MTH 505: Number Theory Spring 2017
Homework 3 Drew Armstrong

3.1. (Infinitely Many Primes). Prove that there are infinitely many positive prime inte-
gers. That is, prove that the sequence

P1 = 2)p2 = 37]73 = 57]74 = 771’5 = 117]76 = 13) ..

never stops. [Hint: Assume for contradiction that the sequence stops, i.e., assume that the
numbers p1,ps,...,p; are all of the positive prime numbers. Now consider the number
N := pip2 - pr + 1. We know from class that the number N has a positive prime factor p|N.
Prove that this prime p is not in our list.]

3.2. (Infinitely Many Primes = 3 Mod 4). In this exercise you will show that the
sequence

3,7,11,15,19,23,27, . ..

contains infinitely many prime numbers.

(a) Consider a positive integer n > 1. If [n]4 = [3]4, prove that n has a positive prime
factor p|n such that [p]s = [3]4. [Hint: We know from class that n can be written as
a product of positive primes. What if none of them are in the set [3]47]

(b) Assume for contradiction that there are only finitely many positive primes in [3]4 and
call them
3<pr <p2 < < Pk
Now use part (a) to obtain a contradiction. [Hint: Define the number N := 4pips - - - p+

3. By part (a) this number has a positive prime factor p € [3]4. Show that the prime
p is not in your list.]

3.3. (Infinitely Many Primes = 1 Mod 4). In this exercise you will show that the
sequence

1,5,9,13,17,21,25, ...

contains infinitely many prime numbers.

(a) Assume for contradiction that there are only finitely many primes in this list and call
them pq,ps,...,pr. Now define the numbers

T = 2p1p2 - P,
N:=2"+1.
Show that N € [1]4 and that N € [1],, for all p;.
(b) If N is prime, show that part (a) leads to a contradiction.

(c¢) If N is not prime then there exists a positive prime divisor ¢|N. Use Euclid’s Totient
Theorem to prove that g € [1]4 and then show that part (a) still leads to a contradiction.
[Hint: Show that 4 is the multiplicative order of x mod ¢ and then use the fact that

©(q) =q—1]



3.4. (Useful Lemma). For all integers a, b, ¢ € Z with ged(a,b) = 1 show that
(ale A ble) = (ablc).
[Hint: Use the fact that ged(a,bd) = 1 to write ax + by = 1 for some z,y € Z.]

3.5. (Generalization of Euler’s Totient Theorem). Consider a positive integer n with
prime factorization

no=piipe .- pek,
Now consider any integers e, f € Z with the properties

e ¢; < e for all 4,

o ¢(p;)|f for all i.

In this case prove that [af*¢], = [a®], for all integers a € Z. In the special case that
ged(a,n) = 1 we could then multiply both sides by the inverse [a~¢], to obtain [af], = [1]n,
which is just another way to state Euler’s Totient Theorem. [Hint: For all i we have either
pila or p; t a. In the former case show that p7*|a® and in the latter case use Euler’s Totient
Theorem to show that p§’|(a/ — 1). In either case we have p’|a®(a/ — 1). Now use 3.4 to
conclude that n|a®(a’ —1).]

[The previous result has an application to the Party Trick that we discussed in class. The prime
factorization of 100 is 22 - 52. Since e = 2 is greater than or equal to both exponents and
since ©(100) = 40 is divisible by both (22) = 2 and ¢(5%) = 4 we conclude that [a*?]199 =
[a*9+2]100 = [a®]100 for all integers a € Z. Now you can impress your friends by quickly computing
the last two digits of the number a*2. And that's not all; the result of 3.5 is also good for

cryptography.]

3.6. (RSA Cryptosystem). Consider prime numbers p, q € Z. Since ¢(pq) = (p—1)(¢—1),
Euler’s Totient Theorem tells us that for all integers a € Z with ged(a,pqg) = 1 we have

[a(pil)(qil)]pq = [1]pq’

and then multiplying both sides by [a]p, gives
(RSA) [a(pil)(qil)ﬂ]pq = [alpq-

Now use 3.5 to show that the second equation (RSA) still holds when ged(a, pg) # 1, even
though the first equation does not.



