
Math 561 H Fall 2011
Homework 5 Drew Armstrong

1. We saw in class that any element of the orthogonal group O(2) has the form

Rθ :=
(

cos θ − sin θ
sin θ cos θ

)
or Fθ :=

(
cos θ sin θ
sin θ − cos θ

)
.

The matrix Rθ (with determinant 1) rotates the plane around 0 counterclockwise by the
angle θ. The matrix Fθ (with determinant −1) reflects the plane across the line through 0
that has angle θ/2 measured counterclockwise from the x-axis.

(a) For all angles α, β ∈ R, prove that FαFβ = Rα−β.
(b) Consider lines `1 and `2 in R2 with intersection P and angle θ/2 as below.

Let F` denote the reflection across line ` and let RPθ denote the rotation around the
point P counterclockwise by θ. Prove that F`2 ◦ F`1 = RPθ . (Hint: You can assume
that P = 0 and `1 is the x-axis. Use part (a).)

2. Consider the following triangle in R2.

Again let RPθ denote the rotation around point P counterclockwise by angle θ. Prove that

RQϕ ◦RPθ = RX−χ.

(Hint: Use Problem 1(b).) What happens when θ = ϕ→ 180◦?

3. Let Isom(Rn) denote the group of isometries ϕ : Rn → Rn. We know that if ϕ fixes the
origin, then ϕ is an orthogonal linear map. Let O(n) ≤ Isom(Rn) denote the subgroup fixing
the origin. Given α ∈ Rn, define the translation tα : Rn → Rn by tα(x) := x+ α. Clearly this
is an isometry. Let Rn

+ ≤ Isom(Rn) denote the (abelian) subgroup of translations, which is
isomorphic to vector addition on Rn via tα ◦ tβ = tα+β.

(a) Prove that every isometry f ∈ Isom(Rn) can be written uniquely in the form f = tα◦ϕ
with tα ∈ Rn

+ and ϕ ∈ O(n). (Hint: Let α = f(0).)
(b) Given α ∈ Rn and ϕ ∈ O(n), prove that ϕ ◦ tα = tα′ ◦ ϕ, where α′ = ϕ(α).
(c) Prove that Rn

+EIsom(Rn), and hence Isom(Rn) = Rn
+oO(n). (This is the prototypical

example of a semi-direct product.) Describe how to multiply the elements tα ◦ ϕ and
tβ ◦ ψ. Conclude that Isom(Rn) 6≈ Rn

+ ×O(n).



4. The Lemma That Is Not Burnside’s is a nice way to compute the number of orbits
when a finite group G acts on a finite set S. Here you will prove it.

(a) Let Sg = {s ∈ S : gs = s} be the set fixed by g ∈ G and let Gs = {g ∈ G : gs = s}
be the subgroup of G that fixes s ∈ S. Count the elements of the set {(g, s) ∈ G× S :
gs = s} in two different ways to show that∑

g∈G
|Sg| =

∑
s∈S
|Gs|.

(b) Let G(s) = {gs : g ∈ G} be the orbit generated by s ∈ S and let S/G denote the set
of orbits (which, recall, partition the set S). Prove that∑

s∈S

1
|G(s)|

= |S/G|.

(c) Combine (a) and (b) to prove that

|S/G| = 1
|G|

∑
g∈G
|Sg|.

That is, the number of orbits is equal to the average number of elements of S fixed by
an element of G. (Hint: Orbit-Stabilizer Theorem.)

5. We say a bracelet of size n is a circular string of n black and white beads. We say that
two bracelets are equal if they differ by a dihedral symmetry. (You can rotate a bracelet
and you can take it off your wrist, flip it over, and put it back on.) Use The Lemma That
Is Not Burnside’s to compute the number of bracelets of size 7. (Hint: The dihedral
group D7 acts on the set of 27 circular strings of 7 black and white beads, and the orbits are
called bracelets. You know the conjugacy classes of D7. How many strings are fixed by each
conjugacy class?)


