- **1.** Let \mathbb{F} be a field and consider two polynomials $f(x), g(x) \in \mathbb{F}[x]$.
 - (a) If f(x) and g(x) are both nonzero, prove that $\deg(fg) = \deg(f) + \deg(g)$.
 - (b) How should you define the "degree" of the zero polynomial so that the result in part (a) remains true even when one or both of f(x) and g(x) is zero?

2. Let \mathbb{F} be a field with **finitely** many elements. Prove that there must exist two non-equal polynomials (i.e., with different coefficients) that yield equal functions $\mathbb{F} \to \mathbb{F}$. [Hint: How many different polynomials are there? How many different functions?]

3. Let \mathbb{F} be a field and consider the ring of polynomials $\mathbb{F}[x]$. Apply Descartes' Factor Theorem to prove the following statement: If $f(x) \in \mathbb{F}[x]$ has degree n, then f(x) has **at most** n distinct roots in \mathbb{F} . [Hint: Use induction.]

4. Assume that the cubic equation $ax^3 + bx^2 + cx + d = 0$ has three distinct roots, called r, s, t. Give a formula for rs + rt + st in terms of the coefficients a, b, c, and d.

5. Prove that $\sqrt[3]{7+\sqrt{50}} + \sqrt[3]{7-\sqrt{50}} = 2$. [Hint: Maybe the cube roots of $7+\sqrt{50}$ and $7-\sqrt{50}$ have the form $a+b\sqrt{2}$, where a and b are small whole numbers.]

6. Define a function $f : \mathbb{C} \to M_{2 \times 2}(\mathbb{R})$ from complex numbers to real 2×2 matrices by setting

$$f(a+ib) := \begin{pmatrix} a & -b \\ b & a \end{pmatrix}.$$

For any complex numbers $u, v \in \mathbb{C}$ verify the following:

(a) f(u+v) = f(u) + f(v)(b) f(uv) = f(u)f(v)

(c)
$$|u|^2 = \det f(u)$$
.

(The operations on the right hand side are matrix addition, matrix multiplication, and matrix determinant.)