Problem 1. Subgroup Axioms. Let $(G, *, \varepsilon)$ be a group and let $H \subseteq G$ be a subset. Consider the following four properties:
(S1) We have $\varepsilon \in H$.
(S2) For all $a \in H$ we have $a^{-1} \in H$.
(S3) For all $a, b \in H$ we have $a * b \in H$.
(S4) For all $a, b \in H$ we have $a * b^{-1} \in H$.
If (S1), (S2), (S3) hold then we say that H is a subroup of G.
(a) If (S1), (S2), (S3) hold, show that (S4) also holds.
(b) If (S4) holds, show that (S1), (S2), (S3) also hold. [Hint: Prove them in order.]
(a): Suppose that (S1), (S2), (S3) hold. In order to show that (S4) holds, consider any $a, b \in H$. From (S2) we have $b^{-1} \in H$ and then from (S3) we have $a * b^{-1} \in H$.
(b): Suppose that (S4) holds. We will prove (S1), (S2), (S3), in this order.
(S1): Pick any element $a \in H$ (we assume that H is not empty). Then from (S4) we have $\varepsilon=a * a^{-1} \in H$.
(S2): Consider any $a \in H$. We know that $\varepsilon \in H$ from (S1). Hence from (S4) we have $a^{-1}=\varepsilon * a^{-1} \in H$.
(S3): Consider any $a, b \in H$. From (S2) we know that $b^{-1} \in H$. Then from (S4) we have $a * b=a *\left(b^{-1}\right)^{-1} \in H$.

Problem 2. Group Homomorphisms. Let $\left(G, *, \varepsilon_{G}\right)$ and $\left(H, \bullet, \varepsilon_{H}\right)$ be groups and let $\varphi: G \rightarrow H$ be a group homomorphism, i.e., a function satisfying

$$
\varphi(a * b)=\varphi(a) \bullet \varphi(b) \text { for all } a, b \in G .
$$

(a) Prove that $\varphi\left(\varepsilon_{G}\right)=\varepsilon_{H}$.
(b) For all $a \in G$, prove that $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.
(a): For any group element $a \in G$ we have $\varphi(a)=\varphi\left(a * \varepsilon_{G}\right)=\varphi(a) \bullet \varphi\left(\varepsilon_{H}\right)$. Then multiplying both sides of $\varphi(a)=\varphi(a) \bullet \varphi\left(\varepsilon_{H}\right)$ on the left by the group element $\varphi(a)^{-1}$ (which exists because H is a group) gives $\varphi\left(\varepsilon_{G}\right)=\varepsilon_{H}$.
(b): For any group element $a \in G$ we have $\varphi(a) \bullet \varphi\left(a^{-1}\right)=\varphi\left(a * a^{-1}\right)=\varphi\left(\varepsilon_{G}\right)=\varepsilon_{H}$, where the last step follows from part (a). Then multiplying both sides of $\varphi(a) \bullet \varphi\left(a^{-1}\right)=\varepsilon_{H}$ on the left by $\varphi(a)^{-1}$ gives $\varphi\left(a^{-1}\right)=\varphi(a)^{-1}$.

Problem 3. Kernel and Image. Let $\varphi:\left(G, *, \varepsilon_{G}\right) \rightarrow\left(H, \bullet, \varepsilon_{H}\right)$ be a group homomorphism. Define the subsets $K \subseteq G$ and $M \subseteq H$ as follows:

$$
\begin{aligned}
& K=\text { the set of all } g \in G \text { such that } \varphi(g)=\varepsilon_{H}, \\
& M=\text { the set of all } h \in H \text { such that there exists } g \in G \text { satisfying } \varphi(g)=h .
\end{aligned}
$$

Use the results of Problems 1 and 2 to prove the following.
(a) Prove that K is a subgroup of G.
(b) Prove that M is a subgroup of H.
(a): We will use the one step subgroup test from Problem 1. Consider any elements $a, b \in K$. By definition this means that $\varphi(a)=\varepsilon_{H}$ and $\varphi(b)=\varepsilon_{H}$. Then from Problem 2 we have

$$
\varphi\left(a * b^{-1}\right)=\varphi(a) \bullet \varphi(b)^{-1}=\varepsilon_{H} \bullet \varepsilon_{H}^{-1}=\varepsilon_{H},
$$

which implies that $a * b^{-1} \in K$ as desired.
(b): We will use the one step subgroup test from Problem 1. Consider any elements $a, b \in M$. By definition this means that we have $a=\varphi(c)$ and $b=\varphi(d)$ for some elements $c, d \in G$. Then from Problem 2 we have

$$
a \bullet b^{-1}=\varphi(c) \bullet \varphi(d)^{-1}=\varphi\left(c * d^{-1}\right),
$$

which implies that $a \bullet b^{-1} \in M$ as desired.

