $a=\varepsilon^{-1} * a \in H$. Conversely, suppose that $a \in H$, so that $\varepsilon^{-1} * a \in H$. By definition this means that $\varepsilon * a$ and hence $a \in[\varepsilon]$. [Alternatively, you can prove (b) first and then take $a=\varepsilon$.]
(b) For any $a \in G$ we define the set $a * H:=\{a * h: h \in H\}$. Prove that $[a]=a * H$.

First suppose that $b \in[a]$. By definition this means that $a \sim b$ and hence $a^{-1} * b \in H$. Let $h:=a^{-1} * b$. Then we have $b=a * h \in a * H$. Conversely, consider any element $b \in a * H$. By definition this means that $b=a * h$ for some $h \in H$. Then since $a^{-1} * b=h \in H$ it follows that $a \sim b$ and hence $b \in[a]$.

Problem 2. Lagrange's Theorem. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subgroup. For each $a \in G$ we consider the set $a * H=\{a * h: h \in H\}$ as in Problem 1(b).
(a) For any $a, b \in G$ prove that there exists a bijection between $a * H$ and $b * H$. [Hint: It suffices to show that there exists a bijection between $a * H$ and H for each $a \in H$.]

For any element $a \in G$ we consider the function $\tau_{a}: H \rightarrow G$ defined by $\tau_{a}(h)=a * h$. This function is injective because $a * b=a * c$ implies $b=c$ after multiplying on the left by a^{-1}. And the image of τ_{a} is $a * H$. Hence τ_{a} is a bijection $H \rightarrow a * H$.

The composition $\tau_{b} \circ \tau_{a^{-1}}$ is a bijection $a * H \rightarrow b * H$.
(b) If G is a finite group, use part (a) to prove that $\# H$ is a divisor of $\# G$.

Since \sim is an equivalence relation we know that the set G is a disjoint union of equivalence classes $G=\coprod_{i}\left[a_{i}\right]$ for some arbitrary class representatives $a_{1}, \ldots, a_{k} \in G$. From 1 (b) and 2(a) we know that $\#[a]=\# H$ for any $a \in G$. Hence

$$
\begin{aligned}
\# G & =\#\left[a_{1}\right]+\#\left[a_{2}\right]+\cdots+\#\left[a_{k}\right] \\
& =\# H+\# H+\cdots+\# H \\
& =k \cdot \# H .
\end{aligned}
$$

Problem 3. Applications of Lagrange. Given a group ($G, *, \varepsilon$) and an element $a \in G$ we let $\langle a\rangle \subseteq G$ denote the smallest subgroup of G that contains a.
(a) Suppose that G is finite. For any $a \in G$ you may assume that $a^{\#\langle a\rangle}=\varepsilon$. Combine this fact with Problem 2(b) to show that $a^{\# G}=\varepsilon$.

Since $\langle a\rangle \subseteq G$ is a subgroup we know from 2(b) that \# $\langle a\rangle$ divides $\# G$. Let's say $\# G=\#\langle a\rangle \cdot m$. Then we have

$$
a^{\# G}=a^{\#\langle a\rangle \cdot m}=\left(a^{\#\langle a\rangle}\right)^{m}=\varepsilon^{m}=\varepsilon .
$$

(b) We say that G is cyclic if there exists some element such that $\langle a\rangle=G$. If $\# G=p \geq 2$ is prime, use Problem 2(b) to prove that G is cyclic. [Hint: Pick any non-identity element $a \in G$.]

Let $\# G=p \geq 2$ be prime. Since $\# G \geq 2$ there exists some non-identity element $a \in G$. Consider the subgroup $\langle a\rangle \subseteq G$. From 2(b) we know that \# $\langle a\rangle$ divides p. Since p is prime and $\#\langle a\rangle \geq 2$ this implies that $\#\langle a\rangle=p$, and it follows that $\langle a\rangle=G$.

