
MTH 505: Number Theory Spring 2017
Homework 3 Drew Armstrong

3.1. (Infinitely Many Primes). Prove that there are infinitely many positive prime inte-
gers. That is, prove that the sequence

p1 “ 2, p2 “ 3, p3 “ 5, p4 “ 7, p5 “ 11, p6 “ 13, . . .

never stops. [Hint: Assume for contradiction that the sequence stops, i.e., assume that the
numbers p1, p2, . . . , pk are all of the positive prime numbers. Now consider the number
N :“ p1p2 ¨ ¨ ¨ pk ` 1. We know from class that the number N has a positive prime factor p|N .
Prove that this prime p is not in our list.]

3.2. (Infinitely Many Primes ” 3 Mod 4). In this exercise you will show that the
sequence

3, 7, 11, 15, 19, 23, 27, . . .

contains infinitely many prime numbers.

(a) Consider a positive integer n ě 1. If rns4 “ r3s4, prove that n has a positive prime
factor p|n such that rps4 “ r3s4. [Hint: We know from class that n can be written as
a product of positive primes. What if none of them are in the set r3s4?]

(b) Assume for contradiction that there are only finitely many positive primes in r3s4 and
call them

3 ă p1 ă p2 ă ¨ ¨ ¨ ă pk.

Now use part (a) to obtain a contradiction. [Hint: Define the number N :“ 4p1p2 ¨ ¨ ¨ pk`
3. By part (a) this number has a positive prime factor p P r3s4. Show that the prime
p is not in your list.]

3.3. (Infinitely Many Primes ” 1 Mod 4). In this exercise you will show that the
sequence

1, 5, 9, 13, 17, 21, 25, . . .

contains infinitely many prime numbers.

(a) Assume for contradiction that there are only finitely many primes in this list and call
them p1, p2, . . . , pk. Now define the numbers

x :“ 2p1p2 ¨ ¨ ¨ pk,

N :“ x2 ` 1.

Show that N P r1s4 and that N P r1spi for all pi.

(b) If N is prime, show that part (a) leads to a contradiction.

(c) If N is not prime then there exists a positive prime divisor q|N . Use Euclid’s Totient
Theorem to prove that q P r1s4 and then show that part (a) still leads to a contradiction.
[Hint: Show that 4 is the multiplicative order of x mod q and then use the fact that
ϕpqq “ q ´ 1.]



3.4. (Useful Lemma). For all integers a, b, c P Z with gcdpa, bq “ 1 show that

pa|c^ b|cq ñ pab|cq.

[Hint: Use the fact that gcdpa, bq “ 1 to write ax` by “ 1 for some x, y P Z.]

3.5. (Generalization of Euler’s Totient Theorem). Consider a positive integer n with
prime factorization

n “ pe11 pe22 ¨ ¨ ¨ p
ek
k .

Now consider any integers e, f P Z with the properties

‚ ei ď e for all i,

‚ ϕppeii q|f for all i.

In this case prove that raf`esn “ raesn for all integers a P Z. In the special case that
gcdpa, nq “ 1 we could then multiply both sides by the inverse ra´esn to obtain raf sn “ r1sn,
which is just another way to state Euler’s Totient Theorem. [Hint: For all i we have either
pi|a or pi - a. In the former case show that peii |a

e and in the latter case use Euler’s Totient

Theorem to show that peii |pa
f ´ 1q. In either case we have peii |a

epaf ´ 1q. Now use 3.4 to

conclude that n|aepaf ´ 1q.]

[The previous result has an application to the Party Trick that we discussed in class. The prime
factorization of 100 is 22 ¨ 52. Since e “ 2 is greater than or equal to both exponents and
since ϕp100q “ 40 is divisible by both ϕp22q “ 2 and ϕp52q “ 4 we conclude that ra42s100 “
ra40`2s100 “ ra

2s100 for all integers a P Z. Now you can impress your friends by quickly computing
the last two digits of the number a42. And that’s not all; the result of 3.5 is also good for
cryptography.]

3.6. (RSA Cryptosystem). Consider prime numbers p, q P Z. Since ϕppqq “ pp´1qpq´1q,
Euler’s Totient Theorem tells us that for all integers a P Z with gcdpa, pqq “ 1 we have

rapp´1qpq´1qspq “ r1spq,

and then multiplying both sides by raspq gives

(RSA) rapp´1qpq´1q`1spq “ raspq.

Now use 3.5 to show that the second equation (RSA) still holds when gcdpa, pqq ‰ 1, even
though the first equation does not.


